Reliability Engineering and System Safety 32 (1991) 171-191 .

Paradlgms for Expenmentatlon and Empmcal Studles in
Software Engmeermg ‘ ~

Victor R. Basili

Department of Computer Science, University of Maryiand
College Park, Maryland 20742, USA

&
Richard W. Selby

Department of Information and Computer Scrence Umversxty ot' Calrforma,
Irvme California 92717, USA

ABSTRACT

by he software engmeermg ﬁeld requzres major advances in order to anam the) '
‘high standards of quality and productivity that are needed by the complex
systems of the future. The immaturity of the field is reﬂected by the fact that
most of its technologies have not yet been analyzed 10 determine their effects

" on quality and productivity. Moreover, when these analyses have occuirred the
resulting guidance is not quantitative but only ethereal. One fundamental area
of software engineering that is just beginning to blossom is the use of
measurement techniques and empirical methods. These techniques need to be
adopted by software researchers and practitioners in order to help the field
respond to the demands being placed upon it. This paper outlines four
paradigms for experimentation and empirical study in software engineering
and describes their interrelationships: (1) Improvement paradigm (2) Goal-
question-metric paradigm, (3) Experimentation framework paradigm, and
(4) Classification paradigm. These paradigms are intended to catalyze the
use of measurement techniques and empirical ‘methods in software
engineering. :

1 INTRODUCTION

We have been struggling with the problems of software development for’
many years.!*? Orgamzanons have been clamoring for mechanisms to
- 171

Reliability Engineering and System Safety 0951-8320/91/$03-50 © 1991 Elsevier Science
Publishers Ltd; England. Printed in Great Britain ,

172 Victor R. Basili, Richard W, Selby

improve the quality and productivity of software. We have evolved from
focusing on the project, e.g. schedule and resource allocation concerns, to
focusing on the product, e.g. reliability and maintenance concerns, to
focusing on the process, e.g. improved methods and process models.? ~¢ We
have begun to understand that software development is not an easy task.
There is no simple set of rules and methods that work under all circumstances.
We need to better understand the application, the environment in which we
are developing products, the processes we are using and the product
characteristics required.

For example, the application, environment, process and product
associated with the development of a toaster and a spacecraft are quite
different with respect to hardware engineering. No one would assume that
the same educational background and training, the same management and
technical environment, the same product characteristics and constraints, and
the same processes, methods and technologies would be appropriate for
both. They are also quite different with respect to software engineering.

We have not fully accepted the need to understand the differences and
learn from our experiences. We have been slow in building models of
products and processes and people for software engineering even though we
have such models for other engineering disciplines. Measurement and
evaluation have only recently become mechanisms for defining, learning and
improving the software process and product.”-8
~ We have not even delineated the differences between such terms as
technique, method, process and engineering. For the purpose of this paper
we define a technique as a basic technology for constructing or assessing
software, e.g. reading or testing. We define a method as an organized
management approach based upon applying some technique, e.g. design
inspections or test plans. We define a process model as an integrated set of
methods that covers the life cycle, e.g. an iterative enhancement model using
structured designs, design inspections, etc. We define software engineering as
the application and tailoring of techniques, methods and processes to the
problem, project and organizational characteristics,

There is a basically experimental nature to software development We can
draw analogies from disciplines such as experimental physics and the socia]
sciences. As such we need to treat software developments as experiments
from which we can learn and improve the way in which we build software.

2 THE IMPROVEMENT PARADIGM

Based upon our experiences in trying to evaluate and improve the quality in
several organizations,®~!3 we have concluded that a measurement and

Paradigms for experimentation and empirical studies 173

analysis program that extends through the entire life cycle is a necessity. This
program requires a long-term, quality-oriented, organizational meta-life-
cycle model, which we call the Improvement Paradigm.'*!* The paradigm
has evolved over time, based upon experiences in applying it to improve
various software related issues, e.g. quality and methodology. In its current
form it has five essential aspects:

1. Characterizing the environment. This involves understanding the
project and its context qualitatively and quantitatively so that the correct
decisions can be made.

It requires data that characterizes the resource usage, change and defect
histories, product dimensions and environmental aspects for prior projects,
and predictions for the current project. It involves information about what
processes, methods and techniques have been successful in the past on
projects with these characteristics. It provides a quantitative analysis of the
environment and a model of the project in the context of that environment.

2. Planning. This involves articulating the specific qualities we expect
from the process and product and their interrelationships. There are two
integrated activities to planning that are iteratively applied:

(a) Defining goals for the software process and product operationally
relative to the customer, project and organization. This consists of a
top-down analysis of goals that iteratively decomposes high-level
goals into detailed subgoals. The iteration terminates when it has
produced subgoals that we can measure directly. This approach
differs from the usual in that it defines goals relative to a specific
project and organization from several perspectives. The customer,
the developer and the development manager all contribute to goal
definition. It is, however, the explicit linkage between goals and
measurement that distinguishes this approach. This not only defines
what good is but provides a focus for what metrics are needed.

(b) Choosing and tailoring the process model, methods and tools to
satisfy the project goals relative to the characterized environment.
Understanding the environment quantitatively allows us to choose
the appropriate process model and fine tune the methods and tools
needed to be most effective. For example, knowing prior defect
histories allows us to choose and fine tune the appropriate
constructive methods for preventing those defects during develop-
ment (e.g. training in the application to prevent errors in the problem
statement) and assessment methods that have been historically most
effective in detecting those defects (e.g. reading by stepwise
abstraction for interface faults). '

174 Victor R. Basili, Richard W. Selby

3. Execution. This involves the construction of the products according to
the process model chosen in step 2 and the collection and validation of the
prescribed data. It is essentially the running of the experiment. v

4. Analysis. This involves an analysis of the project relative to its goals to
check for successes and failures.

We must conduct data analysis during and after the project. The
information should be disseminated to the responsible organizations. The
operational definitions of process and product goals provide traceability
back and forth to metrics. This permits the measurement to be intepreted in
context ensuring a focused, simpler analysis. The goal-driven operational
measures provide a framework for the kind of analysis needed. During
project development, analysis can provide feedback to the current project in
real-time for corrective action. '

5. Learning and feedback. This involves the synthesis of information
gained from executing the project into models and other forms of structured
knowledge so that we can better understand the nature of software
development and can package that understanding for future projects.

