Support for comprehensive

reuse

by V.R. Basili and H.D. Rombach

Reuse of products, processes and other
knowledge will be the key to enable the
software industry to achieve the
dramatic improvement in productivity
and quality required to satisfy
anticipated growing demands. Although
experience shows that certain kinds of
reuse can be successful, general success
has been elusive. A software life-cycle
technology that allows comprehensive
reuse of all kinds of software-related
experience could provide the means of
achieving the desired
order-of-magnitude improvements. In
this paper, we introduce a
comprehensive framework of models,
model-based characterisation schemes,
and support mechanisms for better
understanding, evaluating, planning
and supporting all aspects of reuse.

1 Introduction

The existing gap between demand and our ability to
produce high-quality software cost-effectively calls for an
improved software development technology. A reuse-
oriented development technology can significantly contrib-
ute to higher quality and productivity. Quality should be
improved by reusing all forms of proven experience, includ-
ing products and processes, as well as quality and pro-
ductivity models. Productivity should increase by using
existing experience, rather than creating everything from
the beginning.

Reusing existing experience is a key ingredient to
progress in any discipline. Without reuse:everything must
be relearnt and recreated; progress in an economical fashion
is unlikely. Reuse is less institutionalised in software engin-
eering than in any other engineering discipline. Neverthe-
less, there are successful cases of reuse, ie. product reuse.
The potential pay-off from reuse can be quite high in soft-
ware engineering, as it is inexpensive to store and repro-
duce software engineering experience compared to other
disciplines.

The goal of research in the area of reuse is to develop and
support systematic approaches for effectively reusing exist-
ing experience, in order to maximise quality and pro-
ductivity. A number of different reuse approaches have
appeared in the literature [1-10].

This paper presents a comprehensive framework for

Software Engineering Journal September 1991

reuse, consisting of a reuse model, characterisation schemes
based on this model, the improvement-oriented TAME
environment model describing the integration of reuse into
the (reuse) enabling software development processes,
mechanisms needed to support comprehensive reuse in the
context of the TAME environment model, and (partial)
prototype implemeritations of the TAME énvironment
model. From a number of important assumptions regarding
the nature of software development and reuse, we derive
four essential requirements for any useful reuse model and
related characterisation scheme. We illustrate that existing
models and characterisation schemes only partially satisfy
these essential requirements. We introduce a new reuse
model, which is comprehensive in the sense that it satisfies
all four reuse requirements, and use it to derive a reuse
characterisation scheme. Finally, we point out the mecha-
nisms needed to support effective reuse according to this
model. Throughout the paper, we use examples of reusing
generic Ada packages, design inspections and cost models to
illustrate our approach.

2 Scope of comprehensive reuse

The reuse framework presented in this paper is based on a
number of assumptions regarding software development in
general and reuse in particular. These assumptions are
based on more than fifteen years’ work of analysing soft-
ware processes and products [11-16]. From these assump-
tions, we derive four essential requirements for any useful
reuse model and related characterisation scheme.

2.1 Software development assumptions

According to a common software development project
model depicted in Fig. 1, the goal of software development
is to produce project deliverables (i.e. project output) that
satisfy project requirements (i.e. project input). This goal is
achieved according to a development process model that co-
ordinates the interaction between available personnel, prac-
tices, methods and tools [17].

With regard to software development we make the fol-
lowing assumptions.

e Seftware development needs to be viewed as
an ‘experimental’ discipline. An evolutionary model
is needed that enables organisations to learn from each
development and incrementally improve their ability to
engineer quality software products. Such a model requires
the ability to define project goals; select and tailor the
appropriate process models, practices, methods and tech-
niques; and capture the experiences gained from each

303

Fig.1 Software development project model

project in reusable form. Measurement is essential.

e A single software development approach
cannot be assumed for all software development
projects. Different project requirements and other project
characteristics may suggest and justify different
approaches. The potential differences may range from dif-
ferent development process models themselves to different
practices, methods and tools supporting these development
process models, to different personnel.

o Existing software development approaches
need to be tailorable to project requirements
and characteristics. In order to reuse existing develop-
ment process models, practices, methods and tools across
projects with different requirements and characteristics,
they need to be tailorable.

2.2 Software reuse assumptions

Reuse-oriented software development assumes that, given
the project-specific requirements x for an object x, we con-
sider reusing an already existing object x, instead of cre-
ating x from the beginning. Reuse involves identifying a set
of reuse candidates x,, ..., x, from an experience base,
evaluating their potential for satisfying , selecting the best-
suited candidate x, and, if required, modifying the selected
-candidate x, into x. Related issues have been discussed in
Reference 18. In the case of reuse-oriented development, ¥ is
not only the specification for the needed object x, but also
the specification for all the above-mentioned reuse activities.

As we learn from each project which kinds of experience
are reusable and why, we can establish better criteria for
what should and what should not be made available in the
experience base. The term ‘experience base’ suggests that
we expect storage of all kinds of software-related experi-
ence, not just products. The experience base can be
improved from inside, as well as outside. From inside, we
can record experience from ongoing projects, which satisfies
current reuse criteria for future reuse, and we can repackage
existing experience, through various mechanisms, in order
to better satisfy our current reuse criteria. From outside, we
can infuse experience that exists outside the organisation in
the experience base. It is important to note that the remain-
der of this paper deals only with the reuse of experience
available in an experience base and the improvement of

304

such an experience base from inside (shaded section in Fig.
2).

With regard to software reuse we make the following
assumptions.

[0 All experience can be reused. Traditionally, the
emphasis has been on reusing concrete objects of type
‘source code’. This limitation reflects the traditional view
that software equals code. It ignores the importance of
reusing all kinds of softwarerelated experience, including
products, processes and other knowledge. The term
‘product’ refers to either a concrete document or artifact
created during a software project, or a product model
describing a class of concrete documents or artifacts with
common characteristics. The term ‘process’ refers to either a
concrete activity of action (performed by a human being or
a machine) aimed at creating some software product, or a
process model describing a class of activities or actions with
common characteristics. The phase ‘other knowledge’ refers
to anything useful for software development, including
quality and productivity models or models of the applica-
tion being implemented.

The reuse of ‘gemeric Ada packages’ represenls an
example of product reuse. Generic Ada packages represent
templates for instantiating specific package objects accord-
ing to a parameter mechanism. The reuse of ‘design
inspections’ represents an example of process reuse.
Design inspections are off-line fault detection and iso-
lation methods applied during the component design
phase. They can be based on different techniques for
reading (e.g. ad hoc, sequential, control-flow-oriented,
step-wise abstraction-oviented). The reuse of ‘cost models’
represents an example of knowledge reuse. Cost models
are used in the estimation, evaluation and control of
project cost. They predict cost (e.g. in the form of staff
months) based on a number of characteristic project
parameters (e.g. estimated product size in KLoC, product
complexity, methodology level).

OO Reuse typically requires some modification

of the object being reused. Under the assumption that
software developments may be different in some way, modi-
fication of experience from previous projects must be antici-

Software Engineering Journal September 1991

pated. The degree of modification depends on how many,
and to what degree, existing object characteristics differ
from those required. The time of modification depends on
when the reuse requirements for a project or class of pro-
jects are known. Modification can take place as part of
actual reuse (ie. as part of the modification activity of the
reuse process model in Fig. 2) and/or before actual reuse
(i.e. as part of the repackaging activity in Fig. 2).

