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Identifying and Qualifying
Reusable Software Components
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ffective reuse of knowledge. pro-
E cesses, and products from previous

software developments can increase
productivity and quality in software projects
by an order of magnitude. In fact, software
production using reusable components will
probably be crucial to the software indus-
trv's evolution to higher levels of maturity.

Software reuse is not new. Mcllroy!
proposed using modular software units in
1969. and reuse has been behind many
software developments. However. the
method has never acquired real momen-
tum in industrial environments and soft-
ware projects. despite its informal pres-
ence there.

The first problem we encounter in reus-
ing software arises from the nature of the
object to be reused. The concept is simple
— use the same object more than once. But
with software it is difficult to define what
an object is apart from its context.* We have
programs, parts of programs, specifica-
tions, requirements. architectures, test cas-
es. and plans, all related to each other. The
reuse of each software object implies the
concurrent reuse of the objects associated
with it. and informal information traveling
with the objects. Thus, we must reuse more
than code. Software objects and their rela-
tionships incorporate a large amount of
experience from pastdevelopment. We need
to reuse this experience in the production
of new software. The experience makes it
possible to reuse software objects.’

A second major problem in code reuse is
the lack of a set of reusable components.
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Software metrics
provide a way to
automate the extraction
of reusable software
components from
existing systems,
reducing the amount of
code that experts must
analyze.

despite the large amount of software that
already exists in the portfolios of many
software producers. Reuse efficiency and
cost effectiveness require a large catalog
of available reusable objects.

In this article, we outline a way to reuse
development experience along with the
software objects it produces. Then, we fo-
cus on a problem in the development of a
catalog of reusable components: how to
analyze existing components and identify
ones suitable for reuse. After they are iden-
tified, the parts could be extracted, pack-
aged in a way appropriate for reuse, and
stored in a component repository. This
catalog of heterogeneous objects would
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have to be designed for etficient retrieval
of individual components. but that topic is
beyond our scope.

Our model for reusing software compo-
nents splits the traditional life-cycle mod-
els into two parts: one part. the project.
delivers software systems. while the other
part. the factory. supplies reusable soft-
ware objects to the project. The factory’s
primary concerns are the extraction and
packaging of reusable components. but it
must. of course. work with a detailed
knowledge of the application domain from
which a component is extracted.

Our approach to identification and qual-
ification of reusable software is based on
software models and metrics. Because
software metrics take into account the large
volume of source code that must be ana-
lyzed to find reusable parts, they provide a
way to automate the first steps of the
analysis. Besides. models and metrics permit
feedback and improvement to make the
extraction process fit a variety of environ-
ments.

The extracted candidates are analyzed
more carefully in the context of the seman-
tics of the source application in a process
we call “qualification.”

In this article, we describe some case
studies to validate our experimental ap-
proach. They deal with only the identifica-
tion phase and use a very simple model of
areusable code component, but our results
show that automated techniques canreduce
the amount of code that a domain expert
needs to evaluate to identify reusable parts.
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Figure 1. The reuse process model.

Reuse framework and
organization

In many software engineering projects,
reuse is as common as in everyday life: Itis
an informal sharing of techniques and
products among people working on the
same or similar projects. Transforming in-
formal reuse concepts into a technology of
reuse would provide the basis for the future
software factory, improving quality and
increasing productivity, as well as making
production more manageable. To achieve
higher levels of reuse, we must recognize
the experience appropriate for reuse, pack-
age experience in a readily available way,
and formally integrate reuse into software
development.

Currently, all reuse occurs in the project
development, where reuse is difficult be-
cause a project’s focus is system delivery.
Packaging reusable experience is at best a
secondary concern. Besides, project per-
sonnel cannot recognize the pieces of ex-
perience appropriate for other projects.

Existing process models, which tend to
be rigidly deterministic, are not defined to
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take advantage of reuse, much less to cre-
ate reusable experience. To create pack-
aged experience and then reuse it, multiple
process models are necessary.