The results of the analysis and interpretation phase can be fed back to the
organization to change the way it does business based upon explicitly
* determined successes and failures. For example, understanding that we are

allowing faults of omission to pass through the inspection process and be
caught in system test.provides explicit information on how we should
-modify the inspection process. Quantitative histories can improve that
process. In this way, hard-won experience is propagated throughout the
organization. We can learn how to improve quality and productivity, and
how to improve definition and assessment of goals. This step involves the
organization of the encoded knowledge into an information repository or
experience base to help improve planning, development, and assessment.
The Improvement Paradigm is based upon the assumption that software
product needs directly affect the processes used to develop and maintain
products. We must first specify project and organizational goals and their
achievement level. This specification helps determine our processes. In other
words, we cannot define the processes and then determine how we are going
to achieve and evaluate certain project characteristics. We must define the
project goals explicitly and quantitatively and use them to drive the process.
As it stands, the Improvement Paradigm is a generic process whose steps
need to be instantiated by various support mechanisms. It requires a
mechanism for defining operational goals and transforming them into
metrics (step 2a). It requires a mechanism for evaluating the measurement in
the context of the goals (step 4). It requires a mechanism for feedback and
learning (step 5). It requires a mechanism for storing experience so that it can
be reused on other projects (steps 1,2b). It requires automated support for all

Paradigms for experimentation and empirical studies’ 175

of these mechanisms. In the following sections, we discuss mechanisms that
can be used to support these activities.

3 THE GOAL/QUESTION/METRIC PARADIGM

The Goal/Question/Metric (GQM) Paradigm is a mechanism for defining
‘and evaluating a set of operational goals, using measurement on a specific
project (see Fig. 1). It represents a systematic approach for setting the project
goals tailored to the specific needs of an organization, defining them in an
operational, tractable way by refining them into a set of quantifiable
questions that in turn implies a specific set of metrics and data for collection.
It involves the planning of the experimental framework. It includes the
development of data collection mechanisms, e.g. forms, automated tools, the
collection and validation of data, and the analysis and interpretation of the
collected data and computed metrics in the appropriate context of the
questions and the original goals. In controlled experiments, the questions
can be viewed as hypotheses. As such they can be formulated to the degree of
formalization necessary for the experimental environment.
. The process of setting goals and refining them into quantifiable questions
is complex and requires experience. In order to support this process, a set of
templates for setting goals, and a set of guidelines for deriving questions and
metrics has been developed.'® These templates and guidelines reflect our

G1 G2

\ . Q2 Q3 Q4

Ml M2 M3 _ M4 M5 Meé _
Fig. 1. The goal/question/metric paradigm. Goals = Gi, Questions = Qi, Metrics = Mi.

176 Victor R. Basili, Richard W. Selby

experience from having applied the GQM Paradigm in a variety of
environments.

Goals are defined in terms of purpose, perspective and environment.
Different sets of guidelines exist for defining product-related and process-
related questions. Product-related questions are formulated for the purpose
of defining the product (e.g. physical attributes, cost, changes and defects,
user context), defining the quality perspective of interest (e.g. functionality,
reliability, user friendliness), and providing feedback from the particular
quality perspective. Process-related questions are formulated for the
purpose of defining the process (e.g. process conformance, .domain
conformance), defining the quality perspective of interest (e.g.. reduction of
defects, cost effectiveness of use), and providing feedback from the particular
quality perspective.

The GQM Paradigm provides a mechanism for supporting step 2a of the
Improvement Paradigm, which requires a mechanism for defining
operational goals and transorming them into metrics that can be used for
characterization, evaluation, prediction and motivation. It supports step 3
by helping to define the experimental context and providing mechanisms for
the data collection, validation and analysis activities. It also supports steps 4
and 5 by providing quantitative feedback on the achievement of goals.

The GQM Paradigm was originally used to define and evaluate goalsfora
particular set of projects in a particular environment, analyzing defects fora
set of projects in the NASA/GSFC environment.!® The application involved
a set of case study experiments. .

In the context of the Improvement Paradigm, the use of the GQM
Paradigm is expanded. Now, we can use it for long range corporate goal
setting and evaluation. We can improve our evaluation of a project by
analyzing it in the context of several other projects. We can expand our level
of feedback and learning by defining the appropriate synthesis procedure for
lower-level into higher-level pieces of experience. As part of the
Improvement Paradigm we can lean more about the definition and
application of the GQM Paradigm in a formal way, just as we would learn
about any other experiences.

The GQM Paradigm was expanded to include various types of experi-
mental approaches including controlled experiments.!4!7 =29 This permits
us to mix various types of formal experiments with actual project develop-
ments, so we can increase our understanding in more formal ways.

