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Abstract—In order to plan, control, and evaluate the software
development process, one needs to collect and analyze data in
a meaningful way. Classical techniques for such anmalysis are
not always well suited to software engineering data. In this
paper we describe a pattern recognition approach for analyzing
software engineering data, called optimized set reduction (OSR),
that addresses many of the problems associated with the usual
approaches. Methods are discussed for using the technique for
prediction, risk management, and quality evaluation. Experi-
mental results are provided to demonstrate the effectiveness of
the technique for the particular application of software cost
estimation.

Index Terms— Classification, data analysis, empirical model-
ing, machine learning, pattern recognition, quality - evaluation,

risk assessment, software development cost prediction, stochastic -

modeling.

1. INTRODUCTION

ANAGING a large scale software development re-

quires the use of quantitative models to provide insight
and support control based upon historical data from similar
projects. Basili has introduced a paradigm of measurement
based, improvement-oriented software development, called the
improvement paradigm [2], [3]. This paradigm provides an
experimental view of the software activities with a focus on
learning and improvement, implying the need for quantitative
approaches for the following uses:

* building predictive models of the software process, prod-
uct, and other forms of experience (e.g., effort, schedule,
and reliability) based upon common characteristics;

* recognizing and quantifying the influential factors (e.g.,
personnel capability, storage constraints) on various is-
sues of interest (e.g., productivity improvement, effort
estimation) for the purpose of understanding and control-
ling the development;

* evaluating software products and processes from different
perspectives (e.g., productivity, fault rate) by comparing
them to projects with similar characteristics.

Classical techniques for data analysis have limitations when
used on software engineering data. In this paper we present a
new data analysis technique, based on both machine learning
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principles and statistics, designed to overcome some of these
limitations,

The paper is organized as follows. In Section II we discuss
the needs and. constraints in building effective models for
the software.development environment. Section III discusses
some of the more common model construction approaches. In
Section IV we present our technique for analyzing software
engineering data, called optimized set reduction (OSR). Sec-
tion V explains how this approach may ultimately be used
not only for prediction, but also for risk analysis and quality
evaluation. In Section VI, experimental results are provided to
demonstrate the effectiveness of the approach for the particular
application of cost estimation modeling,.

II. REQUIREMENTS FOR AN EFFECTIVE MODELING PROCESS

Based upon the constraints associated with the data and
the analysis procedures, we generate a set of requirements for
model building approaches. In the text that follows, we refer
to the variable to be assessed as the “Dependent Variable”
(e.g. productivity, fault rate) and the variables explaining
the phenomenon as “Independent Variables” or “explanatory
variables” (e.g. personnel skills, data base size).

2.1. Constraints Related to Software Engineering Data

Model building to support software engineering can be
difficult due to the following inherent constraints.

* CI: It is very difficult to make valid assumptions about
the form of the functional relationships between variables
and the probability distributions of variables on their
ranges. Therefore, the capabilities of classical statistical
approaches seem limited.

*+ C2: In the field of software engineering, we are often
faced with data sets that contain both continuous and
discrete explanatory variables (e.g., lines of code, team
experience, application domain). There are several statis-
tical modeling techniques that deal with these different
types of variables (e.g., least-square regression versus
ANOVA) [1], [11]. However, building models (e.g., cost
models) requires the use of both types of variables.

* C3: Because of the lack of precision in the data col-
lection process and because of unexpected events (e.g.,
unstable requirements) in the development process, ex-
treme/atypical explanatory/dependent variable values oc-
cur. In software engineering, it is usually the case that
a large number of factors (which vary widely from one
environment to another) can affect the dependent vari-
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ables. Therefore, information that could help to validate
and understand atypical vectors is not always available.
Also, the fact that we are working with a large number
of explanatory variables makes it difficult to distinguish
between those vectors that are atypical (i.e., outliers in
statistics) and those that actually represent the main trends
of the data set.

* C4: The interdependencies of explanatory variables can
affect the understandability of models, but are not always
harmful to their accuracy (e.g., regression models [11]).
On the other hand, very complex interdependencies may
exist. For example, the structural complexity of a piece of
software can be a very significant factor of productivity if
the programmer is inexperienced with the application do-
main and programming language. However, complexity
has a milder impact on productivity if the programmer is
experienced. Thus, the impact of complexity on produc-
tivity is dependent on the ordinal explanatory variable
programmer experience.

* C5: An independent variable may be a much stronger
factor on a particular part of its range/value domain, a
phenomenon known in statistics as “heteroscedasticity.”
It is easy to see that the accuracy of a model that does
not consider such issues may be significantly affected and
the model may not provide pieces of information very
important to. decision making.

* C6: Missing information is a common problem in soft-
ware measurement. There are several causes of this:
limited budget for data collection, collecting data is time
consuming, collecting some of the data is technically
impossible (e.g., no tool) or not humanly desirable (e.g.,
engineer’s work evaluation), and our lack of understand-
ing of the problem, due to the newness of the software
measurement field and the wide variability from one
development environment to another.All of the above can
generate incompleteness in the data collection process.
The last issue has been partially addressed by [3], [4]. For
example, suppose we wish to predict project productivity
according to collected physical features of the system and
predefined quality requirements. Also, suppose we do not
have any information about team experience related to the
programming environment and the application domain.
This information might be somewhat irrelevant (i.c., the
variance of the prediction is small) if the structural
complexity of the software and the required reliability are
low. However, if high reliability on a complex software
system is expected, then low experienced people are likely
to generate large schedule and/or budget slippages and
make any prediction based exclusively on other criteria
meaningless.

2.2. Requirements to Alleviate These Constraints

Matching the constraints, we can define requirements for
effective data analysis or empirical modeling procedures as
follows.

* R1 [matches C1]: The data analysis procedure should
avoid assumptions about the relationships between the

variables and the probability density distribution on the
independent and dependent variable ranges.

¢ R2 {C2}: The modeling process needs to capture the
impact of, and be effective in, integrating all explanatory
variables regardless of their type, i.e., discrete, contin-
uous. Also, the constructed models need to provide a
consistent way of interpreting each variable’s effects on
the dependent variable.