Figure 1 shows an organizational frame-
work that separates project- specific activ-
ities from the reuse-packaging activities,
with process models that support each ac-
tivity.* The framework defines two sep-
arate organizations: a project organization
and an experience factory.

The project organization develops the
product, taking advantage of all forms of
packaged experience from prior and current
developments. In turn, the project offers its
own experiences to be packaged for other
projects. The experience factory recognizes
potentially reusable experience and pack-
ages it so it is easy for the project organi-
zation to use.

Within the experience factory, an orga-
nization we call the component factory
develops and packages software compo-
nents. It supplies code components to the
project upon demand, and creates and
maintains a repository of components for
future use. As a subdivision of the experi-
ence factory, the experience that the com-

ponent factory manipulates is program-
ming and application experience as em-
bodied in programs and their documenta-
tion. Because the experience factory gathers
all kinds of experience from the project,
the component factory understands the
project context and can deliver compo-
nents that fit.

The project organization performs activ-
ities specific to implementation of the sys-
tem to which it is dedicated. [t analyzes the
requirements and produces the specifica-
tions and the high-level system design. Its
process models are like those used by today 's
software engineering projects (for instance,
it may use the waterfall model or iterative
enhancement model). Software engineers
generate specifications from requirements
and design a system to satisfy those re-
quirements. However, when the engineers
have identified the system components.
usually after the so-called preliminary de-
sign, they request components from the
component factory and integrate them into
the programs and the system they have
designed. The project organization engineers
may also request a list of components that
satisfy a given specification. Then, from
several design options, they can choose the
one for which more reusable components
are already avatlable.

After component integration, the project
organization process model continues as
usual with product quality control (system
test, reliability analysis) and release.

The component factory’s process model
is twofold:? it satisfies requests for com-
ponents coming from the project organi-
zation, but it also prepares itself for an-
swering those requests. This mix of
synchronous and asynchronous activities
is typical of the process model of the expe-
rience factory in general.*

Synchronous activity, When the com-
ponent factory receives a request from the
project organization, it searches its catalog
of components to find a software compo-
nent that satisfies that request with or with-
out tailoring. Two kinds of tailoring can be
applied to a software component: instanti-
ation and modification. To an extent, the
component’s designer has anticipated in-
stantiation by associating with the compo-
nent some parameters tomake it suit different
contexts. A generic unitin Adais anexample
of such a parametric component and of the
instantiation process. Modification is an
unanticipated tailoring process in which
statements are changed, added, or deleted to
adapt the component to a request.

If no component that approximates the
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request can be found in the catalog of the
available components or if the necessary
modification is too expensive, the compo-
nent factory develops the requested com-
ponent from scratch or generates it from
more elementary components. After veri-
fication, the component is released to the
project organization that requested it.

Asynchronous activity. The compo-
nent factory’s ability to efficiently answer
requests from the project organization is
critical for the successful application of the
reuse technology. Therefore, the factory’s
catalog must contain enough components
to reduce the chances that the factory will
have to develop a component from scratch.
Moreover, looking up components must be
easy. This is why the component factory’s
process model has an asynchronous part.

To produce some software components
without specific requests from the project
organization, the component factory de-
velops a component production plan — it
extracts reusable components from exist-
ing systems or generalizes components
previously produced on request from the
project organization. The Booch compo-
nents® are an example of a component
production plan: The most common data
structures and the main operations on them
have been implemented as Ada packages.

A component factory can develop an
application-oriented component production
plan by analyzing an application domain to
identify the most common functions. Then
it can implement these functions into reus-
able components to be used by the develop-
ers. Orthe factory can generalize a preexist-
ing component into a4 new one by adding
more functionality or parameterizing it.

To ensure that the generated compo-
nents are well packaged and easily retrieved,
a process called component qualification
provides components with functional
specifications and test cases, and classifies
them according to acomponent taxonomy.%
Software components are then stored in a
repository.

Extracting components

In the short term. developing reusable
components is generally more expensive
than developing specialized code. because
of the overhead of maintaining the compo-
nent factory. A rich and well-organized
catalog of reusable components is the key to
a successful component factory and a long-
term economic gain. But at first such a
catalog will not be available to an organiza-
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Figure 2. Component extraction.

tion, unless it can reuse code that it devel-
oped in the past without reuse in mind.