4 THE EXPERIMENTATION FRAMEWORK PARADIGM

An Experimentation Framework Paradigm for software engineering
research is summarized in Fig. 2.'® This framework represents a refinement

Paradigms for experimentation and empirical studies

177

I. Definition

Motivation Object Purpose Perspective Domain Scope
Understan. Product Characterize | Developer Programmer ingle project
Asgess . Process Evaluate Modifier Program/project | Multi-project
Manage Model Predict Maintainer Replicated project
Engineer Metric Motivate Project manager Blocked subject-
Learn - Theory Corporate manager project
Improve Customer ’

Validate User
Assure Researcher
11, Planning
Design Criteria Measurement
Experimental designs Direct reflections of cost/quality Metric definition

Incomplete block . Cost Goal-question-metric

Completely randomized | Errors Factor-criteria-metric

Randomized block Changes Metric validation

Fractional factorial Reliability Data collection
Multivariate analysis Correctness . Automatability

Correlation Indirect reflections of cost/quality Form design and test

Factor analysis Data coupling Objective vs. subjective

Regression Information visibility Level of measurement

Statistical models Programmer comprehension Nominal/classificatory

Non-parametric Execution coverag Ordinal/ranking
Sampling Size - . Interval -
Complexity Ratio
IIL. Operation B
Preparation Execution Analysis
Pilot study B Data collection Quantitative vs. qualitative
Data validation Preliminary data analysis

Plots and histograms
Model assumptions
Primary data analysis
Model application

IV, Interpretation
Extrapolation
Sample representativeness

Interpretation context
Statistical framework
Study purpose
Field of research

Impact

Visibility
Replication
Application

- Fig. 2. Summary of the experimentation framework paradigm.

of the GQM Paradigm for experimentation. As defined in Ref. 18, it consists
of four categories corresponding to phases of the experimentation process:
(I) definition, (II) planning, (III) operation, and (IV) interpretation. The
experiment definition phase is a formalization of the goal setting com-
ponents of the GQM Paradigm, which corresponds to step 2a in the
Improvement Paradigm. The experiment planning phase corresponds to the
components of the GQM Paradigm for choosing the experimental design,
the metrics, and the data collection forms (which also is part of step 2a in the
Improvement Paradigm). The experiment operation phase corresponds to .
the analysis component of the GQM Paradigm and to the execution and
analysis steps of the Improvement Paradigm (steps 3 and 4). The experiment
interpretation phase corresponds to the interpretation component of the
GQM Paradigm and to the learning and feedback step of the Improvement
Paradigm (step 5). The following sections discuss the four phases of the
Experimentation Paradigm in greater detail.

178 Victor R. Basili, Richard W. Selby

4.1 Experiment definition

The first phase of the experimental process is the study definition phase. The
study definition phase contains six parts: (A) motivation, (B) object, (C)
purpose, (D) perspective, (E) domain and (F) scope. Most study definitions
contain each of the six parts; an example definition appears in Fig. 3.
There can be several motivations, objects, purposes, or perspectives in an
experimental study. For example, the motivation of a study may be to
understand, assess, or improve the effect of a certain technology. The ‘object
of study’ is the primary entity examined in a study. A study may examine the

Definition element Example

Motivation To improve the unit testing process,

Purpose characterize and evaluate

Object the processes of functional and structural testing
"{ Perspective from the perspective of the developer

Domain: programmer | as they are applied by experienced programmers

Domain: program to unit-size software

Scope in a blocked subject-project study.

Fig. 3. Study definition example.

final software product, a development process (e.g. inspection process,
change process), a model (e.g. software reliability model), etc. The purpose of
a study may be to characterize the change in a system over time, to evaluate
the effectiveness of testing processes, to predict system development cost by
using a cost model, to motivate the validity of a theory by analyzing
empirical evidence, etc. (For clarification, the usage of the word ‘motivate’ as
a study purpose is distinct from the study ‘motivation’) In experimental
studies that examine ‘software quality’, the interpretation usually includes
correctness if it is from the perspective of a developer or reliability if it is from
the perspective of a customer. Studies that examine metrics for a given
project type from the perspective of the project manager may interest certain
project managers, while corporate managers may only be interested if the
metrics apply across several project types.

Two important domains that are considered in experimental studies of
software are (i) the individual programmers or programming teams (the -
‘teams’) and (ii) the programs or projects (the ‘projects’). ‘Teams’ are (possibly
single-person) groups that work separately, and ‘projects’ are separate
programs or problems on which teams work. Teams may be characterized
by experience, size, organization, etc., and projects may be characterized by
size, complexity, application, etc. A general classification of the scopes of
experimental studies can be obtained by examining the sizes of these two
domains considered (see Fig. 4). Blocked subject-project studies examine

Paradigms. for experimentation and empirical studies 179

#Teams per #Projects
project
one more than one
one Single project | Muiti-project
variation
¢ more than Replicated Blocked
one - project subject-project

Fig. 4. Experimentation scopes.

one or more objects across a set of teams and a set of projects. Replicated

project studies examine object(s) across a set of teams and a single project,

while multi-project variation studies examine object(s) across a single team

and a set of projects. Single project studies examine object(s) on a single team
~and a single project. As the representativeness of the samples examined and

the scope of examination increase, the wider-reaching a study’s conclusions
- become. ‘ - ‘

42 Experinien_t plagininé

- The second phase of the experimental process is the study planning phase.
The following sections discuss aspects of the experiment planning phase: (A)
design, (B) criteria and (C) measurement.