* R3 [C3]: It is preferable to use modeling techniques
that are robust to outliers, i.e., a small number of data
vectors cannot change dramatically the characteristics of
the model. ,

* R4 [C4]: We need a modeling technique that accounts
for: interdependencies among the explanatory variables,
i.e., that produces, despite interdependencies, a readable
and interpretable model. The modeling technique must
address the issue of interdependencies by providing the
context within which each parameter of the model appears
to be a relevant and significant piece of information.

* R5 [C5]: Heteroscedasticity should be addressed by de-
termining on which part of its range/value domain an
independent variable strongly affects the dependent vari-
able of interest.

* R6 [C6]: Missing information obviously reduces our
ability to predict and learn. We need to better understand
whether or not the lack of a piece of data is an obstacle
to assessment. This means that we need a model that not
only generates predictions but provides some insight into
the reliability of each individual prediction, rather than a
global reliability of the entire model.

III. CURRENT APPROACHES TO EMPIRICAL MODELING

Two main approaches have been used in software engi-
neering to form stochastic multivariate models: multivariate
regression analysis and classification trees. In this section we
present a review of these techniques outlining their strengths
and weaknesses. This discussion will be used as a basis for
introducing and justifying the new approach that we present
in this paper.

3.1. Regression Analysis

Regression analysis can be very effective for prediction
(least-square regression) or classification (logistic regression)
when some prerequisite conditions are met: 1) the explanatory
variables are independent, 2) the functional form of the regres-
sion equation is well approximated, 3) most of the explanatory
variables are continuous (interval, ratio level), and 4) the error
term is constant in the space defined by the dependent variable
and the explanatory variables (i.e., homoscedasticity [11]).
These conditions are rarely met in software engineering data
sets, making the use of these models somewhat difficult (in
terms of prediction and interpretation). However, regression
analysis is well known and numerous tools are available to
support this technique and facilitate the interpretation of the
models. Several problems related to how regression analysis
deals with the issues mentioned in Section II are presented
below.
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* The regression techniques use “dummy” variables in
order to deal with discrete variables. Each possible value
of the variable becomes a parameter whose the value
is set to 1 (or another constant above 0) when true or
0 otherwise. Thus, the number of parameters that can
potentially be integrated in the model may increase very
rapidly.

* It has been shown that outliers can strongly affect the
regression modeling process and thereby the resulting
regression equation. Identification and exclusion of these
overly influential data points is a complex process in an
N-dimension sample space (i.c., multivariate context).

* A linear regression model would generate a unique co-
efficient for each explanatory variable (more complex
equations including combinations of parameters appear

difficult to use in practice). Because of the dependence

of the complexity-productivity model on programmer ex-
perience, a single coefficient cannot sufficiently represent
the influence of complexity on productivity. Also, using
more complex functional forms would be difficult since
we usually have a poor understandlng of the phenomena
we are studying.

* A model level value of goodness of fit like the coefficient -

of determination in least-squares regression analysis is
not suitable to deal with partial information because it

fails to yield an individual reliability measure for each

prediction. Therefore, in our context it appears difficult
for regression analysis to deal with partial information
since we cannot differentiate cases where the available
information is sufficient to get accurate estimations.

* Regression analysis can be very effective when the user
is dealing with a small number of independent explana-
tory variables. However, in software engineering data
sets this is usually not the case. Therefore, the model
creation process becomes unstable, i.e., various variable
selection heuristics (e.g., backward, forward) can yield
very different models [11], and the removal of a variable
can dramatically change the resulting equation. Also,
the interpretation of such models based on regression
equations and correlation matrices appears complex in
practice. :

3.2. Classification Trees

More recently, the use of classification tree techniques [6],
[17] has appeared in the software engineering literature [16],
[18]. These techniques generate partition trees based on a
historical data set describing past experiences of interest (e.g.,
characteristics/attributes of past software developments). They
produce interpretable classification models to help software
engincers and managers take remedial actions based upon
quantitative models.

In order to analyze the improvements offered by classi-
fication trees over multiple regression techniques, consider
the simple partition tree example presented in Fig. 1. In
this tree, the historical data set is represented by Node O.
This node is successively partitioned (according to a heuristic
process described in [17]) into exclusive subsets until they
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Fig. 1. Example of classification tree.

reach a predefined termination criterion (usually a certain
distribution on the dependent variable range [18]) which stops
the partition process. Each leaf of the tree contains a set of

.similar historical experiences which are described by a set
~of similar characteristics (e.g., explanatory variables such as
~team experience (EXP), design complexity (CPLX) in Fig.
~ 1). To assess an unknown characteristic (e.g., productivity)

of a future event (e.g., a new software development), we
find the leaf of the tree which also characterizes the new
event. By examining the distribution on the productivity range
within the leaf, we can estimate the productivity of the new
development. For instance, to assess the productivity of a
project characterized by low team experience and low ‘project
complexity, the distribution on the productivity range of all
past developments within Node 1.1 will be analyzed. Then, the
expected value of the distribution may be used as a prediction.

Classification trees represent, in our field of application, a
major improvement over regression techniques based upon the
following -advantages.

* They deal with discrete variables in a straightforward way
(e.g., experience (EXP) in Fig. 1). This addresses the issue
outlined in requirement R3.

* The modeling process can be effectively automated (see
[18]). This is particularly important in our application
domain where exploratory analysis is more common than
confirmatory analysis.

* The tree structure is a very intuitive and easy-to-interpret
way of representing data analysis results. It fulfils our
need to understand in order to take sound corrective
actions.

* Interdependencies between explanatory variables are
taken into account to some extent, i.e., each partition is
formed in a certain context defined by the set on which
the partition is performed. In Fig. 1, complexity (CPLX)
seems to be a relevant variable in the context where EXP
is low. However, CPLX is not selected whenever EXP is
average or high; therefore, another characteristic can be
selected. This addresses our need to understand in context
the impact of the explanatory variables on the dependent
variable.

However, several issues still need to be considered.
* Continuous variable ranges need to be divided into in-
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tervals (e.g., the CPLX range in three intervals: Low,
Average, High). This can be done using cluster analysis
techniques [11] or heuristics to optimize the interval
homogeneity [12], [15] .Despite interesting preliminary
results, the issue of class definition needs further inves-
tigation.