To reuse an Ada package ‘list of integers’ in order to
organise a ‘list of reals’, we need to modify it. We can
either modify the existing package by hand, or we can use
a generic package ‘list’, which can be instantiated via a
Dbparameter mechanism for any base type.

To reuse a design inspection method across projects char-
acterised by significantly different fault profiles, the
underlying reading technique may need to be tailoved to
the respective fault profiles. If ‘interface faults’ replace
‘control flow faults’ as the most common fault type, we
can either select a different reading technique altogether
(e.g. step-wise abstraction instead of control-flow-oriented)
or we can establish specific guidelines for identifying
interface faults.

To reuse a cost model across projects characterised by dif-
ferent application domains, we may have to change the
number and type of characteristic project parameters used
Jor estimating cost, as well as their impact on cost. If
‘commercial software’ is developed instead of ‘real-time
software’, we may have to consider redefining ‘estimated
product size’ to be measured in terms of ‘function points’
instead of “lines of code’, ov recomputing the impact of the
existing parameters on cost. Using a cost model effectively

implies a constant updating of our understanding of the
relationship between project parameters and cost.

[0 Analysis is necessary to determine when,
and if, reuse is appropriate. The decision to reuse
existing experience, as well as how and when to reuse it,
needs to be based on an analysis of the pay-off. Reuse
pay-off is not always easy to evaluate [19]. We need to
understand the reuse requirements; how well the available
reuse candidates are qualified to meet these requirements;
and the mechanisms available to perform the necessary
modification.

Assume the existence of a set of Ada generics that rep-
resent application-specific components of a satellite-control
system. The objective may be to reuse such components to
build a new satellite control system of a similar type, but
with higher precision. Whether the existing generics are
suitable depends on a variety of characteristics: their cor-
rectness and reliability; their performance in previous
instances of reuse; their ease of integration into a new
system; the potential for achieving the higher degree of
precision through instantiation; the degree of change
needed; and the existence of reuse mechanisms that
support this change process. Candidate Ada generics may
theoretically be well suited for reuse; however, without
knowing the answers to these questions, they may not be
reused due to lack of confidence that reuse will pay off.

Assume the existence of a design inspection method based
on ad hoc reading, which has been used successfully on
Dbast satellite-control software developments within a stan-
dard waterfall model. The objective may be to reuse the
method in the context of the Cleanroom development

experience
existing

in the world

at large

\

Fig.2 Reuse-oriented software development model

Software Engineering Journal September 1991

305

method [20, 21]. In this case, the method needs to be
applied in the context of a different life-cycle model, differ-
ent design approach and different design representations.
Whether, and how, the existing method can be reused
depends on our ability to tailor the reading technigue to
the step-wise refinement-oriented design technique used in
Cleanroom, and the required intensity of reading due to
the omission of developer testing. This results in the defi-
nition of the step-wise abstraction-oviented reading tech-
nique [22].

Assume the existence of a cost model that has been vali-
dated for the development of satellite-control software,
based ‘on a waterfall life-cycle wmodel, functional
decomposition-oriented design techniques, and functional
and structural testing. The objective may be to reuse the
model in the context of Cleanroom developments. Whether
the cost model can be reused at all, how it needs to be
calibrated, or whether a completely different model may
be more appropriate depends on whether the model con-
tains the appropriate variables needed for the prediction
of cost change, or whether they simply need to be recalib-
rated. This question can only be answered by thorough
analysis of a number of Cleanroom projects.

[0 Reuse must be integrated into the specific
software development. Reuse is intended to make soft-
ware development more effective. In order to achieve this
objective, we need to tailor reuse practices, methods and
tools to the respective development process.

We have to decide when, and how, to identify, modify and
integrate existing Ada packages. If we assume identifica-
tion of Ada generics by name, and modification by the
generic parameter mechanism, we requive a rvepository
consisting of Ada generics, together with a description of
the instantiation parameters. If we assume identification
by specification, and modification of the generic’s code by
hand, we require a suitable specification of each generic, a
definition of semantic closeness* of specifications so that
we can find suitable reuse candidates, and the appropriate
source code documentation to allow for ease of modifi-
cation. In the case of identification by specification, we
may consider identifying reuse candidates during high-
level design (i.e. when the component specifications for the
new product exist) or even when defining the require-
ments.

We have to decide on how often, when and how design
inspections should be integrated into the development
process. If we assume a waterfall-based development life-
cycle, we need to determine how many design inspections
need to be performed and when (e.g. once for all com-
ponents at the end of component design, once for all com-
ponents of a subsystem, or once for each component). We
need to state which documents are required as input to the
design inspection; what resulis are to be produced; what
actions are to be taken when, in case the results are n-
sufficient,; and who is supposed to participate.

We have to decide when lo initially estimate cost and
when to update the initial estimate. If we assume a
waterfall-based development life-cycle, we may estimate

* Definitions of semantic closeness can be derived from existing
work [23].

306

cost initially based on estimated product and process
parameters (e.g. estimated product size). After each mile-
stone, the estimated cost can be compared with the actual
cost. Possible deviations are used to correct the estimate
for the remainder of the project.

2.3 Software reuse model requirements

The above software reuse assumptions suggest that reuse is
a complex concept. We need to build models and character-
isation schemes that allow us to define and understand,
compare and evaluate, and plan the reuse requirements, the
reuse candidates, the reuse process itself and the potential
for effective reuse. Based on the above assumptions, such
models and characterisation schemes need to satisfy the fol-
lowing four requirements:

e applicable to all types of reuse objects; we
want to be able to include products, processes and all other
kinds of knowledge, such as quality and productivity
models.

e capable of modelling reuse candidates and
reuse requirements; we want to be able to capture the
reuse candidates, as well as the reuse requirements in the
current project. This will enable us to judge the suitability
of a given reuse candidate, based on the distance between
the characteristics of the reuse requirements and the reuse
candidate, and establish criteria for useful reuse candidates
based on anticipated reuse requirements.

e capable of modelling the reuse process itself;
we want to be able to judge the ease of bridging the gap
between different characteristics of reuse candidates and
reuse requirements, and derive additional criteria for useful
reuse candidates, based on characteristics of the reuse
process itself. _
e defined and rationalised, so that they can be
easily tailored to specific project requirements
and characteristics; we want to be able to adjust a
given reuse model and characterisation scheme to changing
project requirements and characteristics in a systematic
way. This not only requires the ability to change the
scheme, but also some kind of rationale that ties the given
reuse characterisation scheme to its underlying model and
assumptions. Such a rationale enables us to identify the
impact of different environments and modify the scheme in
a systematic way.

3 Existing reuse models

A number of research groups have developed (implicit)
models and characterisation schemes for reuse [2-4, 8, 9].
The schemes can be distinguished as special-purpose
schemes and meta schemes.

The large majority of published characterisation schemes
have been developed for a special purpose. They consist of
a fixed number of characterisation dimensions. Their inten-
tion is to characterise software products as they exist.
Typical dimensions for characterising source code objects in
a repository are ‘function’, ‘siz¢’ or ‘type of problem’.
Example schemes include the schemes published in Refer-
ences 3 and 4, the ACM Computing Reviews Scheme, the
AFIPS Taxonomy of Computer Science and Engineering,
schemes for functional collections (e.g. GAMS, SHARE, SSP,
SPSS, IMSL) and schemes for commercial software cata-

Software Engineering Journal September 1991

Fig.3 Abstract reuse model (refinement level 0)

logues (e.g. ICP, IDS, IBM Software Catalog, Apple Book). It
is obvious that special-purpose schemes are not designed to
satisfy the reuse modelling requirements of Section 2.3.