Mature application domains, where most
of the functions that need to be used already
existin some formin earlier systems, should
provide enough components for code reuse.
In such cases, the earlier systems were
probably designed and implemented by re-
using code informally. For example, Laner-
gan and Grasso found rates of reuse of about
60 percent in business applications.’

To package such code for reuse, the
component factory analyzes existing pro-
grams in the two phases shown in Figure 2.
First, it chooses some candidates and
packages them for possible independent
use. Next, an engineer with knowledge of
the application domain where the compo-
nent was developed analyzes each compo-
nent to determine the service it can pro-
vide. Then, components are stored in the
repository with all information that has
been obtained about them.

The first phase can be fully automated.
The necessary human intervention in the

second phase is the main reason for split-
ting the process in two steps, instead of
searching through existing programs look-
ing for “useful” components first. The first
phase reduces the amount of expensive
human analysis needed in the second phase
by limiting analysis to components that
really look worth considering.

In the component identification phase,
program units are automatically extracted,
made independent, and measured accord-
ing to observable properties related to their
potential for reuse. There has been much
discussion about these properties. Accord-
ing to Prieto-Diaz and Freeman.® a soft-
ware component is reusable if the effort
required to reuse it is remarkably smaller
than the effort required to implement a
component with the same functions. Thus,
we need a quantitative measure of the dis-
tance of the component from its potential
reuse. In the section below on component
identification, we give details about a fam-
ily of such measures that we call the reus-
ability attributes model.
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The identification phase consists of three
steps:

(1) Definition (or refinement) of the re-
usability attributes model. Using our cur-
rent understanding of the characteristics of
a potentially reusable component in our
environment, we define a set of automat-
able measures that capture these charac-
teristics and an acceptable range of values
for these metrics. We verify the metrics
and their value ranges using the outcomes
in the next steps and continually modify
them until we have a reusability attributes
model that maximizes our chances of se-
lecting candidate components for reuse.

(2) Extraction of components. We extract
modular units from existing systems, and
complete them so they have all the external
references needed to reuse them indepen-
dently (for example, to compile them). By
“modular unit” we mean a syntactic unit
suchas a C function. an Ada subprogram or
block. or a Fortran subroutine.

(3) Application of the model. The cur-
rent reusability attributes model is applied
to the extracted. completed components.
Components whose measurements are
within the model’s range of acceptable
values become candidate reusable compo-
nents to be analyzed by the domain expert
in the qualification phase.

During the component qualification
phase. a domain expert analyzes the can-
didate reusable components to understand
and record each component’s meaning while
evaluating its potential for reuse in future
systems. The expert also repackages the
component by associating with it a reuse
specification.® a significant setof test cases,
a set of attributes based on a reuse classi-
fication schema, and a set of procedures for
reusing the component.

The reuse classification schema. called
a taxonomy. is very important for storing
and retrieving reusable components efti-
ciently. The definition and the domain of
the attributes that implement the taxonomy
can be improved cach time an expert per-
forms component qualification and ana-
lvzes the problems encountered.

The qualification phase consists of six
steps:

(1) Generarion of the funcrional speci-
fication. A domain expert extracts the
functional specification of each candidate
reusable component from its source code
and documentation. This step provides in-
sightinto the correctness of the component
in relationship to the new specification.
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Components that are not relevant or not
correct, or whose functional specification
is not easy to extract, are discarded. The
expert reports reasons for discarding can-
didates and other insights so they can be
used to improve the reusability attributes
model.

(2) Generation of the test cases. Using
the functional specification, the expert
generates, executes, and associates with
the component a set of test cases. Compo-
nents that do not satisfy the tests are dis-
carded. Again, the reasons for discarding
candidates are recorded and used toimprove
the reusability attributes model, and possi-
bly the process for extracting the function-
al specification and assessing its correctness
(step 1). This is most likely the last step at
which a component will be discarded.