» The model assumes that given a particular explanatory
variable X, the model variance on the dependent variable
range is about constant for all values of X (ie, X
is an equally good or bad predictor regardless of its
corresponding value or category). Let us assume that
Node 1.3 in Fig. 1 shows a very homogeneous distribution
of low productivity projects (i.e., the variance of the
population on the productivity range is significantly lower
than in Node 1 as a whole). However, assume Node 1.1
encompasses a project population of variance equal to that
of Node 1. This classification tree strongly implies that
low team experience and high project complexity lead
to low productivity regardless of the other productivity
factors. However, when complexity is low, productivity
is strongly affected by factors not present in the data
set. This is one inherent problem associated with tree-
structured models: at each level of partition, they select
the most relevant variable, which assumes the variable
(e.g;, CPLX) to be equally relevant regardless of its
value (e.g., Low or High). In our example, CPLX is
relevant (i.e., significantly lowers the population vari-
ance/entropy/heterogeneity) whenever its value is High.
However, a value Low (Node 1.1) does not seem to
improve the homogeneity of Node 1’s project population.
(This is the heteroscedasticity issue.) The fact that CPLX
was selected as an attribute under Node 1 means that
CPLX showed the best average/weighted homogeneity
over all of Node 1’s generated subset populations. This
may be easily explained considering that the population
in Node 1.3 is much larger than in Node 1.1. In fact,
another explanatory variable should have been selected
in the cases where CPLX was low in order to converge
as fast as possible (this is particularly important for
small data sets) to an optimal subset homogeneity. As
we see here, this is not possible in the context of a
classification tree. In summary, the partition tree structure
forces the model to perform nonrelevant subset partitions
and thereby 1) slows down the convergence toward
an optimal subset homogeneity, 2) includes nonrelevant
pieces of information in the model.

* A tree structure may force the modeling process to ignore
some variables that could be useful for some predictions.
In Fig. 1, Node 1.2 only contains 2 elements (e.g.,
projects). Therefore, in a situation where EXP is low
and CPLX is average, the tree is unusable for prediction
(Node 1.2’s population is not statistically significant). In
this particular case, it is necessary to use another variable
yielding significant population subsets. On the other hand,
we have seen that the variable CPLX yields an optimal
homogeneity whenever the complexity is high. Therefore,
removing CPLX from the model is ignoring an important
piece of information for a subset of the projects. This

may even affect the accuracy of the model. Unfortunately,
this dilemma is difficult to solve within the context of a
classification tree.

IV. A PATTERN RECOGNITION
APPROACH FOR ANALYZING DATA

Based on the specific needs described above and the weak-
nesses of currently used techniques, our goal has been to
combine the expressiveness of classification trees with the
rigor of a statistical basis. To do so, we have developed an
approach called OSR. Rather than generating a partition tree,
this process generates a set of patterns relevant to the object
to be predicted, or, if one is interested in understanding the
general trends, relevant to an entire data set.

4.1. Basic Principles

Assume we want to assess a particular characteristic of an
object (e.g., the fault density of a component). We refer to
this characteristic as the dependent variable (Y'). The object is
represented by a set of explanatory variables which describe
the software component (called X’s). These variables can
be either continuous or discrete. For example, a software
component may be described by two X’s, its cyclomatic
complexity (continuous) and the type of its function (discrete).
Also, assume we have a historical data set containing a set of
pattern vectors that contain the previously cited X’s plus an
associated actual Y value. We will call the X’s portion of the
pattern vector a measurement vector.

The goal of the OSR algorithm is to determine which subsets
of experiences (i.e., pattern vectors) from the historical data set
provide the best characterizations of the object to be assessed.
That is, we try to determine which subsets of the data set
yield the “best” probability distributions on the Y range. A
good probability distribution on the Y value domain is one
that a concentrates a large number of pattern vectors in either
a small part of the range (Y is continuous) or a small number
of dependent variable categories (Y is discrete). One of the
commonly used probability distribution evaluation functions
is the information theory entropy H. Alternative probability
distribution evaluation functions are discussed in [14], [17],
and [18]. Each of the subsets yielding “optimal” distributions,
referred to as optimal subsets, are characterized by a set of
conditions, or predicates that are true for all pattern vectors
in that subset. Each set of predicates: characterizing a subset
is called a pattern. Fig. 2 shows an example of a pattern
and its associated probability distribution in the data set. The
pattern is composed of three predicates where the dependent
variable to be assessed is “development productivity.” Fig. 2
shows that if these predicates (i.c., ComPLeXity = Nominal,
RELiabilitY=Low, DATA base size = High) are  true for a
project, then its productivity is most likely to be in the second
productivity class.

4.2. Formal Definition of the OSR Process

We want to identify optimal subsets in the historical data set.
We can formalize the process using set theory and predicate
calculus by defining the function Opt. Let us assume we
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Probability
CPLX = Nominal
RELY =Low - -
DATA = High

Productivity|

Fig. 2. Example of a pattern and its associated probability distribution.

have a set of m explanatory variables {zi,z2,...Z }and
a corresponding set of explanatory variable value domains
{EV1,EVa,...,EV,,}. Let us define the measurement vector
domaintobe MV = x EV;, i€ (1..m). The dependent
variable value domain (DV) may be seen as a set of classes
that can be either intervals or categories. Therefore, the value
domain of the pattern vectors in the data set can be represented
as PV = DV x MV. Let PVS be a set of pattern vectors
representing the historical data set PV S C PV. A predicate
is defined as an X; and its corresponding explanatory variable
value.

Definition 1: Let PSS be a subset of PVS and let the
measurement vector mv describe the object to be assessed.
VALID(PS S, mv) is true if mv contains at least one predicate
that is true for all the pattern vectors in the set PSS. This
indicates that there is at least one predicate that is true for mv
and for all pattern vectors in PSS, and thus PSS is a valid
candidate subset of PV S in an OSR decomposition for muw.

PSSCPVSAmve MV AT € {1..m}
such that ¥V pv € PSS(mv(i)=pv(i)) = VALID(PSS, mv)

Definition 2: TC(PSS, PV S) is true if the two data sets
PV'S and PSS do not show a statistically significant differ-
ence in distribution on the DV range. This is may be evaluated
by performing statistical inference tests for comparing distribu-
tions. We currently use a binomial test for proportions since it
does not have any requirement to be applicable (e.g., minimum
expected frequencies like the Chi-square test of independence)
[9]. For each dependent variable class, the probability that
proportions in PSS and PV S differ by chance is calculated.
If for at least one of the classes, this probability is below a
level of significance TC defined by the user, then we reject the
hypothesis that the two distributions are identical. TC stands
for termination criterion because the OSR process will be
terminated if the condition defined by TC is true.