A few characterisation schemes can be instantiated for
different purposes. They explicitly acknowledge the need
for different schemes (or the expansion of existing ones) due
to the different or changing requirements of an organis-
ation. They therefore allow the instantiation of any imagin-
able scheme. An excellent example is Prieto-Diaz’s
facet-based meta-characterisation scheme [5, 24]. Theoreti-
cally, meta schemes are flexible enough to allow the cap-
turing of any reuse aspect. However, based on known
examples of actual uses of meta schemes, such broadness
has not been utilised. Instead, most examples focus on
product reuse, are limited to the reuse candidates and ignore
the reuse process entirely. Meta schemes were not designed
to satisfy the reuse modelling requirements of Section 2.3.

To illustrate the capabilities of existing schemes, we give
the following instance of an example meta scheme:t

[0 name: what is the product’s name? (e.g. buffer.ada,
queue.ada, list.pascal)

0 function: what is the functional specification or
purpose of the product? (eg integer_queue,
{element>_buffer, sensor control system)

[J type: what type of product is it? (e.g. requirements
document, design document, code document)

0 granularity: what is the product’s scope? (e.g.
system level, subsystem level, component-package, pro-
cedure, function-level)

[0 representation: how is the product represented?
(e.g. informal set of guidelines, schematised templates, lan-
guages such as Ada)

[0 input/output: what are the external input/output
dependencies of the product needed to completely
define/extract it as a self-contained entity? (e.g. global data
referenced by a code unit, formal and actual input/output
parameters of a procedure, instantiation parameters of a
generic Ada package)

[0 application domain: what application classes was
the product developed for? (e.g. ground support software for
satellites, business software for banking, payroll software)

This scheme is applicable to all reuse product candidates.
For example, a generic Ada package ‘buffer.ada’ may be
characterised as having identifier ‘buffer.ada’, offering the

1 Characterisation dimensions are marked with [; example cate-
gories for each dimension are listed in parentheses.

Software Engineering Journal September 1991

function ‘{element>_buffer’, being usable as a ‘product’ of
type ‘code document’ at the ‘package component level’, and
being represented in ‘Ada’. A self-contained definition of a
package requires knowledge regarding the instantiation
parameters, as well as its visibility of externally defined
objects (e.g. explicit access through WITH clauses, implicit
access according to nesting structure). In addition, effective
use of the object may require some basic knowledge of the
Ada language and may assume thorough documentation of
the object itself. It may have been developed within the
application domain ‘ground support software’, according to
a ‘waterfall life-cycle’ and ‘functional decomposition design’,
and exhibiting high quality in terms of ‘reliability’. In order
to characterise reuse candidates of type process or know-
ledge, new categories need to be generated.

Such schemes have typically been used to characterise
reuse candidates only. However, in order to evaluate the
reuse potential of a reuse candidate in a given reuse sce-
nario, we need to understand the distance between its char-
acteristics and the stated or anticipated reuse requirements.
In the case of the Ada package example, the required func-
tion may be different, the quality requirements with respect
to reliability may be higher, or the design method used in
the current project may be different from the one according
to which the package has been created originally, Without
understanding the distance to be bridged between reuse
needs and reuse candiates, it is hard to predict the cost
involved in reusing a particular object and to establish cri-
teria for populating a reuse repository that supports cost-
effective reuse.

This scheme provides no information for characterising
the reuse process. To accurately predict the cost of reuse,
we not only have to understand the distance to be bridged
between reuse candidates and reuse requirements, but also
the intended process to bridge it (i.e. the reuse process). For
example, we may expect thatit is easier to bridge the dis-
tance with respect to function by using a parameterised
instantiation mechanism, rather than modifying the existing
package by hand.

There is no exp11c1t rationale for the eight dimensions of
the example scheme; that makes it hard to reason about its
appropriateness, as well as modify it in any systematic way.
There is no guidance as to tailoring the example scheme to
new requirements with respect to what is to be changed
(e.g. only some categories, -dimensions or the entire implic-
itly underlying model), or how it is to be changed. For
example, it is not clear what needs to be changed in order to
make the above scheme applicable to reuse candidates of
type process or knowledge.

307

reuse candidates

reuse process

required objects

Fig. 4 Reuse model (refinement level 1)

In summary, existing schemes (special-purpose as well as
meta schemes) only partially satisfy the requirements laid
out in Section 2.3. The most crucial shortcoming is the lack
of rationales, which makes it hard to tailor schemes to
changing requirements and environment characteristics.
This observation suggests the need for new, broader reuse
models and characterisation schemes. In the next Section,
we suggest a comprehensive reuse model and character-
isation schemes that satisfy all four reuse requirements.

4 A comprehensive reuse model

In this Section, we define a comprehensive reuse model and
characterisation schemes that satisfy the reuse requirements
stated in Section 2.3. We start with a very general reuse
model, refine it, step by step, until it generates reuse charac-
terisation dimensions at the level of detail needed to under-
stand, evaluate, motivate and improve reuse. The stepwise
refinements of the high-level reuse model capture the
rationale of the resulting reuse characterisation scheme.
Such a rationale is important for understanding, motivating
and tailoring any reuse characterisation scheme.

4.1 Reuse model

The comprehensive reuse model used in this Section is con-
sistent with the view of reuse represented in Section 2.2,
Reuse comprises the transformation of existing reuse candi-
dates into required objects which satisfy established reuse
needs (Fig. 3). The transformation is referred to as reuse
process. Specifications of the required objects are an essen-
tial part of the reuse requirements that guide any reuse
process.

The reuse candidates represent experience from the same
project, previous projects or other sources, which have been
evaluated as being of potential reuse value, and have been
made available in some form of experience base. The reuse
requirements specify objects required in the current project.
In the case of successful reuse, these required objects would
be the potentially modified versions of existing reuse candi-
dates. Both the reuse candidates and reuse requirements
may refer to any type of experience accumulated in the
context of software projects, ranging from products to pro-
cesses to knowledge. The reuse process transforms reuse
candidates into objects that satisfy given reuse require-
ments.

In order to better understand reuse-related issues, we
refine each component of the reuse model further. The result

308

of this first refinement step is depicted in Fig. 4.

Each reuse candidate is a specific object considered for
reuse. The object has various attributes that describe and
bound it. Most objects are physically part of a system, i.e.
they interact with other objects to create some greater
object. If we want to reuse an object, we must understand
its interaction with other objects in the system in order to
extract it as a unit, i.e. object interface. Objects were created
in an environment that leaves its characteristics on the
object, although those characteristics may not be visible.
We call this the object context.

Given reuse requirements may be satisfied by a set of
reuse candidates. Therefore, we may have to consider differ-
ent attributes for each required object. The system in which
the transformed object is integrated and the system context
in which the system is developed must also be classified.

The reuse process is aimed at extracting a reuse candi-
date from a repository, based on the characteristics of the
known reuse needs, and making it ready for reuse in the
system and context in which it will be reused. We must
describe the various reuse activities and classify them. The
reuse activities need to be integrated into the reuse-enabling
software development process. The means of integration
constitute the activity interface. Reuse requires the transfer
of experience across project boundaries. The organisational
support provided for this éxperience transfer is referred to
as activity context.

