® The Sofrware Enginecring
Laboratory bas been adaptin g,

analvzing, and cvoiving
sofreware processes for the last

18 years. Their approach is based
on the Quelity Improvement
Paradigm, which is used ro
evaluare process effeces on bors
product and people. The authors
explain this approach as it was

appliec 1o reduce defects in codc.

Software

Process

Evolution

at the SEL

VICTOR BASILI , University of Maryland
ScoTT GREEN, NASA Goddard Space Flight Center

ince 1976, the Software
Engineering Laboratory of the
National Aeronautics and Space
Administration’s Goddard Space
Flight Center has been engaged in 2

program of understanding, assessing, ;
and packaging software experience. !

Topics of study include process, prod-
uct, resource, and defect modeis, as
well as specific technologies and tools.
The approach of the SEL — a consor-
tium of the Software Engineering
Eranch of NASA Goddard's Flignt
Dynamics Division, the Computer
Science Department of the Universiny
of Maryvland, and the Software

Sciences Corp. — has been to gain an

environment characteristics using

{ process models and baselines. A

process is evaluated for study, applied
experimentally to a project, anahzed
with respect to baselines and process
model, and evaluated in terms of the

. \ .
experiment’s goals. Then on the basis
of the experiment’s conclusions,

! results are packaged and the process is

tailored for improvement, applied
again, and reevaluated.

In this article, we describe our
improvement approach, the Quality
Improvement Paradigm, as the SEL
applied it to reduce code defects by
emphasizing reading techniques. The

. box on p. 63 describes the Quality
Engineering Operation of Computer .

Improvement Paradigm in derail. In

. examining and adapung reading tech-
in-depth understanding of project and .

nigques, we go through a svstemaric

- process of evaluating the candidate

58

7437458784 /804 00 € 1994 EEE

JULY "854

process and refining its implementa-

vious experiments and studies.

As a result of this contnuous, evo-
ludonary process, we determined that
we could successfully apply key ele-
ments of the Cleanroom develop-
ment method in the SEL environ-
ment, especially for projects involving
fewer than 50,000 lines of code (all
references to lines of code refer to
developed, not delivered, lines of

+ validity and credibility through the use
ton through lessons learned from pre-

code). We saw indications of lower |

error rates, higher productiviry, a
more complete and consistent set of
code comments, and a redistribution
of developer effort. Although we have

not seen similar reliability and cost

gains for larger efforts, we congnue to
investigate the Cleanroom method’s
effect on them.

EVALUATING CANDIDATE PROCESSES

To enhance the possibility of
improvement in a pardcular environ-
ment, the SEL introduces and evalu-
ates new technology within that envi-
ronment. This involves experimenta-
tion with the new technology, record-
ing findings in the context of lessons
learned, and adjusting the associated
processes on the basis of this experi-
ence. When the technology is notably
risky — substantially different from
what is familiar to the environment —
or requires more derailed evaluation
than would normally be expended, the
SEL conducts experimenzation off-
line from the project environment.

Off-line experiments may take the
form of cither controlled experiments
or case studies. Controlled experi-
ments are warranted when the SEL
needs a detailed anaivsis with statstical
assurance in the results. One problem
with controlled experiments is that the
proiect must be small enough to repli-
cate the experiment several tmes. The
SEL then performs a case study to val-
idate the results on a project of credi-
ble size that is representative of the
environment. The case study adds

of typical development svstems and
professional staff. In analyzing both
controlled experiments and case stud-
ies, the Goal/Question/Merric para-
digm, described in the box on p. 63,
provides an important framework for
focusing the analysis.

On the basis of experimental
results, the SEL packages a set of
lessons learned and makes them avail-
able in an experience base for furure
analysis and application of the tech-
nology.

Experiment 1: Reading versus testing.
Although the SEL had historically
been a test-driven organization, we
decided to experiment with introduc-
ing reading techniques. We were par-
ticularly interested in how reading
would compare with testing for fault
detection. The goals of the first off-
line, controlled experiment! were to
analyze and compare code reading,
funcdonal testing, and structural test-
ing, and to evaluate them with respect
to fault-detection effectiveness, cost,
and classes of faults detected.

We needed an analysis from the
viewpoint of quality assurance as well
as a comparison of performance with
respect to software tvpe and program-
mer experience. Using the GQM par-
adigm, we generated specific questions
on the basis of these goals.