Definition 3: EMIN(PSS;,PVS) is true if PSS, is
one of the subsets of PV S yielding a minimal normalized
entropy H upon all statistically significant subsets of pattern
vectors (e.g., a one-vector subset has a minimal entropy but
it is not a statistically significant subset and therefore is not
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relevant here).

(Pss1 CPVS A - TC(PSSl,PVS))
A (YPSS; C PVS(-TC(PSS;, PVS) A H(PSS))

< H(PSS,))) = EMIN(PSS))
where

H(PSS)= Y —p(PSS,d)logipvp(PSS5,d)
deDV
where p(PS S, d) is the a priori probability that a vector that is
an element of PSS has a dependent variable value belonging
to the dependent variable class d.

Definition 4: Opt(PV S, mv) is a function yielding a set of
optimal pattern vector subsets. The subsets are optimal in the
sense that they are the subsets with the lowest entropies in the
collection of valid subsets.

Opt(PVS, ms) = {PSS C PVS | VALID(PSS, mv)A
EMIN(PSS, PVS)}.

However, the function Opt as defined cannot be used as an
algorithm to extract the optimal subsets. The most important
reasons follow.

* The number of possible predicate combinations makes the

search execution time prohibitive.

* We want the patterns to contain a minimal set of pred-
icates, i.e., we want all the predicates in the-pattern to
have a significant impact on the resulting pattern entropy.

* We lose some information about the relative impact of
the various predicates in the entropy reduction process.

* The contexts in which the various predicates appear
relevant are undetermined.

Therefore, we implement a “greedy” algorithm (OSR) using
the function Opt to address the above issues. The OSR
algorithm can be roughly described as a three step recursive
algorithm. - '

* Step 1: If the dependent variable is "‘con‘tinuous,» its
range is divided into a set of classes according to
two main factors: the required model accuracy and the
size of the data set. Then, the ranges / catégories of
the explanatory variables are divided / clustered into
classes (e.g., Class;;...Class;; for the explanatory
variable X;, such as low, medium, high for complexity)
based on meaningful class creation techniques. Numerous
techniques can be used to create meaningful classes (e.g.,
cluster analysis) [11]. However, this issue will not be
addressed in this paper.

* Step 2: Select all the pattern vectors in the data set
having a value for the explanatory variable X; belonging
to Classi, where the X; for the object to be assessed
belongs to the same class, and the subset characterized by
the predicate X; ¢ Class;;, yields the minimum statisti-
cally significant value for H. Several subsets (character-
ized by different predicates) yielding “similar” minimal
entropies (i.e., the similarity criterion has to be defined
by the user of the algorithm) can be extracted at once.

-Let us call PSS; the extracted subsets of pattern vectors.
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Fig. 3. OSR hierarchy.

* Step 3: Step 2 is repeated in a recursive manner on
each subset PSS; and each successive subset until a
predefined termination criteria is reached. For example,
the extraction process may be stopped when no selection
can significantly improve the entropy.

This OSR algorithm can be formally specified as a two

parameter recursive function where PV S is the historical data
set and muv the vector describing the object to be assessed:

OSR(PVS, mv) =

U (OSR(PSS, mv)) if Opt(PVS,mv) #0
{ PSS€Opt(PVS,mv) } )
PVS, otherwise.

The whole subset extraction process can be represented as a
hierarchy (see Fig. 3). Note that this representation should
not be confused with a partition tree since: 1) the extracted
subsets are not exclusive, and 2) a subset can have several
parent subsets. Each path of the hierarchy represents a pattern
(e.g., Fig. 3: X;€Class;; AND X; € Class;,) that is relevant
to the particular prediction to be performéd. As shown in Fig.
3, two patterns may yield exactly the same subset.

The extracted subsets (i.e., leaves of the hierarchy) form
various probability distributions across the dependent variable
range, and may show different trends. For each extracted
subset, a dependent variable prediction is performed by con-
sidering the subset extracted as past experience representative
of our current problem, using the probability distributions
of the extracted subset. The prediction rules are based on
bayesian probability theory and are more completely described
in Section 5.1. Each pattern prediction (i.e., hierarchy leaf) is
used to make a final global prediction based on predefined
decision rules.

To make decisions effectively, we must evaluate the accu-
racy of the identified patterns. To do this, we use the entropy
measure that characterizes each of the extracted subsets:
the larger the entropy, the larger the uncertainty about the
prediction. This approach will be illustrated by the experiments
presented in Section VI

V. PREDICTION, RISK MANAGEMENT AND QUALITY
EVALUATION WITHIN THE OSR FRAMEWORK

Prediction, quality evaluation and risk assessment are all
based on a similar quantitative approach even though they have

three different purposes. The following sections demonstrate
the use of OSR to address these three issues.

5.1. Prediction

For prediction, we are interested in estimating the value of
one dependent variable based on the leaves of the hierarchy
(eXtréct;ad subsets). The dependent variable is 2 measurable
object characteristic that is not known or accurately assessable
at the time it is needed. For example, one may wish to
pfedict the error rate expected for a particular project based
on other characteristics (independent variables) that may be
measured, evaluated subjectively with a reasonable accuracy,
or estimated through other models. The approach to prediction
varies based upon whether the dependent variable is discrete
or continuous.

If the dependent variable is defined on a discrete
range, then prediction becomes a classification problem,
i.e., given the set of conditional probabilities associated
with each dependent variable class C; as calculated for
the measurement vector;, the decision maker will most
likely choose the class with the highest probability. Thus,
letting P(C;| measurement_vector;) représent the probability
that measurement vector measurement_vector; comes from
the pattern class C;, P(C;| measurement vector;) can be
estimated by the ratio of the number of pattern vectors
falling into class C; to the total' number of pattern
vectors. :

But, one may not always want to choose the class with
highest probability. One may choose the class based upon
the loss associated with an incorrect classification. This is a
Bayesian approach. In this case, a loss matrix L has to be
defined by the decision maker where L;;, represents the loss
of having chosen the strategy appropriate for Cy when the
dependent variable class is actually C;. A Bayesian classifier
[19] will try to minimize the conditional average risk or loss
Ry(measurement_vectorj) (k = 1...m) considering the m
defined dependent variable classes.