Based on the goals for the specific project, as well as the
organisation, we must assess the required qualities of the
reused ohject as stated by the reuse requirements; the
quality of the reuse process, especially its integration into
the enabling software evolution process; and the quality of
the existing reuse candidates.

4.2 Model-based reuse characterisation scheme

Each component of the first model refinement (Fig. 4) is
further refined, as depicted in Figs. 5a—. It needs to be
noted that these refinements are based on our current
understanding of reuse and may therefore change in the
future.

4.2.1 Reuse candidates: in order to characterise the object
itself, we have chosen to provide the following dimensions
and supplementing categories: the object’'s name (e.g.
buffer.ada), its function (e.g. integer_buffer), its possible use
(e.g. product), its type (e.g. requirements document), its
granularity (e.g. component) and its representaton (e.g. Ada

Software Engineering Journal September 1991

language). The object interface consists of such things as
what are the explicit inputs/outputs needed to define and
extract the object as a self-contained unit (e.g. instantiation
parameters in the case of a generic Ada package), and what
are additionally required assumptions and dependencies
(e.g. user's knowledge of Ada). Whereas the object and
object interface dimensions provide us with a ‘snapshot’ of
the object at hand, the object context dimensions provide us
with historical information, such as the application classes
for which the object was developed (e.g. ground support
software for satellites), the environment in which the object
was developed (e.g. waterfall life-cycle model) and its vali-
dated or anticipated quality (e.g. reliability). The resulting
model refinement is depicted in Fig. 5a.
Each reuse candidate is characterised in terms of

e name: what is the object’s name? (e.g. buffer.ada,
sel_inspection, sel_cost_model)

e function: what is the functional specification or
purpose of the object? (eg integer_queue,
{element)_buffer, sensor control system, certify appropri-
ateness of design documents, predict project cost)

e use: how can the object be used? (e.g. product, process,
knowledge)

e type: what type of object is it? (e.g. requirements docu-
ment, code document, inspection method, coding method,
specification tool, graphics tool, process model, cost model)
e granularity: what is the object’s scope? (e.g. system
level, subsystem level, component-package, procedure,
function-level, entire life-cycle, design stage, coding stage)

e representation: how is the object represented? (e.g.
data, informal set of guidelines, schematised templates,
formal mathematical model, languages such as Ada,
automated tools)

e input/output: what external input/output depen-
dencies of the object are required to completely
define/extract it as a self-contained entity? (e.g. global data
referenced by a code unit, formal and actual input/output
parameters of a procedure, instantiation parameters of a
generic Ada package, specification and design documents
needed to perform a design inspection, defect data produced
by a design inspection, variables of a cost model)

e dependencies: what additional assumptions and
dependencies are needed to understand the object? (e.g.
assumption about user’s qualification, such as knowledge of
Ada or qualification to read, specification document to
understand a code unit, readability of design document,
homogeneity of problem classes and environments under-
lying a cost model)

e application domain: what application classes was

activity context

Fig. 5c Reuse model (reuse process/refinement level 2)

Software Engineering Journal September 1991

object context

Fig.5a Reuse model (reuse candidates/refinement
level 2)

system context

Fig. 5b Reuse model (reuse requirements/refinement
level 2)

the object developed for? (e.g. ground support software for
satellites, business software for banking, payroll software)

e solution domain: in what environment classes was
the object developed? (e.g. waterfall life-cycle model, spiral
life-cycle model, iterative enhancement life-cycle model,
functional decomposition design method, standard set of
methods)

e object quality: what qualities does the object
exhibit? (e.g. level of reliability, correctness, user-
friendliness, defect detection rate, predicability)

A subset of this scheme has been used in Section 3. In con-
trast, we now have a rationale for these dimensions (Fig. 5a)

309

and understand that they cover only part (i.e. the reuse

candidate) of the comprehensive reuse model depicted in
Fig. 4.

4.2.2 Required objects: in order to characterise the
required objects (or reuse requirements), we have chosen the
same dimensions and supporting categories as for the reuse
candidates. The resulting model refinement is depicted in
Fig. 5b.

However, an object may change its characteristics during
the actual process of reuse. Therefore, its characterisations
before and after reuse can be-expected to be different. For
example, a reuse candidate may be a compiler (type)
product (use) and may have been developed according to a
waterfall life-cycle approach (solution domain). The required
object is a compiler (type) process (use) integrated into a
project based on iterative enhancement (solution domain).

This means that, despite the similarity between the
refined models of reuse candidates and requirements
objects, there is a significant difference in emphasis: In the
former case, the emphasis is on the potentially reusable
objects themselves; in the latter case, the emphasis is on the

system in which these object(s) are (or are expected to be)

reused. This explains the use of different dimension names;
‘system’ and ‘system context’ instead of ‘object interface’
and ‘object context’.

The distance between the characteristics of a reuse candi-
date and the required object give an indication of the gap to
be bridged in the event of reuse.

4.2.3 Reuse process: the reuse process consists of several
activities. In the remainder of this paper, we will use a
model consisting of four basic activities: identification,
evaluation, modification and integration. In order to charac-
terise each reuse activity, we may be interested in its name
(e.g. modify.pl), its function (e.g. modify an identified reuse
candidate to entirely satisfy given reuse requirements), its
type (e.g. identification, evaluation, modification) and the
mechanism used to perform its function (e.g. modification
via parameterisation). The interface of each activity may
consist of such things as the explicit input/output interfaces
between the activity and the enabling software evolution
environment (e.g. in the case of modification performed
during the coding phase, assumes the eixstence of a
specification), and other assumptions regarding the evolu-
tion environment that need to be satisfied (e.g. existence of
certain configuration control policies). The activity context
may include information about how reuse candidates are
transferred to satisfy given reuse requirements (experience
transfer) and the quality of each reuse activity (e.g. reliabil-
ity, productivity). This refinement of the reuse process is
depicted in Fig. 5¢.

In more detail, the dimensions and example categories for
each reuse activity are

0 name: what is the name of the activity? (e.g. iden-
tify.generics, evaluate.generics, modify.generics, inte-
grate.generics)

O funection: what is the function performed by the
activity? (e.g. select candidate objects {x;} that satisfy
certain characteristics of the reuse requirements ¥; evaluate

the potential of the selected candidate objects-of satisfying -

the given system and system context dimensions of the
reuse requirements ¥ and pick the most suited candidate x,;

310

modify x, to entirely satisfy ¥; integrate object x into the
current development project)

[0 type: what is the type of the activity? (e.g. identifica-
tion, evaluation, modification, integration)

[0 mechanism: how is the activity performed? (in the
case of identification, e.g. by name, by function, by type and
function; in the case of evaluation, e.g. by subjective judg-
ment, by evaluation of historical base-line measurement
data; in the case of modification, e.g. verbatim, param-
eterised, template-based, unconstrained; in the case of inte-
gration, e.g. according to the system configuration plan,
according to the project/process plan)

O input/output: what are explicit input and output
interfaces between the reuse activity and the enabling soft-
ware evolution environment? (in the case of identification,
e.g. description of reuse requirements/set of reuse candi-
dates; in the case of modification, e.g. specification of the
object to be reused/object to be reused)

0 dependencies: what are other implicit assumptions
and dependencies on data and information regarding the -
software evolution environment? (e.g. time at which reuse
activity is performed, relative to the enabling development
process: e.g. during design or coding stages; additional
information needed to perform the reuse activity effectively:
e.g. package specification to instantiate a generic package,
knowledge of system configuration plan, configuration man-
agement procedures or project plan)

[0 experience transfer: what are the support mecha-
nisms for transferring experience across projects? (e.g.
human, experience base, automated)

0 reuse quality: what is the quality of each reuse
activity ? (e.g. high reliability, high predictability of modifi-
cation cost, correctness, average performance)

4.3 Example applications of the comprehensive reuse
model

We demonstrate the applicability of our model-based reuse
scheme by characterising the three hypothetical reuse
scenarios that have been used informally throughout this
paper: Ada generics, design inspections and cost models.
The resulting characterisations are summarised in Tables
1-3.