(3) Classification of the component. To
distinguish it from the other components
and assist in its identification and retrieval,
the expert associates each reusable com-
ponent with a classification according to a
set of attributes identified in the domain
analysis. Problems with the taxonomy are
recorded for further analysis.

(4) Development of the reuser’s manu-
al. Information for the future reuser is
provided in a manual that contains a de-
scription of the component’s functions and
interfaces as identified during generation
of its functional specification (step 1), di-
rections on how to install and use it, in-
formation about its procurement and sup-
port. and an appendix with structure
diagrams and information for component
maintenance.

(5) Storage. Reusable software compo-
nents are stored in the repository together
with their functional specifications, test
cases. classification attributes, and reuser’s
manuals.

(6) Feedback. The reusability attributes
model is updated by drawing on informa-
tion from the qualification phase to add
more measures, modify and remove mea-
sures that proved ineffective, or alter the
ranges of acceptable values. This step re-
quires analysis and possibly even further
experimentation. The taxonomy is updated
by adding new attributes or modifying the
existing ones according to problems re-
ported by the experts who classified the
components (step 3).

This sketch illustrates the main concepts
behind our approach: the use of a quanti-
tative model for identification of compo-
nents and a qualitative. partially subjective
model for their qualification, with contin-
uous improvement of both models using

feedback from their application. The re-
usability attributes model is the key to
automating the first phase.

Component
identification

According to Booch, a software com-
ponent “is simply a container for express-
ing abstractions of data structures and al-
gorithms.”> The attributes that make a
component reusable as a building block of
other, maybe radically different, systems
are functional usefulness in the context of
the application domain, low reuse cost, and
quality.

The reusability attributes model attempts
to characterize those attributes directly
through measures of an attribute, or indi-
rectly through measures of evidence of an
attribute’s existence. These measures must
be automatable.

We define a set of acceptable values for
each of the metrics. These values can be
either simple ranges of values (measure o
is acceptable between ¢y and o) or more
sophisticated relationships among differ-
ent metrics (measure o is acceptable be-
tween o, and o, provided that measure 3
is less than By ).

Figure 3 shows a “fishbone diagram”
that represents the reusability factors. With
each factor in the diagram. we associate
metrics directly measuring the factor or
indirectly predicting the likelihood of its
presence.

Costs. Reuse costs include the costs of
extracting the component from the old sys-
tem, packaging it into a reusable compo-
nent, finding and modifying the compo-
nent, and integrating it into the new system.
We can measure these costs directly during
the process or use metrics to predict them.

To define the basic reusabilirv attributes
model. the entry-level model that the com-
ponent factory starts with and later improves
through feedback from the qualification
phase. we divide reuse costs into two groups:
costs to perform the extraction and costs to
use the component in a new context. To
minimize the costs of finding the component
and extracting it, we need code fragments
that are small and simple. Measures of
volume and complexity also provide a partial
indication of how easy qualification will be.
The costs to reuse the component can be
influenced by the readability of a code
fragment, a characteristic that can again be
partially evaluated using volume and com-
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plexity measures, as well as measures of the
nonredundancy and structuredness of the
component’s implementation.

Usefulness. Functional usefulness is
affected by both the commonality and the
variety of the functions performed by the
component. The commonality of a com-
ponent for reuse can be divided into three
parts: its commonality withina systemora
single application, its commonality across
different systems in the same application
domain, and its overall commonality. It is
hard to associate metrics with these factors.
Experience with the application domain
might provide subjective insight into
whether the function is primitive to the
domain and occurs commonly. An indirect
automatable measure of functional useful-
ness might be the number of times the
function occurs within the analyzed system
(if we assume that an often-reused com-
ponent is probably highly reusable). The
variety of functions performed by the
component is even more difficult to mea-
sure: An indirect metric could be compo-
nent complexity. However. for a compo-
nent’s complexity to reflect its ability to
perform more functions. we would have to
assume that the component was developed
in a nonredundant way.