Ry (measurement_vector;) =

m
E L;r x P(C; | measurement_vector;).

=1

The Bayesian classifier assigns measurement_vector; to the
class k with the lowest R value.

If the dependent variable is defined on a continuous range,
then the notion of distance between two values on the range
is meaningful. In this case, OSR provides an approxima-
tion of the actual density function P(Dependent Variable |
measurement_vector;) by assuming it to be uniform in each
class C;. P(C; | measurement_vector;) can be calculated as
sum of the distances between the subset pattern vectors and
the class mean for each of each of the C; classes. Call this total
distance T'D,,, where n represents the class index. Note that
TD,, is inversely proportional to the concentration of pattern
vectors around -the class mean for class n. Then calculate
the probability that measurement_vector; falls in class C,, as
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follows:

m
P(Cy|measurement . vector;) = 1—<TDn/ Z TDZ-) /m—1
i=1
where m is the number of C; classes. »

This formula assumes that the probability is inversely re-
lated to the total distance (T'D,,) of the pattern vectots to the
class mean. Compared to the “ratio” approach, this refines the
probability calculation since it takes into account the distances
between the subset of pattern vectors and the class means, not
just their membership in a specific class.

The following expected value can be calculated on C;.

_ lower_boundary_ C;+upper_boundary_ C;
= 5 .

In other words, the actual density function is approximated by
a histogram, where each column represents the conditional
probability of a particular pattern vector x that lies i a
particular dependent variable class C;. No assumption has
been made with respect to the form of this probability density
function. The expected value on the total dependent variable
range can be approximated as follows.

E[dependent_variable/measurement_ vector] =

ZP(C¢|measurement_vector]—) X 3.
i=1

This expected value can be used as an estimate of the de-
pendent variable. The average error interval expected may be
estimated by using the correlation of accuracy to entropy. This
correlation will be confirmed by the experiments described in
Section VI.

5.2. Risk Management

Software development organizations are interested in as-
sessing the risk associated with management and technijcal
decisions in order to guide and improve the development
processes. Referencing [10], the risk associated with an action
(e.g., software development) may be described through three
dimensions: v

* D1: the various possible outcomes;

* D2: the potential loss associated with them;

* D3: the chance of occurrence for each outcome.

One encounters multiple types of interdependent risks dur-
ing software development (e.g., technical, schedule, cost) and
this makes risk management and modeling complex. Also, the
notion of risk is sub]ectlve because the associated loss strongly
depends upon one’s point of view. Charette [10] writes: “One
individual may view a situation in one context, and. another
may view the exact same situation from a completely different
one.” According to one’s goals and responsibilities, risk will
be defined in different ways, in the form of various models.

To make the link between this description of risk and OSR,
the following straightforward associations may be established:

* outcomes (i.e., dimension D1 ) and dependent variable
classes;

937

* potential loss (i.e., dimension D2) and distance on the
dependent variable range between the class mean and the
planned value;

* chance of occurrence (i.c., dimension D3) and conditional
probability for each dependent variable class.

To analyze risk during software development, we calculate
the expected difference (distance on the range) between
planned and actual values for each dependent variable
representing a potential risk (e.g., schedule, effort,). Call
these distances dependent variable expected deviations. From a
decision-maker’s perspective, the potential loss resulting from
a decision is intrinsically a function of several dependent
variable expected deviations that may be seen as a specific,
subjective risk model. Therefore, a risk analysis model may be
defined as a function that combines several dependent variable
expected deviations, parameters (e.g., reflecting management
constramts) and constants (e.g., weights). The calculation
details are illustrated in an example.

Assume a budget and schedule have been imposed on a
project manager by upper management requiring a specified
productivity Pr be achieved to reach the management goals.
From the point of view of the project manager, the risk of
failure may be represented as a simple function calculating
the productivity expected deviation (PED) from the conditional
probabilities and dependent variable class means:

m
PED = z P(Ci|measurement_vector;) X (Pr — us).
t=1
Based on the result of this estimation, the project manager
will be able assess the feasibility of the job. Some analysis
can be performed by the manager to see how the risk evolves
according to controllable project parameters (i.e., some of the
independent variables). Also, based on such a model, a suitable
risk/effort trade-off can be made to improve competitiveness
on a commercial proposal. One’s perspective of risk may
be more complex than the previously defined function. For
example, assume that a contractor wishes to define risk of
financial loss if the system is delivered late and/or there
are effort overruns. One can define the schedule expected
deviation (SED) as the expected delay, i.c., the difference
between the planned and predicted schedule and the effort
expected deviation (EED) as the expected effort overrun,
i.e., the difference between the planned and predicted effort
expenditures. Then

SED = Estimated . Size/(PED x Avg_Team_Size)
EED = Estimated_Size/PED

where Estlmated _Size is either a parameter, like Avg_Team_Siz
(ie., provnded as an input by the manager) or another
dependent variable (i.e., result of an OSR using some Fiinction
Point-like metrics, for example, as independent variables). So
the financial loss function can be defined as a function of both
variables SED and EED.

Now suppose the cost of delay on a particular contract is
exponential to the delay itself. This exponential assumption
is based upon predictions with respect to the delay of other
projects dependent upon the completion of this project and the
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resulting compensations to be given to the customer. Thus, the
SED needs to be weighted by some cost per delay unit (CDU)
that is an exponential function of SED. Also suppose that CEU
is the average cost per effort unit, i.e., the average cost per staff
hour for the specific project development team. Then we can
define:

Financial _loss = SED x CDU + EED x CEU.

5.3. Quality Evaluation

For any quality model, we need a baseline to be able to make
sensible comparisons. For example, assume that the quality
perspectives of interest (i.e., quality drivers) are productivity
and fault_rate and that OSR yields clear patterns (i.e., low
entropy) for both variables in the available data set. These
patterns represent the expected distributions in the current
development environment for the project under study.

The relationship between the actual quality factor (e.g.,
productivity) for some project and the expected value based on
the recognized patterns provides a basis for quality evaluation.
For example, suppose the actual productivity for the project
falls far below the expected value based on the predicted
patterns. This implies that the quality of the project with
respect to productivity is low. Using the pattern as a basis
of comparison, we may ask where the difference comes from.
Several causes may be investigated: incomplete or inadequate
data collection, some possible new variables affecting the
development process, or the process quality (e.g., conformance
to the process model) is quite low. Quality for a particular
factor could be defined as the distance between the actual and
the predicted quality value (what could have been reasonably
expected) based on the recognized pattern(s):

Quality _deviation =

m
AQ— z P(Ci|measurement_vector;) X pi
i=1
with AQ the actual value of the quality factor.