The design of an experiment couples the study scope with analytical
methods and indicates the domain samples to be examined. Fractional
factorial or randomized block designs usually apply in blocked subject-
project studies, while completely randomized or incomplete block designs
usually apply in multi-project and replicated project studies.?!+22
Multivariate analysis methods, including correlation, factor analysis and’
regression,?*~2% generally may be used across all experimental scopes.
Statistical models may be formulated and customized as appropriate.?
Non-parametric methods should be planned when only limited data may be
available or distributional assumptions may not be met.?® Sampling
techniques?” may be used to select representative programmers and
programs/projects to examine. . _

Different motivations, objects, purposes, perspectives, domains and.
scopes require the examination of different criteria. Criteria that tend to be
direct reflections of cost and quality include cost,2® 32 errors/changes, 33~ 38
reliability®®~4® and correctness.*’~4° Criteria that tend to be indirect

- 180 Victor R. Basili, Richard W. Selby

reflections of cost and quality include data coupling,!2-50~53 information
visibility,>* 3¢ programmer understanding,’” ~®° execution coverage6! 63
and size/complexity.4~ 66 ‘

The concrete manifestations of the cost and quality aspects examined in
the experiment are captured through measurement. Paradigms assist in the
metric definition process: the goal-question-metric paradigm!7:67-69 and
the factor—criteria-metric paradigm.”®”! Once appropriate metrics have
been defined, they may be validated to show that they capture what is
intended.?®-72776 The data collection process includes developing auto-
mated collection schemes’’ and designing and testing data collection -
forms.®”-78 The required data may include both objective and subjective
data and differents levels of measurement: nominal (or classifacatory),
ordinal (or ranking), interval or ratio.2® o

4.3 Experment operation

The third phase of the experimental process is the study operation phase.
The operation of the experi'ment_consists of (A) preparation, (B) execution
and (C) analysis. Before conducting the actual experiment, preparation may
“include a pilot study to confirm the experimental scenario, help organize
experimental factors (e.g. subject expertise), or inoculate the sub-
jects.19:60.74.79-81 Eynerimenters collect and validate ‘the defined data
during the execution of the study.*>?3 The analysis of the data may include a
combination of quantitative and qualitative methods.8? The preliminary
screening of the data, probably using plots and histograms, usually proceeds
the formal data analysis. The process of analyzing the data requires the
investigation of any underlying assumptions (e.g. distributional) before the
application of the statistical models and tests. ' '

4.4 Experiment interpretation

The fourth phase of the experimental process is the study interpretation
phase. The interpretation of the experiment consists of (A) interpretation
context, (B) extrapolation and (C) impact. The results of the data analysis
from a study are interpreted in a broadening series of contexts. These
contexts of interpretation are the statistical framework in which the result is
derived, the purpose of the particular study, and the knowledge in the field of
research.”” The representativeness of the sampling analyzed in a study
qualifies the extrapolation of the results to other environments.!’ Several
follow-up activities contribute to the impact of a study: presenting/
publishing the results for feedback, replicating the experiment,2*?? and
actually applying the results by modifying methods for software
development, maintenance, management and research.

Paradigms for experimentation and empirical studies 181

5 THE CLASSIFICATION PARADIGM

As stated earlier the Improvement Paradigm needs to be instantiated at
further levels of detail and be automated whenever possible. One specific
approach that can be automated for product assessment is the Classification
Paradigm.®? The Classification Paradigm provides input for what data are
needed in the characterization phase of the Improvement Paradigm (step 1),
focuses on specific types of goals (step 2a in the Improvernent Paradigm),
and automates the analysis based upon the specific product goals (step 4 in
the Improvement Paradigm).

The Classification Paradigm is motivated by the ‘80:20 rule’. According to
the rule, approximately 20% of a software system is responsible for 80% of
the errors, human effort, changes, etc. The Classification Paradigm casts this
phenomenon as a classification problem. Metric-based classification trees
are constructed to identify those software components that are likely tobein
the ‘troublesome 20%’ of the system. The classification trees are based on
measurable attributes of software components and are automatically
generated using data from past releases and projects. The trees provide a
basis for forecasting which components on a current or future project are
likely to share the same ‘high-risk’ properties. Examples of high-risk
properties include components likely to be error-prone, change-prone,
costly to develop, or contain errors in certain classes. Classification trees
help localize the components likely to have these properties, and therefore
enable developers to improve quality efficiently by focusing resources on
- high-payoff areas. Classification trees are tailorable to each development

environment, using different metrics to classify different sets of components
in different environments.

The Classification Paradigm supports ‘a particular type of goal
(corresponding to step 2a in the Improvement Paradigm), namely the
identification of components likely to have certain properties based on
historical data. The measurements used to characterize the components are

~determined by the classification tree generation algorithms (step 1 in the
Improvement Paradigm). The metric data collected from the current project
is automatically analyzed by the classification trees (step 4 in the
Improvement Paradigm). S :

The classification trees use software metrics to characterize the software
components. In other paradigms, metrics have primarily been used as
barometers of goodness or badness with respect to quality and cost. This
paradigm uses metrics to assess degrees of differentiation among software
components. A simple example of a hypothetical metric-based classification
tree is shown in Fig. 5. In the classification tree approach, the members of a
set of software ‘objects’ (e.g. modules, subsystems) are classified as being

182 , Victor R. Basili, Richard W. Selby

Data
Bindings

0-3 4-5 6-10

Cyclomatic

Revisions Complexity

0-12 >12 0-18 > 18 Real-time Nonreal-time

b bbE AT

0-150 > 150

4" = Classified as likely to have errors of type X

#_# = Classified as unlikely to have errors of type X

Fig. 5. Example (hypothetical) software metric classification tree. There is one metric at

each diamond-shaped decision node. Each decision outcome corresponds to a range of

possible metric values. Leaf nodes indicate whether or not an object is likely to have some
property, such as high error-proneness or errors in a certain class.