The basic reusability attributes model
measures a component’s functional use-
fulness, derived from the commonality of
the functions performed by the component.
by comparing the number of times the
component is invoked in the system with
the number of times a component known to
be useful is invoked. Components known
to be useful can usually be found in the
standard libraries of a programming envi-
ronment. The basic reusability attributes
model measures the commonality of a
function by the ratio between the number
of its invocations and the invocations of
standard components.

The basic reusability attributes model
assesses functional usefulness derived from
the number and the variety of functions
incorporated in acomponent by measuring
its complexity and the nonredundancy of
its implementation. This last feature can be
translated into volume measures compar-
ing the component’s actual volume with its
expected volume. which is computed from
the number of tokens (operators and oper-
ands) that the component processes. When
these values are close. we say the imple-
mentation ot the component is regular.
High regularity suggests that the compo-
nent’s complexity indicates the “amount™
of function it performs.
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Quality. Several qualities important for
component reuse are correctness. readabil-
1ty, testability. ease of modification. and
performance. Most are impossible to mea-
sure or predict directly. The domain expert
who extracts the functional specification
handles correctness and testing (steps 1 and
2 of the qualification phase). For the reus-
ability attributes model, we are interested in
qualities we can predict based upon auto-
mated measures. Therefore, we might con-
sider such indirect metrics as small size and
readability as predictors of correctness, and
the number of independent paths as ameasure
of testability.

The basic reusability attributes model
attempts to predict a component’s correct-
ness and testability using volume and com-
plexity measures. [t assumes thatalarge and
complex component is more error prone
and harder to test. Ease of modification is
reflected in a component’s readability.

Four metrics. Synthesizing these con-
siderations, the basic reusability attributes
model for identifying candidate reusable

components characterizes a component’s
reusability using the four metrics shown in
Figure 4.

Volume. A component’s volume can be
measured using the Halstead Software
Science Indicators,” which are based on
the way a program uses the programming
language. First, we define the operators
and the operands.

The operarors represent the active ele-
ments of the program: arithmetic opera-
tors, decisional operators, assignment op-
erators, functions, etc. Some operators are
provided by the programming language.
and some are defined by the user according
to the rules of the language. The total
number of these operators used in the pro-
gram is denoted by n;. and the total count
of all usage of operators is denoted by N,.

The operands represent the passive ele-
ments of the program: constants, variables.
etc. The total number of unique operands
defined and used in the program is denoted
by Nn,. and the total count of all usage of
operands is denoted by N,.
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Using the operators and operands, we
define the Halstead volume by the formula

V=(N, + Ny log, (m, + n»)

The component volume affects both re-
use cost and quality. If a component is too
small, the combined costs of extraction,
retrieval. and integration exceed its intrin-
sic value. making reuse very impractical. If
itis too large, the component is more error
prone and has lower quality. Therefore, in
the basic reusability attributes model, we
need both an upper and a lower bound for
this measure.

Cvclomatic complexity. We can measure
the complexity of a program’s control or-
ganization with the McCabe measure,’
defined as the cyclomatic number of the
control-flow graph of the program:
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WG)=e—-n+2

where e is the number of edges in the graph
G, and n is the number of nodes.

The component complexity affects re-
use cost and quality, taking into account
the characteristics of the component’s con-
trol flow. As with volume, reuse of a com-
ponent with very low complexity may not
repay the cost, whereas high component
complexity may indicate poor quality —
low readability, poor testability, and a higher
possibility of errors. On the other hand,
high complexity with high regularity of
implementation suggests high functional
usefulness. Therefore, for this measure we
need both an upper and a lower bound in
the basic model.

Regularity. We can measure the econo-
my of a component’s implementation, or

the use of correct programming practices.
by seeing how well we can predict its
length based on some regularity assump-
tions. Again using the Halstead Software
Science Indicators, we have the actual length
of the component

N=N +N,

and the estimated length
N =n;logy My + 1, loga M

The closeness of the estimate is a measure
of the regularity of the component’s coding:

N-N_N

=]l - ——~ ==

N N

Component regularity measures the
readability and the nonredundancy of a
component’s implementation. Therefore.
we select components whose regularity is
in the neighborhood of 1.