5 Support mechanisms for comprehensive
reuse

According to the reuse-oriented software development
model depicted in Fig. 2, effective reuse needs to take place
in an environment that supports continuous improvement,
i.e. recording of experience across ail projects, appropriate
packaging and storing of recorded experience, and reusing
existing experience whenevér feasible. In the TAME project
at the University of Maryland, such an environment model,
has been proposed, and (partial) prototype environments are
currently being built according to this model [15]. In the
remainder of this Section, we introduce the reuse-oriented
TAME environment model,” discuss a number of ‘mecha-
nisms for effective reuse and introduce several prototype
environments being built according to the TAME model.

5.1 The reuse-oviented TAME environment model

The important compornents of the reuse-oriented TAME

Software Engineering Journal September 1991

environment model are depicted in Fig. 6: the project organ-
isation, which performs individual development projects;
and the experience factory, which stores and actively modi-
fies development experience from all projects. The shaded
areas in Fig. 6 indicate how the reuse model of Fig. 3 inter-
sects with the TAME environment model.

Within the project organisation, each development project
is performed according to the quality improvement para-
digm [15, 25]. The quality improvement paradigm consists
of the following steps:

e plan: characterise the current project environment so
that the appropriate past experience can be made available
to the current project. Set up the goals for the project and
refine them into quantifiable questions and metrics for suc-
cessful project performance and improvement over previous
project performances (e.g. based on the goal/question/metric
paradigm [15, 26]). Choose the appropriate software devel-
opment process model for this project with the supporting
methods and tools, for both construction and analysis.

e execute: construct the products according to the
chosen development process model, methods and tools.
Collect the prescribed data, validate and analyvse it to
provide feedback in real-time for corrective action on the
current project.

e package: analyse the data in a post-mortem fashion to
evaluate the current practices, determine problems, record
findings and make recommendations for improvement for
future projects. Package the experiences in the form of
updated and refined models and other forms of structured
knowledge gained from this and previous projects, and save
it in an experience base, so that it can be available to future
projects.

The experience base contains reuse candidates of different
types, granularity and representation. Example entries in
the case of the examples described in Section 4.3 include
objects of type ‘code document’, granularity ‘package’ and
representation ‘Ada’; objects of type ‘inspection method’,
granularity ‘design stage’ and representation ‘schematised
template’; and objects of type ‘cost model’, granularity
‘entire life-cycle’ and representation ‘formal mathematical
model’.

During each step of a development project performed
according to the quality improvement paradigm, reuse
requirements are identified and matches made against reuse
candidates available in the experience base. During the
characterisation step, characteristics of the current project
environment can be used to identify appropriate past expe-
rience in the experience base, e.g. based on project charac-

reuse-oriented software environment model

choose ! construct

processes

! i
] |

haracterise | set goals :
! '
i

! i
!
i i
i . [i analyse
i required; objects
i

reuse
process

reuse
candidates

experience b

Fig. 6 Reuse-oriented software environment model

teristics, the appropriate instantiation of a cost model can be
generated. During the planning step, project goals can be
used to identify existing similar goal/question/metric
models or process/product/quality models in the experience
base, e.g. based on project goals, a goal/question/metric
model can be chosen for evaluating a design inspection
method. During the execution step, product specifications
can be used to identify existing components from previous
projects, such as Ada generics. During the feedback step,
the analysis goals generated during planning are used as
the basis of analysis by fitting base-lines to compare
against the current data. As part of the feedback step a
decision is made as to which experiences are worth record-
ing. The degree of guidance that can be provided for enter-
ing reuse candidates into the experience base depends on
the accumulated knowledge of expected reuse requests for
future projects.

The experience base is part of an active organisational
entity, referred to as the experience factory [27], which sup-
ports project developments by analysing and synthesising
all kinds of experience, acting as a repository for such expe-
rience and supplying that experience to various projects on
demand. In the context of the reuse-oriented software

Fig.7 Mechanisms required to support effective feedback of experience

Software Engineering Journal September 1991

311

buffer.ada
{element)_buffer

product

code document
package

Ada/generic package

representation

sel_inspection.waterfall
certify appropriateness of

process
inspection method
design stage

informal set of guidelines

sel_cost_model.fortran
predict project cost
design documents
knowledge

cost model

entire life-cycle

formal mathematical model

formal and actual instantiation
parameters (type and number)

input/output

dependencies assumes Ada knowledge

specification and design

assumes a readable design,

estimated product size in KLOC,
complexity rating, methodoiogy
level, cost in staff hours

assumes a relatively homogeneou
class of problems and
environments

document required,
defect data produced

qualified reader

application domain ground support software
for satellites

waterfall (Ada) life-cycle model,
functional decomposition
design method

high reliability
(e.g. <0.1 defects per KLoC
for a given set of acceptance
tests) '

solution domain

object quality

environment model, the experience factory not only stores
experience in a variety of experience bases, but also per-
forms the constant modification of experience to increase its
reuse potential. Example modifications address the formal-
isation of experience (e.g. building a cost model empirically
based upon the data available), tailoring of experience to fit
the requirements of a specific project (e.g. instantiating an
Ada package from a generic package) and the generalising
of experience to be applicable across project classes (e.g.
developing a generic package from a specific package). It
plays the role of an organisational ‘server’ aimed at
satisfying project specific reuse requests effectively [27].
The constant collection of measurement data regarding
reuse requirements and the reuse processes themselves
enable the judgments needed to populate the experience
base effectively and select the best-suited reuse candi-
dates. The use of the quality improvement paradigm within
the project -organisation enables the integration of
measurement-based analysis and construction.

5.2 Mecharisms to support effective reuse in the
TAME environment model

Improvement in the reuse-oriented TAME environment
model of Fig. 6 is based on the feedback of experience, cap-
tured from previous projects, into ongoing and future soft-
ware developments. The mechanisms needed to support
effective feedback are listed in Fig. 7. '

Feedback requires learning and reuse. Although learning
and reuse are possible in any environment, we are inter-
ested in addressing and supporting them explicitly and sys-
tematically. Systematic learning requires support for the
recording of experience in an experience base and its pack-
aging, in order to increase its reuse potential for anticipated
" reuse requirements in future developments. Systematic
reuse requires support for the identification of candidate
experience, its evaluation and modification.