inside or outside a ‘target class’ of objects. The objects inside and outside the
target- class are called positive and negative instances, respectively. A
classification tree generation tool examines candidate metrics and.recur- -
sively formulates a classification. tree to identify all positive instances but
no negative instances. The classification tree leaf nodes contain a probability
(e.g- a-simple ‘yes’ or ‘no’) to indicate whether a component is likely to be in
the target class based on calibrations from previous releases and projects.
The resulting classification tree then becomes the basis for forecasting
whether an object, previously unseen, is a positive or negative instance.
An overview of the Classification Paradigm appears in Fig. 6. The

paradigm has been applied in two validation studies using data from
NASA33 and Hughes.®* The three central activities in the paradigm are: (i)

Paradigms for experimentation and empirical studies 183

Data Managemeht Classification Analysis
an . “Tree an
Calibration Generation’ Feedback

Metric
list

Develop
R Ainl
Plans

Take
Corrective

Action

Targeted

components

Apply
Trees to

Generate

Trees Current

D,y Training set
data

Project

New metric
data

ersistent

Storage
Manager,

:g, 4

Fig. 6. Overview os classification tree approach.

data management and calibration, (ii) classification tree generation, and (iii)
analysis and feedback of newly acqmred information to the current project.
Note that the process outlined in Fig. 6 is an iterative paradigm. The
automated nature of the classification tree approach allows classification
trees to be easily built and evaluated at many points in the lifecycle of an
evolving software project, providing frequent feedback concerning the state
of the software product.

5.1 Classxﬁcatlon tree generation

This central actxvxty focuses on the processes necessary to construct
classification trees and prepare for later analysis and feedback. During this
phase the target classes to be characterized by the trees are defined. Criteria
are established to differentiate between members and non-members of the
target classes. For example, a target class such as error-prone modules could
be defined as those modules whose total errors are in the upper 10% relative
to historical data. A list of metrics to be used as candidates for inclusion in
the classification trees is passed to the historical data retrieval process. A

184 Victor R. Basili, Richard W, Selby

common default metric list is all metrics for which data are available from
previous releases and projects. v

Importantly, one must determine the remedial actions to apply to those
components identified as likely to be members of the target class. For
example, if a developer wants to identify components likely to contain a
particular type of error, then he should prescribe the application of testing or
analysis techniques that are designed to detect errors of that type. Another
example of a remedial plan is to consider redesign or reimplementation of
the components. It is important to develop these plans early in the process
rather than apply ad hoc decisions at a later stage. ‘

Metric data from previous releases and projects as well as various
calibration parameters are fed into the classification tree generation
algorithms.®3 The tree construction process develops characterizations of
components within and outside the target class based on measurable
attributes of past components in those categories. Classification trees may
incorporate metrics capturing component features and interrelationships, as
well as those capturing the process and environment in which the
components were constructed. Collection of the metrics used in the decision
nodes of the classification trees should begin for the components in the
current project. These data are stored for future use and passed, along with
the classification trees, to the analysis and feedback activity. -

5.2 Data management and calibration

‘Data management and calibration activities concentrate on the retention
and manipulation of historical data as well as the tailoring of classification
tree parameters to the current development environment. The tree
generation parameters, such as the sensitivity of the tree termination criteria,
need to be calibrated to a particular environment. For further discussion of
generation parameters and examples of how to calibrate them, see Refs 83
and 84. Classification trees are built based on metric values for a group of
previously developed components, which is called a ‘training set’. Metric
values for the training set, as well as those for the current project, are
retained in a persistent storage manager.

5.3 Analysis and feedback

In this portion of the paradigm, the information resulting from the
classification tree application is leveraged by the development process. The
metric data collected for components in the current project are fed into the
classification trees to identify components likely to be in the target class. The
remedial plans developed earlier should now be applied to those targeted

Paradigms for experimentation and empirical studies 185

components. When the remedial plans are being applied, insights may result
regarding new target classes to identify and further fine tuning of the
generation parameters.

6 THE TAME PROJECT

The TAME project!3 recognizes the need to characterize, integrate and
automate the various activities involved in instantiating the Improvement
Paradigm for use on projects. It delineates the steps performed by the project
and creates the idea of an experience base as the repository for what we have .
learned during prior developments. It recognizes the need for constructive
and analytic activities and supports the tallormg of the software
development process.

The TAME system offers an archltecture for a software engineering
environment that supports the goal generation, measurement and
evaluation activities (see Fig. 7). It is aimed at providing automated support
for managers and engineers to develop project specific goals and specify the .

. appropriate metrics needed for evaluation. It provides automated support

. for the evaluation and feedback on a particular prolect in real-time as well as
~ help prepare for post mortem analyses. '

. The TAME project was initiated to understand how to automate as much
of the Improvement Paradigm as possible using whatever current -
technology is available and to determine where research is needed. It
provides a vehicle for defining the concepts in the paradigm more rigorously.

A major goal for the TAME project is to create a corporate experience
base which incorporates historical information across all projects with
regard to project, product and process data, packaged in such a way that it
can be useful to future projects. This experience base would contain as a
minimum the historical database of collected data and interpreted results,
the collection of measured objects such as project documents, and collection
of measurement plans such as GQM models for various projects. It should

also contain combinations and syntheses of this information to support
future software development and maintenance.

TAME is an ambitious project. It is assumed it will evolve over time and
that we will learn a great deal from formalizing the various aspects of the
Improvement Paradigm as well as integrating the various subactivities. It
will result in a series of prototypes, the first of which is to build a simple
evaluation environment. Building the various evolving prototypes and
applying them in a varlety of prOJect env1ronments should help us learn and
test out ideas.