Reuse frequency. 1If we compare the
number of static calls addressed to a com-
ponent with the number of calls addressed
to a class of components that we assume
are reusable, we can estimate a given com-
ponent’s frequency of reuse. Let’s suppose
our system is composed of user-defined
components Xj,..., Xy and of components
Steene Sy defined in the standard environ-
ment (such as printf in C or text_io.put in
Ada). Fora given component X, let n(X) be
the number of calls addressed to X in the
system. We associate with each user-de-
fined component a static measure of its
reuse throughout the system: the ratio be-
tween the number of calls addressed to the
component C and the average number of
calls addressed to a standard component:

0=
M

The reuse-specific frequency is an indi-
rect measure of the functional usefulness
of a component, if we assume that the
application domain uses some naming
convention, so components with different
names are not functionally the same and
vice versa. Therefore, in the basic model
we have only a lower limit for this metric.

Criteria. To complete the basic model

we need some criteria to select the candi-
date reusable components on the basis of
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the values of the four measures we have
defined. The extremes of each measure
depend on the application, the environ-
ment, the programming and design meth-
od. the programming language, and many
other factors not easily quantified. We de-
termine therefore the ranges of acceptabil-
ity for the measures in the basic reusability
attributes model experimentally, through a
series of case studies described in the section
titled “Case studies.”

The basic model is elementary, but it is
a reasonable starting point that captures
important characteristics affecting software
component reusability. Moreover, it prob-
ably contains features that will be common
to every other reusability attributes model.

Care system

To support component factory activities,
we have designed a computer-based system
that performs static and dynamic analysis
on existing code and helps adomain expert
extract and qualify reusable components.
We call the system Care. for computer-
aided reuse engineering.

Figure 5 shows the parts of the Care
system.

Component identifier. The component
identifier supports source code analysis to
extract the candidate reusable components
according to a given reusability attributes
model. The system stores candidates in the
components repository for processing in
the qualification phase. The identifier has
two segments:

» Model editor. The user either defines a
model. selecting metrics from a met-
rics library and assigning to each met-
ric a range of acceptable values, or
updates an old model from a models
library, adding and deleting metrics or
changing the adopted ranges of values.
Component extractor. Once a reus-
ability auributes model has been de-
fined. the user can apply it to a family
of programs to extract the candidate
reusable components. The user can
work interactively or extraction can be
fully automated, provided that the sys-
tem can automatically solve problems
associated with the naming of the com-
ponents.

Component qualifier. The component
qualifier supports interactive qualification
of the candidate reusable components ac-
cording to the process model outlined ear-
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lier. For the qualifier to be effective, the
candidate components must be small and
simple. The qualifier has three segments:

* Specifier. The specifier supports the
construction — through code reading
and program analysis — of a formal
specification to be associated with the
component. The interactive tool con-
trols as much as possible the correct-
ness of the specification a domain ex-
pert extracts from a component. If the
domain expert generates specifications,
they are stored in the component re-
pository together with the expert’s
measure (a subjective evaluation) of
the component’s practical usefulness.

Tester. The tester uses the formal spec-
ification produced by the specifier to
generate Or 1o support user generation
of a set of test cases for a component.
If, as is likely, the component needs a
“wrapping” to be executed. the tester
supports the generation of this wrap-
ping. It then executes the generated
tests, reporting their outcomes and
coverages. Test cases, wrapping. and
coverage data are stored in the compo-
nent repository with the expert’s test
report recommending retention or re-
jection of the component.

Classifier. The classifier directs the
user across the taxonomy of an appli-
cation domain to find an appropriate
classification for the component. Us-
ers with special authorization can
modify the taxonomy, adding or delet-
ing facets or altering the range of val-
ues available for each facet. The clas-
sifier and the taxonomy are directly
related to the query used to retrieve the
components from the repository.®

The current version of the Care system
supports ANSI C and Ada on a Sun work-
station with Unix and 8 Mbytes of memo-
ry. In the prototype, we have implemented
three parts of the system:

A component extractor for C programs
based on the basic reusability attributes
model described earlier. We used this
part of the Care system for the case
studies described in the next section.
We have enriched the basic model with
the data bindings metric'? to take into
account a static analysis of the flow of
information between components of
the same program. We have also de-
veloped a measurement tool and a data
bindings analyzer for Ada programs.