We had subjects use reading by
stepwise abstracdon,: equivalence-par-
tdoning boundary-value testing, and
satement-coverage structural testing.

We conducted the experiment
nwice at the University of Marvland on
graduate students (42 subiects) and
once at NASA Goddard (32 subjects).
The experiment structure was a frac-

- onal factorial design, in which every
" subiect applied each technique on a

different program. The programs
inciuded a text formarter, a plonter, an

: abstract data nype. and a database, and
- they ranged from 145 to 365 lines of

'

f

code. We seeded each program with
faults. The reading performed was at

the unit level.

Although the results from both
experiments support the emphasis on
reading techniques, we report only the
results of the controlled experiment on
the NASA Goddard subjects because it
involved professional developers in the
target environment.

Figure 1 shows the fault-detection
effectiveness and rate for each
approach for the NASA Goddard
experiment. Reading by stepwise
abstraction proved supenor to testing

Fundi""u'

tgsﬁng

Figure 1. Results of the reading-ver-
sus-testing conerolled experiment, in
whick reading was compared with
functional and structural testing. (A)
Mean number of faults detected for
each technigue and (B) number of
faults detected per hour of use for each
technigue.

techniques in both the cffectiveness
and cost of fault detecton, while obvi-
ously using fewer computer resources.

Even more interesung was that the
subjects did a better job of esumating
the code quality using reading than
they did using testing. Readers
thought they had found only about
half the faults (which was nominally
correct), while functional testers feit
that had found essentially all the faults
(which was never correct).

Furthermore, after completing the
experiment, more than 90 percent of
the participants thought functional
testing had been the most effective
technique, although the results clearly
showed otherwise. This gave us some
insight into the psychological effects of
reading versus testing. Perhaps one
reason testing appeared more satisfy-
ing was that the successful execution of
multiple test cases gencrated a greater
comfort level with the product quality,
actually providing the tester with 2
false sense of confidence.

Reading was also more effectve in
uncovering most classes of faulrs,
including interface fauits. This told us

that perhaps reading might scale up
well on larger projects.

Experiment 2: Yolidation with Cleanroom.
On the basis of these results, we
decided to emphasize reading tech-
niques in the SEL environment.
However, we saw little improvement
in overall reliability of the develop-
ment systems. Part of the reason may
have been that SEL project personnel
had developed such faith in testing
that the quality of their reading was
relaxed, with the assumption that test-
ing would ultimately uncover the
same faults. We conducted a small
off-line experiment at the University
of Maryland to test this hypothesis;
the resuits supported our assumpton.
(We did this on 2 small scale just to
verify our hypothesis before condnu-
ing with the Cleanroom experiment.)

Why the Cleanroom method? The Clean-
room method emphasizes human dis-
cipline in the development process,
using a mathematically based design
approach and 2 statistical testing
approach based on andcipated opera-

GEAUNS A . aS et o as s]
S S e
 Sompie baseline 25 <% Sample e xpectation ros

e

Fiort distribution Intrense gesign efiort
' becouse of emphasis on
| Change profile peer-feview process
o
Froductivity g
. Historically, 26 Ji o degradation 2
Level of rework cally, 26 lines No degradation from g
_ , of tode per doy turrent leve!

impazt of specification changes)
. T
1 T t fy:
Error rate Historicolly. seven errors ! 32
trror distribution per thousanc lines o! code Decreosed error rate -
Error source &
-
g

Figure 2. Sample measures, basclines, and cxpectazions for

garmng the Cleanroom mezbod.

|

the case studies investi-

i
|
i

tional usc.' Development and testing
teams are independent, and all devel-
opiment-team actvites are performed
without on-line testing.

Techniques associated with the
method are the use of box structures
and state machines, reading by step-
wise abstraction, formal correctness
demonstrations, and peer review.
System development is performed
through a pipeline of small increments
to enhance concentration and permit
testing and development to occur in
parallel.)

Because the Cleanroom method
removes developer testing and relies
on human discipline, we felt it would
overcome the psvchological barrier of
reliance on tesung.