“TAME provides mechanisms for instantiatine the Imorovement

186

Victor R. Basili, Richard W. Selby

<o ~gasks . . ‘
. h, T s
perlp:k characterising what : how executing
con=
plan
struc—| ’ o - >
| for construct
tive tharacterize set 1« construction
A L AT
X h 1 2 ¢
envir t RE goals plan
P)
I i for . analysze
o analysis
lytie
-~
R(ecord) v U(se)

. = product plans (e.g., design documentation standard,
’ programming language def., complexity model)

" = process plans (e.g., life—cycle models, methods, tools,
t plans, t tools)

ts, design, measurement data)

- products (e.g., requir
- other proms/product knowledge
(.8, cost models, lessons learned)

EXPERIENCE BASE
F ig. 7. The TAME system.

Paradigm by providing an experience base to allow the storing of experience
so that it can be used on other projects (steps 1,2a), further defining the
various steps to be performed (steps 1, 2, 4, 5), and automating whatever is
possible. .

7 CONCLUSION

Understanding the impact of software technologies is fundamental to the
advancement of software research and practice. This understanding has
suffered because of the lack of scientific assessment of their effect on software
development and maintenance. The paradigms described in this paper are
intended to help advance the use of measurement and empirical methods in
software engmeermg They offer a form of the scientific method for
experimentation in the software domain. These paradigms have been used in
a variety of environments. They permit a mix of experimental designs,

Paradigms for experimentation and empirical studies 187

ranging from case studies to blocked subject-project studies, to live under
the same framework. They provide mechanisms for integrating what has
been learned from various types of experiments to help.create formal bases
of knowledge. They provide a framework for improving the experimental
process as well as our understanding of the nature of the object of study.

ACKNOWLEDGEMENTS

This work was supported in part by the National Aeronautics and Space
Administration under grant NSG-5123, and Institute for Advanced
Computer Studies of the University of Maryland (UMIACS). Also
supported in part by the National Science Foundation under grant CCR-
8704311 with cooperation from the Defense Advanced Research Projects
Agency under Arpa order 6108, program code 7T10; National Aeronautics
and Space Administration under grant NSG-5123; and National Science
Foundation under grant DCR-8521398.

REFERENCES

'1. Boehm, B.' W, Software engineering. IEEE Transactions on Computers, C-

_+25(12) (Dec. 1976) 1226-41. : '

2. Zelkowitz, M. V,, Yeh, R. T,, Hamlet, R. G., Gannon, J. D. & Basili, V. R,,

- Software engineering practices in the US and Japan. IEEE Computer, 17(6)

(June 1984) 57-66. N
- 3. Basili, V. R. & Turner, A. J,, Iterative enhancement: A practical technique for
- software development. JEEE Transactions on Software Engineering, SE-1(4)
~ (Dec. 1975).

4. Boehm, B. W, A spiral model of software development and enhancement. IEEE
Computer, 21(5) (May 1988) 61-72. - : :

5. Mills, H. D,, Dyer, M. & Linger, R. C., Cleanroom software engineering. JEEE
Software, 4(5) (Sept. 1987) 19-25. , '

6. Royce, W. W., Managing the development of large software systems: Concepts
and techniques. Proc. WESCON, Aug. 1970.

7. Basili, V. R., Data collection, validation, and analysis. In Tutorial on Models and
Metrics for Software Management and Engineering, IEEE Computer Society,
New York, 1980, pp. 310-13. IEEE Catalog No. EHO-167-7. o

8. Boehm, B. W, Brown, J. R. & Lipow, M., Quantitative evaluation of software
quality. Proc. Second Int. Conf. Software Engng. IEEE, New York, 1976,
pp. 592-605,

9. Basili, V. R., Can we measure software technology: Lessons learned from 8 years
of trying. Proc. Tenth Annual Software Engineering Workshop. NASA/GSFC,
Greenbelt, MD, 1985. -

10. Basili, V. R. & Weiss, D. M., Evaluation of a software requirements document by

analysis of change data. Proc. Fifth Int. Conf. Software Engng. IEEE, New York,
- 1981, pp. 314-23. '

188

12,

Victor R. Basili, Richard W. Selby

. Rombach, H. D. & Basili, V. R,, A quantitative aésessment of software

maintenance: An industrial case study. Proc. Conf. Software Maintenance.
IEEE, New York, 1987. :
Selby, R. W. & Basili, V. R., Analyzing error-prone system coupling:and

~ cohesion. Technical Report TR-88-46, Institute for Advanced Computer

13.

14.

15.
16.

17.

18.
19.
20.

21.
22,
23.
24,
25.
26.

27,
28.

Studies, University of Maryland, College Park, Maryland, June 1988.

Weiss, D. M. & Basili, V. R,, Evaluating software development by analysis of
changes: Some data from the software engineering laboratory. IEEE
Transactions on Software Engineering, SE-11(2) (Feb. 1985) 157-68.

Basili, V. R., Quantitative evaluation of software engineering methodology.
Proc. First Pan Pacific Computer Conf., Melbourne, Australia, 1013 September
1985. (Also available as Technical Report TR-1519, Department of Computer
Science, University of Maryland, College Park, July 1985.)

Basili, V. R. & Rombach, H. D., The tame project: Towards improvement-
oriented software environments. JEEE Transactions on Software Engineering,
SE-14(6) (June 1988) 758-73. ‘

Basili, V. R. & Weiss, D. M., A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering, SE-10(6) (Nowv.
1984) 728-38.

Basili, V. R. & Sclby, R. W, Data collection and analysis in software research
and management. Proceedings of the American Statistical Association and
Biometric Society Joint Statistical Meetings, Philadelphia, PA, 13-16 August
1984. . '

Basili, V. R., Selby, R. W. & Hutchens, D. H., Experimentation in software
engineering. JEEE Transactions on Software Engineering, SE-12(7) (July 1986)
733-43. o
Basili, V. R. & Selby, R. W., Comparing the effectiveness of software testing
strategies. IEEE Transactions on Software Engineering, SE-13(12) (Dec. 1987)
1278-96. : :

Selby, R. W., Basili, V. R. & Baker, F. T., Cleanroom software development: An
empirical evaluation. IEEE Transactions on Software Engineering, SI-13(9)
(Sept. 1987) 1027-37. '

Box, G. E. P, Hunter, W. G. & Hunter, J. S., Statistics for Experimenters. John
Wiley, New York, 1978. .