1 2
Component Component
identifier qualifier
1.1 2.1
Model Specifier
editor
2.2
1.2 Tester
Component |2.3
extractor Classifier

Metrics
library

Components
repository

Figure 5. Care system architecture.

* A coverage analyzer for C programs
(part of the tester in the component
qualifier). An equivalent analyzer for
Ada programs is under development.

* A prototype specifier to help the user
build the Mills specification for pro-
grams written in a subset of Pascal. We
plan to develop a version to process
components written in C.

Case studies

In this section, we describe experiments
with the current version of the Care system
and the basic reusability attributes model,
analyzing existing systems to identify re-
usable components. Some goals of the case
studies were to

* evaluate the concept of extracting re-
usable candidates from existing pro-
grams using a model based on software
metrics,

complete the basic reusability attributes
model with experimentally determined
extremes for the metrics given earlier,
study the application of the basic reus-
ability attributes model to different
environments and observe its selective
power,

analyze the interdependence of the
metrics used in the basic model, and
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Table 1. Characteristics of the analyzed systems.

Lines of Code

User-Defined

Case Application (in thousands) Components
A Data processing 4.04 83

B File management 17.41 349

C Communication 67.02 730

D Data processing 17.63 156

E Data processing 6.50 53

F Language processing 58.55 1,235

G File management 3.32 57

H Communication 7.70 232

I Language processing 4.63 87

Table 2. Average values for measures of the basic reusability attributes model.

Reuse-Specific
Case Volume Complexity Regularity Frequency
A 8,967 211 0.76 0.05
B 7,856 236 0.74 0.08
C 45,707 153.7 0.66 0.10
D 11,877 32.1 0.64 0.11
E 4,054 16.8 0.76 0.18
F 82,671 198.7 0.33 0.13
G 7.277 255 0.65 0.24
H 12,044 40.7 0.77 0.23
I 20,131 447 0.79 0.41

Table 3. Measurement data for components whose reuse-specific frequency is

greater than 5.0.

Average Average Average Reuse-Specific
Case Volume Complexity Regularity Frequency
A 2,249 7.0 0.89 >0.50
B 2,831 4.8 0.77 >0.50
C 13,476 438 0.68 >0.50
D 4.444 8.5 0.80 >0.50
E 1,980 10.7 0.87 >0.50
F 156,199 384.3 0.40 >0.50
G 1,904 54 0.70 >0.50
H 8,884 31.1 0.75 >0.50
I 6,237 9.6 0.85 >0.50

+ identify candidate reusable components
to use with research and experimenta-
tion on the qualification phase.

The data we discuss here originated from
the analysis of nine systems totalling
187,000 lines of ANSI C. The systems
analyzed ranged from file management to
communication applications, including data
processing and system software. Table 1
outlines their characteristics.
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Because of the characteristics of C, the
natural “component” is the C function.
But a function is not self-contained: It
references variables. data types, and func-
tions that are not part of its definition. To
have an independent component. we had
to complete the definition of the function
with all the necessary external references.
Therefore, in the context of the case stud-
ies, a component is the smallest transla-
tion unit containing a function. We per-

formed each case study according to these
steps:

(1) Acquire and install the system, mak-
ing sure all the necessary sources are
available.

(2

Nt

Build the components from the
functions, adding to each function
its external references and making it
independently compilable.

(3) Compute the four metrics of the ba-
sic reusability attributes model for
the components.

(4) Analyze the results.

Table 2 shows the average values for the
measures of the basic model obtained from
the case studies.

The case studies show volume, regular-
ity, and reuse-specific frequency to have a
high degree of independence. Volume and
complexity show some correlation related
to the “size” of the component, but it is not
significant enough to make the two mea-
sures equivalent. Thus, the basic reusability
attributes model is not redundant.