312

ground support software

waterfall Ada) life-cycle

average defect detection rate

ground support software
for satellites

waterfall (Ada) life-cycle model,
standard set of methods

for satellites

model, standard set of
methods

average predictability
(e.g. >0.5 defects (e.g. <10% prediction error)

detected per staff_hour)

Reuse and learning are possible in any environment.
However, we want learning and reuse to be explicitly
planned, not implicit or coincidental. In the reuse-oriented
software development environment, learning and reuse are
explicitly modelled and become desired software develop-
ment characteristics. They are specific processes performed
in conjunction with the experience factory.

5.2.1 Recording of experience: the objective of recording
experience is to create a repository of well specified and
organised experience. This requires a precise character-
isation of the reuse candidates to be recorded, the design
and implementation of a comprehensive experience base,
and effective mechanisms for collecting, qualifying, storing
and retrieving experience. The characterisation of reuse can-
didates is derived from characterisations of known reuse
requirements and reuse processes. The characterisation of
reuse candidates describes what information needs to be
stored, in addition to the objects themselves, in order to
make them reusable, and how it should be packaged. The
experience base replaces the project database of traditional
environment models. It is intended to capture the entire
body of experience recorded during the planning and execu-
tion steps of software projects within an organisation.
Examples of recording experience include the storing of
Ada generics, design inspection methods and cost models.
Based on our reuse model, Table 1 describes the informa-
tion needed, in order to make each of these object types
likely reuse candidates to satisfy the hypothetical reuse
requirements using the hypothetical reuse processes
described in Tables 2 and 3, respectively. For example, in
the case of Ada generics, we may require each object to be
augmented with information on the number of instantiation
parameters, the application and solution domain, and the
expected or demonstrated reliability. If we can quantify
such information (e.g. Ada generics developed within
ground support software projects, Ada generics with less

Software Engineering Journal September 1991

name
function

use
type
granularity
representation

input/output

dependencies

application domain

solution domain

object quality

sel_inspection.cleanroom

certify appropriateness of
design documents

process

inspection method

design stage

informal set of guidelines

sel_cost_model.ada
predict project cost

knowledge
cost model

entire life-cycle
formal mathematical model

specification and design
document required,
defect data produced

assumes a readable design,
qualified reader

estimated product size in KLOC,
complexity rating, methodology
level, cost in staff hours

assumes a relatively homogeneous
class of problems and
environments

ground support software
for satellites

Cleanroom (Fortran) development
model, step-wise refinement-
oriented design, statistical
testing

high defect detection rate
(e.g. > 1.0 defects detected per
staff hour) wrt. interface faults

ground support software
for satellites

waterfall (Ada) life-cycle model,
revised set of methods

high predictability
(e.g. <5% prediction error)

than five instantiation parameters are acceptable), we can
use it to exclude inappropriate objects from being recorded
in the first place.

5.2.2 Packaging of experience: the objective of packaging
experience is to increase its reuse potential. This requires a
precise characterisation of the new reuse requirements or
processes, and effective mechanisms for tailoring, gener-
alising and formalising experience. Packaging may take
place at the time of the first recording experience into the
experience base, or at any later time when new reuse
requirements become known or our understanding of the

modify.generics

modify to satisfy target
specification

modification

parameterised (generic
mechanism)

modify.inspections
modify to satisfy target
specification
modification
unconstrained

interrelationship between reuse candidates, reuse require-
ments and reuse processes changes.

The objective of generalising existing experience before
its reuse is to make a candidate reuse object useful in a
larger set of potential target applications. The objective of
tailoring existing experience before potential reuse is to fine-
tune a candidate reuse object to fit a specific task or exhibit
special attributes, such as size or performance. The objec-
tive of formalising existing experience before actual reuse is
to increase the reuse potential of reuse candidates, by encod-
ing them in more precise, better understood ways. These
activities require a well documented, catalogued and cate-

modify.cost_models
modify to satisfy target
specification
modification
template-based

buffer.ada,

reuse specification/
string_buffer.ada

performed during coding stage,
package specification required,
knowledge of system
configuration plan

sel_inspection.waterfall,

reuse specification/
sel_inspection.cleanroom

performed during planning stage,
knowledge of project plan

sel_cost_model.fortran,

reuse specification/
sel_cost_model.ada

performed during planning stage
knowledge of historical Ada
project profiles

automated
correctness

experience transfer
reuse quality

Software Engineering Journal September 1991

human and experience base
predictability of modification
cost

experience base
efficiency

313

gorised set of reuse candidates, mechanisms that support
the modification process, and an understanding of the
potential reuse requirements. Generalisation and tailoring
are specifically concerned with changing the application
and solution domain characteristics of reuse candidates;
from project-specific to domain-specific to general, and vice
versa. Objectives and characteristics are different from
project to project, and even more so from environment to
environment. We cannot reuse past experience without
modifying it to the requirements of the current project. The
stability of the environment in which reuse takes place, as
well as the origination of the experience, determine the
amount of tailoring required. Formalisation activities are
concerned with movement across the boundaries of the rep-
resentation dimension within the experience base; from
informal to schematised and then to formal.

Examples of tailoring experience include the instantiation
of a set of specific Ada packages from a generic package
available in an object-oriented experience base; the fine-
tuning of a cost model to the specific characteristics of a
class of projects; and the adjustment of a design inspection
method to focus on the class of defects common to the appli-
cation. Examples of generalising experience include the cre-
ation of a generic Ada package from a set of specific Ada
packages; the creation of a general cost model from a set of
domain-specific cost models; and the definition of an appli-
cation and solution domain-specific design inspection
method, based on the experience with design inspections in
a number of specific projects. Examples of formalisation
include the writing of functional specifications for generic
Ada packages; providing automated support for checking
adherence to entry and exit criteria of a design inspection
method; and building a cost model empirically based on the
data available in an experience base.

A misunderstanding of the importance of tailoring exists
in many organisations. These organisations have specific
development guidebooks, which are of limited value
because they ‘are written for some ideal project’ that ‘has
nothing in common with the current project and, therefore,
do not apply’. All guidebooks (including standards such as
DOD-STD-2167) are general and need to be tailored to each
project in order to be effective.

5.2.3 Identification of candidate experience: the objective
of identifying candidate experience is to find a set of objects
with the potential to satisfy project-specific reuse require-
ments. This requires a precise characterisation of the reuse
requirements; some organisational scheme for the reuse
candidates available in the experience base; and an effective
mechanism for matching characteristics of the project-
specific reuse requirements against the experience base
[28].

Let us assume, for example, that we need an Ada
package which implements a ‘string_buffer’ with high ‘relia-
bility and performance’ characteristics. This requirement
may have been established during the project planning
phase, based on domain analysis, or during the design or
coding stages. We identify candidate objects based on a
subset of the object-related characteristics stated in Table 2:
string_buffer.ada, string_buffer, product, code document,
package, Ada. The more characteristics we use for identifi-
cation, the smaller the resulting set of candidate objects. For
example, if we include the name itself, we will either find
exactly one object or none. Identification may take place

314

during any project stage. We assume that the set of suc-
cessfully identified reuse candidates contains ‘buffer.ada’,
the object characterised in Table 1.

5.24 Evaluation of experience: the objectives of evalu-
ating experience are to characterise the degree of discrep-
ancies between a given set of reuse requirements (see Table
2) and some identified reuse candidate (Table 1), and to
predict the cost of bridging the gap between reuse candi-
dates and reuse requirements. The first type of evaluation
goal can be achieved by capturing detailed information
about reuse candidates and reuse requirements, according to
the dimensions of the presented characterisation scheme.
The second goal requires the inclusion of data character-
ising the reuse process itself and past experience about
similar reuse activities. Effective evaluation requires precise
characterisation of reuse requirements, reuse processes and
reuse candidates, knowledge about their relationships, and
effective mechanisms for measurement.