Cochran, W. G. & Cox, G. M. Experimental Designs. John Wiley, New York,
1950.

Mulaik, S. A., The Foundations of Factor Analysis. McGraw-Hill, New York,
1972. '
Neter, J. & Wasserman, W., Applied Linear Statistical Models. Richard D.
Irwin, Inc., Homewood, IL, 1974.

SAS Institute, Statistical Analysis System (SAS) User's Guide, Box 8000, Cary,
NC 27511, 1982

Siegel, S., Nonparamerric Statisties for the Behavioural Sciences. McGraw-Hill,
New York, 1955.

Cochran, W. G., Sampling Techniques. John Wiley, New York, 1953.
Wolverton, R., The cost of developing large scale software. IEEE Transactions
on Computers, 23(6) (1974).

. Walston, C. E. & Felix, C. P.,, A method of programming measurement and

estimation. IBM Systems Journal, 16(1) (1977) 54-73.

30.
3L
32.
33.
34,
35
36.

37.

38.
39.
40.

41.
42,
43.
45.
46.
47.

48.
49,

Paradigms for experimentation and empirical studies 189

Putnam, L., A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering, SE-4(4)
(1978).
Bailey, J. W. & Basili, V. R,, A meta-model for software development resource
expenditures. Proc. Fifth Int Conf. Software Engng, San Diego, CA, 1981,
pp. 107-16.
Boehm, B. W., Software Engineering Economics. Prentice-Hall, Englew od
Cliffs, NJ, 1981
Endres, A. B., An analysis of errors and their causes in software systems. JEEE
Transactions on software engineering, SE-1(2) (June 1975) 140-9.
Basili, V. R. & Weiss, D. M., Evaluation of a software requirements document
by analysis of change data. "Proc. F ifth Int. Conf Software Engng, San Diego,
CA, 9-12 March 1981, pp. 314-23.
Weiss, D. M. & Basili, V. R,, Evaluating software development by analysi of
changes: Some data from the software engineering laboratory. IEEE
Transactions on Software Engineering, SE-11(2) (Feb. 1985) 157-78.
Albin, J. L. & Ferreol, R, Collecte et analyse de mesures de logiciel (collection -
and analysis of software data). Technique et Science Informatiques, 1(4) (1982)
297-313; Rairo ISSN 0752-4072.
Ostrand, T. J. & Weyuker, E.J., Collecting and categorizing software error data
in an industrial environment. Journal of S}stems and Software, 4 (1984)
289-300.
Basili, V. R. & Perricone, B. T;, Software errors and complexity: An empirical
investigation. Commumcatzons of the ACM, 27(1) (Jan. 1984) 42-52.
Currit, P. A., Dyer, M. & Mills, H. D., Certifying the reliability of softw.
IEEE Transactions on Software Engineering, SE-12(1) (January 1986) 3-11.
Jelinski, Z. & Moranda, P. B., Applications of a probability-based model to a
code reading experiment. Proc. IEEE Symposium on Computer Software
Reliability, New York, 1973, pp. 78-81.
Goel, A. L., Software reliability and estimation techniques. Technical Report
RADC-TR 82-263, Rome Air Development Center, Griffiss Air Force Base,
NY, October 1982.
Littlewood, B., Stochastic reliability growth: A model for fault renovation
computer programs and hardware designs. JEEE Transactions on Reliability, R-
30(4) (1981).
Littlewood, B. & Verrall, J. L., A Bayesian reliability growth model |for
computer software. Applied Statistics, 22(3) (1973).
Musa, J.- D, A theory of software reliability and its application. JEEE
Transactions on Software Engineering, SE-1(3) (1975) 312-27. '
Musa, J. D., Software reliability measurement. Journal of Systems and Software,
1(3) (1980) 223-—41
Shanthikumar, J. G., A statistical txme dependent error occurrence rate software
reliability model thh imperfect de-buggmg Proc. 1981 National Computer
Conference, June 1981.
Floyd, R. W., Assigning meaning to programs. Am. Math. Soc., 19 (1967.
Hoare, C. A. R An axiomatic basis for computer programming. Commumca-
tions of the ACM, 12(10) (Oct. 1969) 576-83.
Linger, R. C, Mills, H. D. & Witt, B. I, Structured Programmmg Theory|and
Practice. Addlson-Wesley, Readmg, MA 1979. '

190

50.

51.
52.
53.
54.
55.

Victor R. Basili, Richard W. Selby

Hutchens, D. H. & Basili, V. R,, System structure analysis: Clustering with data
bindings. JEEE Transactions on Software Engineering, SE-11(8) (Aug. 1985)
749-57.

Emerson, T., A discriminant metric for module cohesion. Proc. Seventh Int.
Conf. Software Engng, IEEE, New York, 1984, pp. 294-303.

Stevens, W. P, Myers, G. J. & Constantine, L. L., Structured design. IBM
Systems Journal, 13(2) (1974) 115-39.

Myers, G. J., Composite/Structured Design. Van Notrand Reinhold, New York,
1978. ’

Parnas, D. L., A technique for module specification with examples.
Communications of the ACM, 15 (May 1972). -

Parnas, D. L., On the criteria to be used in decomposing systems into modules.

- Communications of the ACM, 15(12) (1972) 1053-8.

56.
57.

58.

59.
60.
61.