We can see global quality as an inherently subjective
function of deviations on several quality factor ranges. These
deviations can be combined to provide a global assessment
of quality specific to a particular user. This idea is illustrated
in the following example. If we try to include in the quality
model both the fault_rate and productivity quality drivers
and assume an approach similar to the productivity_deviation
evaluation for calculating a Fault_deviation, then a global
quality evaluation may be formalized by the following quality
model. Let us define NFD as fault_deviation (i.e., fault rate
deviation) normalized by the fault rate standard deviation in
the available data set and NPD as the equivalent variable
for Prod_deviation. Based upon these unitless deviations, we
define the following quality model.

 If NFD < 0, NPD > 0, the larger [NFD * NPD]| is, the

better the quality.

+ If NFD > 0, NPD < 0, the larger [NFD * NPD)| is, the

worse the quality.

+ If both NFD and NPD are negative, the larger NFD/NPD

is, the better the quality.

* If both NFD and NPD are positive, the smaller NFD/NPD
is, the worse the quality.

¢ If both NFD and NPD have the same sign and NFD/NPD
has a value close to 1, then quality may be assessed as
average or nominal.

This particular quality model takes into account two de-
pendent variables and illustrates that a quality model may be
a subjective function of several distances on the respective
dependent variable ranges. This model might be modified,
according to the user perspective of quality, to change the
weighting of the various dependent variables or factors, e.g.,
doubling the effect of fault rate in the evaluation of qual-

1ty.
V1. EXPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of the
approach by showing the results of applying OSR to the
problem of cost estimation and illustrating that it can extract
meaningful patterns from the available data sets. Given a
collection of software projects, OSR was used to estimate
productivity for each project based upon the COCOMO cost
drivers. A set of generated patterns was then analyzed to
determine the most influential factors affecting productivity
in that data set. Finally, the OSR predictions are compared
to predictions from two other effort estimation techniques to
provide a basis for evaluation.

6.1. Experiment Design

The data set for the experiment comes from two sources:
the COCOMO database of 63 projects [S], which is used as
a learning sample, and the fifteen projects used by Kemerer
in the evaluation of a collection of software cost models
[12]. The COCOMO projects are a mix of business, system,
control, high level interface, and scientific applications. A
significant percentage of these projects have been developed
in FORTRAN (38%) and a very small number in Cobol
(8%). The other projects involve a variety of data processing
applications primarily developed in Cobol (87%).

In what follows, we will use the term data set to refer to the
COCOMO and Kemerer data sets, the test sample refers to the
Kemerer data set (the sample that is used to assess the OSR
model), and the learning sample refers to the data set minus
the project that is being predicted. Thus, 15 optimized set
reductions will be performed, one for each of the test sample
pattern vectors. Each time, the pattern vector to be assessed
will be removed from the whole data set to form the learning
sample (77 projects). The 78-pattern vector data set is small
enough to assess the capability of the approach to deal with
relatively small samples.

This is similar to a situation where an organization has data
on 77 projects and wants to assess a new one. However, one
must consider that the 78 projects were developed in various
environments, at different times, and with data collected by
different people according to different procedures, e.g., project
productivities lie over a very large range (i.e., from 20 to 2491
LOC/MM). Ideally we would like to have all the projects from
a single environment.
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TABLE 1 TABLE 1I
ResuLts OF COMMERCIAL MODELS OSR PREDICTIONS
Model MRE Project | ‘Actual Pred Actual Pred MRE Entropy
SLIM T72% Prod Prod Effort Effort
Intermediate COCOMO 583% 1 884 299 287 846 194 | 063
Function Points 103% 2 491 935 82 44 0.46 0.24
ESTIMACS 85% 3 580 674 1107 668 0.40 0.45
4 2467 643 87 333 2.83 0.06
5 1338 952 336 473 0.41 0.27
. . R 6 595 1196 84 42 0.50 0.47
To give a general basis for comparison, we first reference
. R ] 7 1853 1016 23 42 0.83 0.47
the results obtained by Kemerer with a variety of models [12].
. . 8 1535 1006 130 199 0.53 0.52
Although the models are very inaccurate, they are uncalibrated
. .. . . 9 2491 431 116 670 4.78 0.56
results. The difficulties in tailoring the COCOMO cost drivers
¢ . . X ] : ist, 0 the dat 10 542 1028 72 38 0.47 0.06
0 various environments causes a loss of consistency in the data m poe 1028 258 7 004 0,05
collection regardless of the analysis technique and tailoring the P 5 1055 231 5 046 0.06
?Ii?d::,lset; E>tllllte il;)(:g environment should provide a substantial w 2028 1035 57 155 001 006
P curacy. 14 667 | 1070 | 247 | 154 | o038 | 027
15 881 964 70 62 0.11 0.06
6.2. Predicting Development Costs Using OSR
OSR was used to model development productivity (i.e., TABLE 1l
size/effort) using the CO.COMO 'cost dnv.ers as “the .mde- OSR PATTERNS AND EXTRACTED SUBSETS
penflent variables. The size metric usefi is the “Adjusted ____ TR
Delivered Source Instruction” as defined in [5], and the effort T | RELY=H VEXP=H DATASL

unit is staff-months. Effort was estimated as size divided
by estimated productivity. The ranges of the independent
variables have been decomposed into two intervals, with the
boundary being located either just above or below nominal,
depending on the distribution. The productivity range was
divided into five intervals containing, to the extent possible, an
equivalent number of pattern vectors. The termination criterion
was implemented in a very simple way: the reduction would
stop if either no subset showed an improvement in entropy,
or if no subset contained a minimal acceptable number of
projects (which was set at eight) to ensure significance of the
calculated entropy. Only one subset was extracted at each set
reduction.

The results for each of the 15 data points of the test sample
are shown in Table II. The seven columns contain the project
number, the actual productivity, the predicted productivity,
the actual effort, the predicted effort, the magnitude of rel-
ative error, and the entropy yielded by OSR. It should be
noted that for calculating the predicted productivities, these
15 projects were weighted more heavily (three times) than
the COCOMO projects because they are more representative
of the predicted projects, COBOL programs for business
applications.