The data in the last column of Table 2 are
below 0.5. Therefore, we can assume that a
component whose specific reuse frequen-
¢y is higher than 0.5 is a highly reused one.
This choice is rather arbitrary, but it is
useful for setting a reference point for the
case studies. Accordingly, Table 3 pre-
sents the measurement data for high-reuse
components whose reuse-specific fre-
quency is more than 0.5.

Comparing Tables 2 and 3 we see, with
a few exceptions. a very regular pattern.
The highly reused components have vol-
ume and complexity lower than the aver-
age — about one fourth of the average.
Their regularity is slightly higher than the
average, generally above 0.70. The only
exception is case F. a compiler with a very
peculiar design, where the function calls
are mostly addressed to high-level and
complex modules. These results confirm.
in different environments. the results ob-
tained for Fortran programs in NASA's
Software Engineering Laboratory.!!

The regularity result is very important
by itself. Because the length equation used
in the regularity measure has such a good
fix on the reusable components. we can use
it to estimate the size of the components.
Recall that the Halstead length equation (N
=1, log,1n; +n>log.n,)isafunctionof the
two indicators 1; and n,. The first. the
number of operators, is more or less fixed
in the programming environment. The sec-
ond, the number of operands, corresponds
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to the number of data items the system
deals with. The value of 1, can be rather
precisely estimated in the detailed design
phase of a project. The high regularity of
the reusable components implies, there-
fore, that we can estimate the total effort
for their development with an accuracy
often higher than 80 percent. This is better
than the estimate we get from components
that are not as reusable.

The case studies show that, in most cas-
es. we can obtain satisfactory results using
the values in Table 4 as extremes for the
ranges of acceptable values. Table 5 com-
pares the number of user-defined functions
in each system with the number of candi-
date reusable components extracted with
the settings of Table 4.

Table 5 shows that, in general. 5 to 10
percent of the existing code should be an-
alyzed for possible reuse. This is a cost-
effective rate of reduction of the amount of
code needing human analysis in the quali-
fication phase. It is also a satisfactory fig-
ure for future reuse. In absolute terms, this
5 to 10 percent of the existing code ac-
counts for a large part of a system’s func-
tionality.

The number of those candidates that the
qualification phase will actually find to be
reusable is hard to determine without a
series of controlled experiments. On the
basis of a cursory analysis, we think that
the exiracted components perform useful
functions in the context of the application
domain they come from. A complete and
rigorous evaluation of the model is an im-
mediate goal of our project.

hese case studies show thatreusable
components have measurable prop-
erties that can be synthesized in a
simple quantitative model. Now. we need to
bring experimentation to the qualification
activities, to verify how good the basic
model is in practice, and to study how we
can process the feedback from the qualifica-
tion phase to improve the reusability at-
tributes model. A possibility 1s a mecha-
nism associated with the model editor for
manipulating the reusability attributes model.
We also need to broaden our analysis to
different programming environments for
broader verification of our hypotheses.
We foresee two major developments in
the architecture of the Care system. The
first is the design of a prototype for the
components repository. supporting com-
ponent retrieval both by queries to the
classification system and by browsing on
the basis of the specification.
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Table 4. Extremes for ranges of acceptable values in the basic reusability at-

tributes model.

Measure Minimum Maximum
Volume 2,000 10.000
Complexity 5.00 15.00
Regularity 0.70 1.30
Reuse frequency 0.30

Table 5. User-defined system components compared with extracted candidates

for reuse.
User-Defined Extracted Percentage of User-Defined
Case Components Candidates Components Extracted
A 83 4 5
B 349 17 5
C 730 36 5
D 156 16 10
E 53 4 8
F 1.235 81 7
G 57 10 18
H 232 24 10
I 87 11 13
The second development will be an inte- References

gration with the Tame system for tailoring
a measurement environment.'” In the ver-
sion of Care we outlined here, the metrics
library is a static object from which users
can only retrieve measures. The Tame sys-
tem allows users to create a measurement
environment tailored to the goals of their
activities and to their model. This environ-
ment will provide a more elastic metrics
library for defining measures in the reus-
ability attributes model. W
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