62.
63.

64.
65.
66.
67.

68.

69.

Gannon, J. D, Katz, E. E. & Baisli, V. R., Measures for ada packages: An initial
study. Communications of the ACM, 20(7) (July 1986) 616-23.

Shneiderman, B., Mayer, R. E, McKay, D. & Heller, P., Experimental
investigations of the utility of detailed flowcharts in programmin g. Communica-
tions of the ACM, 20(6) (1977) 373-81. . . :

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J., What do novices know
about programming? In Directions in Human Computer Interactions, ed. A.
Badre & B. Shneiderman. Ablex, Inc., 1982. : .
Weinberg, G., The Psychology of Computer Programming. Van Nostrand

“Rheinhold, New York, 1971.

Weissman, L., Psychological complexity of computer programs: An experi-
mental methodology. SIGPLAN Notices, 9(6) (June 1974) 25-36.

Stucki, L. G., New directions in automated tools for improving software quality.
In Current Trends in Programming Methodology, ed. R. T. Yeh. Prentice Hali,
Englewood Cliffs, NJ, 1977.

Basili, V. R. & Ramsey, J. R, Structural coverage of functional testing,
Technical Report TR-1442, University of Maryland, Department of Compuiter
Science, College Park, MD, Sept. 1984.

Basili, V. R. & Rombach, H. D., Tailoring the software process to project goals
and environments. In Proc. Ninth Int. Conf. Software Engr. IEEE, New York,
1987, pp. 345-57.

Basili, V. R. & Hutchens, D. H., An empirical study of a syntactic metric family.
IEEE Transactions on Software Engineering, SE-9(6) (Nov. 1983) 664-72. -
Halstead, M. H., Elements of Software Science. North Holland, New York,
1977.

McCabe, T. J., A complexity measure. JEEE Transactions on Software
Engineering, SE-2(4) (Dec. 1976) 308-20. v

Basili, V. R. & Weiss, D. M., A methodology for collecting valid software
engineering data. JEEE Transactions on Software Engineering, SE-10(6) (Nov.
1984) 728-38. o

Basili, V. R. & Selby, R. W., Four applications of a software data collection and
analysis methodology. Proc. NATO Advanced Study Institute: The Challenge of
Advanced Computing Technology to System Design Methods, Durham, July
29-Aug. 10, 1985. ,

Selby, R. W., Evaluations of software technologies: resting, CLEAN-ROOM,
and Metrics, PhD thesis, Department of Computer Science, University of
Maryland, College Park, 1985.

70.
71.

72.
73.

74.

75.

76.

77.

78.

79.

80.
~ Computer Sc1ence Umversny of Maryland, College Park, Scholarly Paper 362,

81.

82.
83.

84.

Paradigms for experimentation and empirical studies 191

Cavano, J. P. & McCall, J. A., A framework for the measurement of software
quality. Proc. Software Quality and Assurance Workshop, San Diego, CA, Nov.
1978, pp. 133-9.

McCall, J. A., Richards, P. & Walters, G, Factors in software quality. Technical
Report RADC TR-77-369, Rome Air Development Center, Griffiss Air Force
Base, New York, Nov. 1977.

Basili, V. R., Tutorial on Models and Metrics for Software Management and
Engineering. IEEE Computer Society, New York, 1980.

Basili, V. R., Selby, R. W. & Phillips, T. Y., Metric analysis and data validation
across FORTRAN projects. IEEE Transactions on Software Engineering, SE-
9(6) (Nov. 1983) 652-63.

Curtis, B., Sheppard, S. B. & Milliman, P. M., Third time charm: stronger
replication of the ability of software complexity metrics to predict programmer
performance. Proc. Fourth Int. Conf. Software Engng, TEEE, New York, 1979,
pp. 356-60. '

Feuer, A. R. & Fowlkes, E. B., Some results from an empirical study of
computer software. In Fourth Int. Conf. Software Engng, 1EEE, New York,
1979, pp. 351-5.

Zolnowski, J. C. & Simmons, D. B,, Taking the measure of program comp]exny
Proc. National Computer Conference, 1981, pp. 329-36.

Basili, V. R. & Reiter, R. W., A controlled experiment quantitatively comparing
software development approaches IEEE Transactions on Software Engzneer-
ing, SE-7 (May 1981).

Basili, V. R,, Zelkowitz, M. V., McGarry, F. E. Jr, Reiter, R. W., Truszkowski,
W.F. & Weiss D. L., The software engineering laboratory. Technical Report
Rep. SEL-77-001, NASA/Goddard Space Fllaht Center, Greenbelt, MD, May
1977.

Cums B., Sheppard, S. B, Milliman, P., Borst, M. A. & Love, T., Measuring the
psychological complexity of software maintenance tasks with the Halstead and
McCabe metrics. JEEE Transactions on Software Engineering, SE-5(2) (March
1979) 96-104.

Hwang, S-S, V., An empirical study in functional testing. Department of

Dec. 1981.

Miara, R. J.,, Musselman, J. A., Navarro J. A. & Shneiderman, B., Program
indentation and comprehen51b111ty Communications of the ACM, 26(11) (Nov.
1983) 861-7.

Bogdan, R. C. & Biklen, S. K., Qudlitative Research for Education: An
Introduction to Theory and Methods, 1982. :
Selby, R. W. & Porter, A. A, Learning from examples: Generation and
evaluation of decision trees for software resource analysis. IEEE Transactions
on Software Engineering, 14(12) (Dec. 1988) 1743-57.

Selby, R. W. & Porter, A. A., Software metric classification trees for guiding the
maintenance of large-scale systems. Proc. Conf. Sofnware-Maintenance. IEEE,
New York, 1989 (to appear).