Table III shows both the generated patterns and extracted

subsets for each of the 15 predictions. The second column
contains the selected predicates of each pattern, where
L and H denote the lower and higher parts of the
range, respectively. The third column contains the projects
included in the extracted subsets, i.e., CO1 to C63 for the
COCOMO data set and K01 to K15 for the fifteen new
projects.

The two data points with highest productivity (projects 4 and
9 in Table II) yield large effort overestimation. However, these
two projects have a productivity far above the other 76 projects

C10,C11,C12,C16,617,C19,C22,C23,C27,C33,C34,C58,
Ki1

T2 | STOReL PCAP=H AEXP=H
3 VIRT=L MODP=H RELY=L
4

€03,C05,C39,C41,C47,C49,C61,C83,

K04,K10,K12 K13 K15

€03,C07,C21,C38,C39,C41,C42,C81,

Ki4

€03,C39,C47,C49,C61,C63,
K10,K11,K12,K15

STOR=L ACAP=H PCAP=H

STORaL ACAP=H VIRT=L €03,C38,C39,C55,C61,
KO04,K10,K12 K14

DATA=H TURN=L. €03,C21,C25,
K07,K08,K09,K12,K13,K14
€03,C21,C25,

K06,K08,K09,K12,K13,K14
€03,C07,C36,G41,C49,C55,
K04,K05,K12,K14,K15

5

3

7 DATA=H TURN=L
8| STOReL TURNaL TIMESL OPLX=L |
g

VIRT=L STOR=H G19,G21,C42,C43,C44,C45,C46,
K01,K03
10 STOR=L ACAP=H PCAP=H €03,C39,C47,C49,C61,C63,
K04,K11,K12,K15

11 STOR=L ACAP=H PCAP=H €03,C39,C47,C49,C61,C63,
K04,K10,K12,K15
€03,C39,C47,C49,C61,C83,
K04,K10,K11,K15
€03,C41,C47,C49,C61,C83,
K04,K12,K15
€03,C38,C39,C55,C61
K04,K05,K10 K12
€03,C39,C47,C49,C61,C63,
K04,K10,K11.K12

12 STOR=L ACAP=H PCAP=H

13 STOR=L PCAP=H TURN=L

14 STOR=L ACAP=H VIRT=L

15 STOR=L ACAP=H PCAP=H

of the data set. These productivity values might be the result of
several problems: the size evaluation has not been performed
according to the rules described in [5], or something occurred
that was not captured by the 15 COCOMO cost drivers. More
information on these particular projects is needed to make
a more thorough analysis. To keep these two projects from
introducing noise in our results, we have performed analyses
with and without these projects.

We see a clear association between MRE and entropy.
There is a correlation of 0.71 between MRE and entropy
(with projects 4 and 9 omitted), and 0.80 between MRE
and the square of entropy. If we test the hypothesis that
the MRE’s are smaller in classes with low entropy, we get
satisfactory levels of significance. For example, if we define
two entropy intervals containing predictions of entropies below
and above 0.40, we obtain a level of significance of 0.025,
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TABLE IV
INDEPENDENTVARIABLE QCCURRENCES

Number of Occurrences Cost Drivers
0 TOOL, SCED, LEXP
1 CPLX, TIME, AEXP, VEXP,
MODP
2 RELY
3 DATA
4 VIRT, TURN
7 ACAP, PCAP
11 STOR

using a nonparametric Mann-Whitney U test [9]. So, the
entropy of the pattern on which the productivity prediction
is based is calculable and provides an assessment of the
accuracy of the estimate, i.e., the lower the entropy values,
the more precise the estimates. For example, if the entropy is
around 0.06, then the expected accuracy should be around
22%. Finally, encouraging results (average MRE = 35%)
were achieved in 85% of the cases (with projects 4 and 9
excluded).

6.3. Understanding Development Cost Using OSR

Historical data can be analyzed to provide intuition about
the development environment (e.g., which variables affect
productivity). This would help an organization improve its de-
velopment processes and management techniques by focusing
attention on influential factors in that organization.

To obtain such intuition, OSR can be run for each of
the pattern vectors in the data set, using all other pattern
vectors as the learning sample. Counts of the occurrences of
each independent variable in the extracted subsets provides
an indication of the impact of that independent variable in
differentiating among the dependent variable classes. Table
IV provides the number of occurrences of each independent
variable used to create some decomposition for the given test

sample. When a factor yields a low number of occurrences, -

several causes may be considered.

» The factor is quite constant in the learning sample and
therefore will not help in differentiating projects.

* The factor doen’t have much influence on the dependent
variable studied.

+ There is an interdependence between the independent
variable and some more influential independent variables.

Table IV has 2 columns: the first one gives nonweighted
counts of occurrences and the second shows the cost drivers
matching them. Two distinct cost driver subsets may be
observed that yield very different counts of occurrences (< 5,
> 6). Considering the test sample size, we may only say that
there is clearly a set of three very influential cost drivers for
which the data collection must be as accurate and consistent
as possible (ACAP, PCAP, STOR).

Based upon our analysis, having sufficient storage appears
to be a very significant consideration. This makes sense for
systems focusing on data processing and dealing with very
large amounts of data. The data set shows that most of these

fifteen projects fall in the category “high” or “very high”
with respect to the cost driver DATA. The cost driver STOR
appeared at the top level of decomposition in ten of the 15
OSR’s performed. (In all these cases STOR was low.) The
average entropy for the ten projects is much lower (i.e., 0.17)
than the average entropy for the other projects (i.e., 0.52).
This argues further that STOR is very significant for the
predictive ability of the OSR model for this particular test
sample. When STOR was high, it was not a good predic-
tor, i.e., high storage constraints make productivity difficult
to predict for this particular data set. This is an example
that justifies our concern about heteroscedasticity (constraint
C5).