The knowledge regarding the interrelationship between
reuse requirements, processes and candidates is the result of
the proposed evolutionary learning which takes place
within the reuse-oriented TAME environment model. The
mechanisms used for effective measurement are based on
the goal/question/metric paradigm [15, 22, 26]. It provides
templates for guiding the selection of appropriate metrics,
based on a precise definition of the evaluation goal. Guid-
ance exists at the level of identifying certain types of
metrics (e.g. to quantify the object of interest, to quantify
the perspective of interest, to quantify the quality aspect of
interest). Using the goal/question/metric paradigm, in con-
junction with reuse characterisations like the ones depicted
in Tables 1-3, provides very detailed guidance as to what
exact metrics need to be used. For example, evaluation of
the Ada generic example suggests metrics to characterise
discrepancies between the reuse requirements and all avail-
able reuse candidates in terms of function, use, type, granu-
larity and representation on a nominal scale defined by the
respective categories; number of input/output instantation
parameters on an ordinal scale; application and solution
domains on nominal scales; and qualities such as per-
formance, based on benchmark tests.

For example, we want to evaluate the reuse potential of
the object ‘buffer.ada’ identified above. We need to evaluate
whether, and to what degree, ‘buffer.ada’ (as well as any
other identified candidate) needs to be modified and esti-
mate the cost of such modification, compared to the cost
required for creating the desired object ‘string_buffer’ from
the beginning. Three characteristics of the chosen reuse can-
didate deviate from the expected ones; it is more general
than necessary (see function dimension), it has been devel-
oped according to a different design approach (see solution
domain dimension), and it does not contain any information
about its performance behaviour (see object quality
dimension). The functional discrepancy requires instanti-
ating object ‘buffer.ada’ for data type ‘string’. The cost of
this modification is extremely low, as the generic instanti-
ation mechanism in Ada can be used for modification (see
Table 3). The remaining two discrepancies cannot be evalu-
ated based on the information available through the charac-
terisations in Section 4.3. On the one hand, ignoring the
solution domain discrepancy may result in problems during
the integration phase. On the other hand, it may be hard to
predict the cost of transforming ‘buffer.ada’ to adhere to

Software Engineering Journal September 1991

object-oriented principles. Without additional information
about either the integration of non-object-oriented packages
or the cost of modification, we only have the choice between
two risks. Predicting the cost of changes necessary to
satisfy the stated object performance requirements is impos-
sible because we have no information about the candidate’s
performance behaviour. It is noteworthy that very often
practical reuse seems to fail because of a lack of appropriate
information to evaluate the reuse implications a priori,
rather than because of technical infeasibility [29].

The characterisation of both reuse candidates and
requirements and the reuse process allow us to understand
some of the implications and risks associated with discrep-
ancies between identified reuse candidates and reuse
requirements. Problems arise when we have either msuffi-
cient information about the existence of a discrepancy (e.g.
object performance quality in our example), or no under-
standing of the implications of an identified discrepancy
(e.g. solution domain in our example). In order to avoid the
first type of problem, we may either constrain the identifica-
tion process further by including characteristics other than
just the object-related ones, or not have any objects without
‘performance’ data in the reuse repository. If we had
included ‘desired solution domain’ and ‘object performance’
as additional criteria in our identification -proces, we may
not have selected object ‘buffer.ada’ at all. If every object in
our repository had performance data attached to it, we at
least would be able to establish the fact that there is a dis-
crepancy. In order to avoid the second type of problem, we
need to have some (semi-) automated modification mecha-
nism or at least historical data about the cost involved in
previous similar situations. It is clear that, in our example,
any functional discrepancy within the scope of the instanti-
ation parameters is easy to bridge because of the avail-
ability of a completely automated modification mechanism
(i.e. generic instantiation in Ada). Any functional discrep-
ancy that cannot be bridged through this mechanism poses
a larger and possibly unpredictable risk. Whether it is more
costly to redesign ‘buffer.ada’ in order to adhere to object-
oriented design principles or to redevelop it from the very
beginning is not obvious without past experience. A mecha-
nism for modelling all kinds of experience is given in Refer-
ence 30.

5.25 Modification of experience: the objective of modify-
ing experience is to bridge the gap between a selected reuse
candidate and given reuse requirements. This requires a
precise characterisation of the reuse requirements, and effec-
tive mechanisms for modification. Technically, modification
mechanisms are very similar to the tailoring (and
generalisation) mechanisms introduced for packaging ex-
perience. Tailoring here is different, in that during modifi-
cation the target is described by concrete, project-specific
reuse requirements, whereas during packaging the target is
typically imprecise, in that it reflects anticipated reuse
requirements in a class of future projects. We refer to tailor-
ing (and generalising) as ‘off-line’ (during packaging) or ‘on-
line’ (during modification), depending on whether it takes
place before or as part of a concrete instance of reuse.
Examples of modifying experience (similar to the
example given earlier for tailoring) include the instantiation
of a set of specific Ada packages from a generic package
available in an object-oriented experience base; the fine-

Software Engineering Journal September 1991

tuning of a cost model to the specific characteristics of a
class of projects; and the adjustment of a design inspection
method to focus on the class of defects common to the appli-
cation.

5.3 TAME environment prototypes

In the TAME project, we investigate fundamental issues
related to the reuse- (or improvement-) oriented software
environment model of Fig. 6 and build a series of (partial)
research prototype versions [14, 15, 29].

Current research topics include the formalisation of the
goal/question/metric paradigm for effective software mea-
surement and evaluation; the development of formalisms
for representir%«software engineering experience, such as
quality models, lessons learnt, process models, product
models; the development of models for packaging experi-
ence in the experience base; and the development of effec-
tive mechanisms to support learning and reuse within the
experience factory (e.g. qualification, formalisation, tailor-
ing, generalisation, synthesis). In addition, various slices of
an evolving TAME environment are being prototyped in
order to study the definition and integration of different
concepts.

Aspects of the TAME research prototypes, currently
being developed at the University of Maryland, can be best
classified by the different classes of experience they attempt
to generate, maintain and reuse:

[0 support for identifying objects by browsing through
projects, goals and processes based on a facet-based charac-
terisation mechanism.

0 support for the generalisation, tailoring and integration
of a variety experience types, based on an object-oriented
experience base model.

[1 support for the definition of environment-specific cost
and resource allocation models and their tailoring, gener-
alisation and formalisation, based on project experience.

O support for the definition of test techniques, in terms of
entry and exit criteria, that provides a method for selecting
the appropriate technique for each project phase, based on
environment characteristics, data models and project goals.
[0 support for the definition of process models and their
formalisation, generalisation and tailoring based on project
experience.

OO0 support for an experience factory architecture that sup-
ports the evolution of the organisation.

6 Conclusions

We have introduced a comprehensive reuse framework, con-
sisting of reuse models, model-based characterisation
schemes, the TAME environment model supporting the
integration of reuse into software development, and ongoing
research and development efforts toward a TAME environ-
ment prototype.

The presented reuse model and related model-based char-
acterisation schemes have advantages over existing models
and schemes in that they

e allow us to capture the reuse of any type of experience.
e address reuse candidates and reuse requirements, as
well as the reuse process itself.