It has been shown [5] that staff capabilities (Analyst,
Programmers) play a crucial role in achieving optimal pro-
ductivity. When STOR, ACAP, and PCAP were all included
in the decompositions, the best entropy value was obtained
(i.e., 0.06). Therefore, ACAP and PCAP seem to significantly
improve the average entropy of the recognized patterns (i.e.,
0.06 instead of 0.17). Moreover, all the projects where ACAP
and PCAP were used had high capability teams. This shows
that productivity predictability is more accurate at the higher
ranges of capabilities. Table IV shows that the reliability and
complexity factors have a weaker influence on productivity
than expected (based on results published in [5]). However, the
fact that most of the 15 projects fall in the “nominal” category
and there are no extreme complexities or reliabilities present
may explain the lack of significance of these parameters
for this particular test sample. With respect to CPLX and
RELY, results are more difficult to interpret because of the
lack of variation in.the test sample. However, their low
significance might be explained as a consequence of the
nominal reliability and complexity of the projects ‘included.
Since. most of these projects are business data processing
applications, this result seems to make sense. According to the
counts of occurrences in Table IV, the three most influential
cost drivers (i.c., ACAP, PCAP, STOR) belong to the category
of the seven most influential cost drivers in the COCOMO

- cost driver ranking, despite the different nature of these 15
. projects.

6.4. A Comparative Evaluation of the OSR Technique

To evaluate OSR in predicting productivity and effort, a
comparison with more conventional techniques is provided.
For the first technique, a tailored intermediate COCOMO
model was built by recalculating the nominal equations based
on both the Kemerer and COCOMO data sets, as described in
[5)- The second technique was to estimate productivity using
the COCOMO cost drivers in a regression model built with a
stepwise selection process. As with the OSR experiment, each
technique was applied once for each project in the test sample,
using the remaining projects as a learning sample. Again,
the 15 Kemerer data points were weighted three times the
influence of the COCOMO projects for building the regression
models.

Table V summarize the results by giving, for three entropy
intervals, the average Magnitude of Relative Error (MRE) of
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TABLE V
COMPARISON OF MODEL RESULTS
Entropy Class MRE-OSR MRE-CC MRE-SR
H<0.06 0.22 0.33 0.48
0.06<H<0.47 0.49 1.71 0.80
H>0.47 1.24 0.77 1.03

the effort estimation in the respective intervals for each mod-
eling technique, (columns MRE-OSR, MRE-CC for calibrated
COCOMO and MRE-SR for stepwise regression).This pro-
vides some insight into the correlation between the accuracy
of the effort estimation and the entropy.

Comparing the results of the OSR and regression-based
techniques leads to several observations. First, for this data
set, the OSR technique provides more accurate predictions
than either the tailored COCOMO model or the stepwise
regression model. For ten of the 15 projects, the prediction
of the OSR model was more accurate than that of both
these regression models. If outliers are not removed, the two
regression based models had an average MRE of 207% and
116%, respectively, while the OSR model had an average
MRE of 94%. If projects 4 and 9 (which had extremely high
productivities) are not considered, the MRE for the regression
models becomes 104% and 72% respectively, while the OSR
model is 50%.

The results for OSR are significantly better than for the
calibrated COCOMO model in the lower entropy range (i.e.,
below 0.50 where patterns have actually been recognized). In
fact, a Wilcoxon T test [9] comparing pair by pair the MRE
of the two techniques shows a significant difference in MRE:
p = 0.03. The difference between the MRE’s yielded by the
OSR and stepwise regression models show less significance
but can be considered satisfactory considering the size of the
test sample: p = 0.09. v

Among the higher entropies, all techniques produce rela-
tively poor predictions with no statistically significant differ-
ences. For OSR, this result was expected, since poor entropy
implies that no significant pattern has been found, resulting in
a prediction based on a wide probability distribution, which is
likely to yield a wide range of results.

VII. CONCLUSIONS

The OSR was developed to address issues related to building
multivariate stochastic models in order to better plan, control,
and evaluate the software development process. The procedure
has so far exhibited the following positive characteristics.

* It makes no assumptions with respect to probability den-
sity functions on the dependent and independent variable
ranges. It does not attempt to fit data to predefined
distributions; rather, it uses the data to approximate the
actual distribution (i.e., patterns). Also, no particular
mathematical relationship between the dependent variable
and independent variables needs to be assumed. Thus
OSR seems to fulfill R1.

* It handles discrete and continuous independent variables
in a consistent way and therefore meets R2.
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* All pattern vectors have the same weight when calculating
a subset entropy. Therefore, no vector or small subset of
vectors can have a dramatic impact on the structure of the
patterns generated. The technique fulfills requirement R3.

* During the optimized set reduction process, each inde-
pendent variable is evaluated in the context defined by
the previously selected predicates. Thus, to some extent,
interdependencies among explanatory variables are taken
into account when building the patterns (requirement R4)

* Since a tree structure is not imposed, homoscedasticity is
not assumed when extracting the patterns, i.e., an indepen-
dent variable may be a significant predictor only within
a certain part of its range/value domain. Requirement R5
is therefore addressed.

* It allows an estimation of accuracy for each prediction so
we can answer the question: Is the prediction usable? This
fulfills R6. When relevant independent variables are not
available at the time of the prediction, OSR still allows
a prediction to be made; however, OSR will provide a
warning if the prediction is expected to be poor. Other
techniques provide model-level warnings (such as a low
R-square for regression techniques), rather than individual
prediction evaluations, like OSR.

Our current research tackles the issue of providing easily
interpretable patterns so that management decisions/corrective
actions can be taken during software development based on
empirical quantitative models. Mechanisms for simplifying
patterns and a framework for supporting interpretation have
been developed. Techniques for dealing more effectively with
partial information are being investigated. OSR is currently
being applied to a large variety of modeling problems and
thereby being evaluated on other data sets [7], [8]. A tool sup-
porting the OSR approach is being developed at the University
of Maryland as a part of the TAME project [3].

VIII. APPENDIX: ACRONYMS

» MRE: Magnitude of Relative Error
* OSR: Optimized Set Reduction
». COCOMO cost drivers:

ACAP: Analyst Capability

AEXP: Application Domain Experience
CPLX: Complexity

DATA: Data Base Volume

LEXP: Programming Language Experience
PCAP: Programmer Capability

MODP: Use of Modern Programming Practices
RELY: Reliability

SCED: Schedule Constraints

STOR: Storage Constraints

TIME: Timing Constraints

TOOL: Use of Software Tools

TURN: Turnaround Time

VEXP: Virtual Machine Experience

VIRT: Virtual Machine Volatility
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