315

e provide a rationale for the chosen characterising dimen-
sions.

We have demonstrated the advantages of such a com-
préhensive reuse model and related schemes by applying
them to the characterisation of example reuse scenarios. In
particular, their usefulness for defining and motivating the
support mechanistns for comprehensive reuse and learning
were stressed.

Finally, we introduced the TAME environment maodel,
which supports the integration of reuse into software devel-
opments. Several partial instantiations of the TAME
envirenment model, currently being developed at the Uni-
versity of Maryland, have been mentioned. In order to make
reuse a reality, more research is required towards under-
standing and conceptualising activities and aspects related
to reuse, learning and experience factory technology.

7 Acknowledgments

The authors would like to thank all their colleagues and
graduate students who contributed to this paper, especially
all members of the TAME, CARE and LASER projects; the
Guest Editors, Nazim H. Madhavji and Wilhelm Schifer;
and the referees for their excellent suggestions for improv-
ing this paper.

Research for this study was supported in part by NASA
grant NSG-5123, ONR grant NOQO14-87-K-0307 and
Airmics grant 19K-CN983-C to the University of Maryland.

8 References

[1] BASILI, VR, and ROMBACH, HD.: ‘Towards a com-
prehensive framework for reuse: a reuse-enabling software
evolution environment (part I)/model-based reuse character-
ization schemes (part IIy. Technical Reports CS-TR-2158/CS-
TR-2446 Department of Computer Science, University of
Maryland, College Park, Maryland, December 1988/April
1990

[2] BASILI, VR, and SHAW, M.: ‘Scope of software reuse’.
White paper, Working Group on ‘Scope of Software Reuse’,
Proc. Tenth Minnowbrook Workshop on Software Reuse,
Blue Mountain Lake, New York, July 1987

[3] BIGGERSTAFF, T.: ‘Reusability framework, assessment,
and directions’, IEEE Softw., 1987, 4, (2), pp. 41-49

[4] FREEMAN, P.: ‘Reusable software engineering: concepts
and research directions’. Proc. Workshop on Reusability,
September 1983, pp. 63-76

[5] PRIETO-DIAZ, R., and FREEMAN, P.: ‘Classifying software
for reusability’, IEEE Softw., 1987, 4, (1), pp. 6-16

{6] IEEE Softw., Special issue on ‘Reusing software’, 1987, 4, (1)

[7] IEEE Softw., Special issue on ‘Tools: making reuse a reality’,
1987, 4, (7)

[8] SHAW, M.: ‘Purposes and varieties of software reuse’. Proc.
Tenth Minnowbrook Workshop on Software Reuse, Blue
Mountain Lake, New York, July 1987

[9] STANDISH, T.A.: ‘An essay on software reuse’, IEEE
Trans., 1984, SE-10, (5), pp. 494497

[10] TRACZ, W.: IEEE Tutorial on ‘software reuse: emerging
technology’. Catalog Number EHO278-2, 1988

[11] BASILI, V.R.: ‘Can we measure software technology: lessons
learned from eight years of trying’. Proc. Tenth Annual Soft-
ware Engineering Workshop, NASA Goddard Space Flight
Center, Greenbelt, Maryland, December 1985

[12] BASILI, V.R.: ‘Viewing maintenance as reuse oriented soft-
ware development’, IEEFE Softw., 1990, 7, (1), pp. 19-25

[13] BASILI, VR, and ROMBACH, HD.: ‘Tailoring the software

316

process to project goals and environments’. Proc. Ninth Int.
Conf. on Software Engineering, Monterey, California, 30th
March—2nd April 1987, pp. 345-357

[14] BASILL, VR, and ROMBACH, HD.: ‘TAME: integrating
measurements into software environments’. Technical Report
TR-1764 Department of Computer Science, University of
Maryland, College Park, Maryland, June 1987

[15] BASILL, VR, and ROMBACH, HD.: ‘The TAME project:
towards improvement oriented software environments’, I[EEE
Trans., 1988, SE-14, (6), pp. 758-773

[16] McGARRY, F.E.: ‘Recent SEL studies’. Proc. Tenth Annual
Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, Maryland, December 1985

[17] ZELKOWITZ, M.V. (Ed.). Proc. University of Maryland
Workshop on Requirements for a Software Engineering
Environment, Greenbelt, Maryland, May 1986, (Ablex Publ,
1988) :

[18] CARDENAS, S, and ZELKOWITZ, M.V.: ‘Evaluation cri-
teria for functional specifications’. Proc. 12th IEEE Int. Conf.
on Software Engineering, Nice, France, 26th-30th March
1990, pp. 26-33 :

[19] BARNES, BH, and BOLLINGER, T.B.: ‘Making reuse cost-
effective’, IEEE Softw., 1991, 8, (1), pp. 13-24

[20] GREEN, S, KOUCHAKDJIAN, A, BASILL VR, and
WEIDOW, D.: ‘The Cleanroom case study in the software
engineering laboratory: project description and early
analysis’. Technical Report SEL-90-002, NASA Goddard
Space Flight Center, Greenbelt MD 20771, March 1990

[21] SELBY, RW,, Jr, BASILI, VR, and BAKER, T.: ‘CLEAN-
ROOM software development: an empirical evaluation’,
IEEE Trans., 1987, SE-13, (9), pp. 10271037

[22] BASILI, VR, and SELBY, RW.: ‘Comparing the effec-
tiveness of software testing strategies’, IEEE Trans., 1987,
SE-13, (12), pp. 1278-1296

[23] MILL, A, XIAO-YANG, W., and QING, Y.: ‘Specification
methodology: an integrated relational approach’, Softw. —
Pract. Exp., 1986, 16, (11), pp. 1003-1030

[24] JONES, G.A., and PRIETO-DIAZ, R.: ‘Building and manag-
ing software libraries’. Proc. Compsac 88, Chicago, 5th-7th
October 1988, pp. 228-236

[25] BASILIL, VR.: ‘Quantitative evaluation of software method-
ology’. Technical Report TR-1519, Department of Computer
Science, University of Maryland, College Park, Maryland,
July 1985 (Proc. First Pan Pacific Computer Conf., Australia,
September 1986)

[26] BASILI, V.R, and WEISS, D.M.: ‘A methodology for collect-
ing valid software engineering data’, I[EEE Trans., 1984,
SE-10, (3), pp. 728-738

[27] BASILI, VR.: ‘Software development: a paradigm for the
future’. Proc. 13th Annual Int. Computer Software & Appli-
cations Conf., Orlando, Floria, 20th-22nd September 1989

[28] STRAUB, P.A, and OSTERTAG, EJ.: ‘EDF: a formalism
for describing and reusing software experience’. Proc. Int.
Symp. on Software Reliability Engineering, Austin, Texas,
May 1991

[29] CALDIERA, G., and BASILI, V.R.: ‘Identifying and quali-
fying reusable software components’, Computer, 1991, 24,
2), pp. 61-70

[30] BASILI, VR, CALDIERA, G., and CANTONE, G.: ‘A refer-
ence architecture for the -component factory’. Technical
Report TR-2607, Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, February 1991

The authors are with the Department of Computer Science and
Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742, USA.

The paper was first received on 29th May 1990 and in revised
form on 6th February 1991.

Software Engineering Journal September 1991