Applying the QIF. The first step of the
Quality Improvement Paradigm is to
characterize the project and its envi-
ronment. The removal of developer
unit testing made the Cleanroom
method a high-risk technology. Again,
we used off-line experimentation at
the University of Marvland as a mid-
gating approach. The environment
was a laboratory course at the univer-
sity, and the proiect involved an elec-
tronic message svstem of about 1,500
LOC. The experiment stucture was a
simple replicated design, in which
contro! and experiment teams are
defined. We assicned 1(three-person
experiment teams to use the
Cleanroom method. We gave five
three-person control teams the same
development methodology, but
allowed them to test their systems.
Each team was allowed five indepen-
dent test submissions of their pro-
grams. We coliected data on program-
mer background and attitude, com-
puicr-resource activity, and acrtual
tesung results.

The second step in the Qualiry
Improvement Paradigm is to set goals.
The goal here was to analvze the
cffects of the Cleanroom approach and
cvaluate it with respect to process,

+ product, and participants. as compared
i with the non-Cleanroom approach.

60

JULY 1884

|
|
!
I
|
i
!
!
i
{
|

We generated questions correspond-
ing to this goal. focusing on the
method’s effect on each aspect being
studied.

The next step of the Quality Im-
provement Paradigm involves select-
ing an appropriate process model. The
process model selected for this experi-
ment was the Cleanroom approach as
defined by Harlan Mills at IBM’s
Federal Systems Division, but modi-
fied for our environment. For exam-
ple, the graduare-student assistant for
the course served as each group's inde-
pendent test team. Also, because we
used a language unfamiliar to the sub-
jects to prevent bias, there was a risk of
errors due solely to ignorance about
the language. We therefore allowed
teams to cleanly compile their code
before submittng it to the tester.

Because of the nature of controlled
experimentaton, we made few modifi-
catons during the experiment.

Cleanroom’s effect on the software-

development process resulted in the ;

Cleanroom developers more effectve-
ly appiying the off-line reading tech-
niques; the non-Cleanroom teams
focused their efforts more on func-
tional testing than reading. The
Cleanroom teams spent less tume on-

line and were more successtul in mak- |

ing scheduled deliveries. Further
analysis reveaied that the Cleanroom

products had less dense complexity, a !

higher percentage of assignment state-
ments. more giobal data, and more
code comments. These products also
more completely met the svstem
requirements and had a higher per-
centage of successful independent test
cases.

The Cleanroom developers indicat-
ed that they modified their normal
software-development activities by
doing a more effective job of reading,
though they missed the sagsfacdon of

1

acrual program execution. Almost all :

said they wouid be wiiling to use |

Cicanroom on another development
assiznment.
Through observation. it was also

ciear that the Cleanroom deveiopers !

{

did not apply the formal methods
associated with Cleanroom very rigor-
ouslv. Furthermore, we did not have
enough failure daw or experience with
Cleanroom testng to applv a reliabili-
ty model. However, general analysis
did indicate that the
Cleanroom approach had
potenual payoff, and that
addirtional investigation
was warranted.

You can also view this
experiment from the fol-
lowing perspective: We
applied two development
approaches. The only
real difference between
them was that the con-
trol teams had one exma
piece of technology
(developer testing), vet
they did not perform as well as the
experiment teams. One explanation
might be that the control group did
not use the available nontesting tecn-
niques as effeccdvely because they knew
they could rely on testing to detect
fauits. This supports our earlier find-
ings associated with the reading-ver-
sus-testing experiment.

EVOLVING SELECTED PROCESS

The positive results gathered from
these two experiments gave us the jus-
tification we needed to explore the
Cleanroom method in case studies,
using typical development systems as
data points. We conducted two case
studies to examine the method, again
following the steps of the Quality
Improvement Paradigm. A third case
study was also recentiy begun.

First case study. The project we
sclecred, Protect I, involved two sub-
systems frum a tvpical artitude
ground-support system. The system
pertorms ground processing to deter-
mine a spacecraft’s ardrude, receiving
and processing spacecraft telemetry
data to meet the requirements of a
particular mission.

|
|

ALMOST

ALL THE
CLEANROOM
TEAM SAID
THEY'D USE
THE METHOD
AGAIN.

The subsystems we chose are an
integral part of attitude determina
tion and are highly algorithmiec.
Both are interactive programs that
together conrtain approximately
40,000 LOC, representing about 12

percent of the enure
attitude ground-support
system. The rest of the
ground-support system
was developed using
the standard SEL devel-
opment methodology.
The project was
suffed principally by five
people from the Flight
Dynamics Division,
which houses the SEL.
_ All five were also work-
ing on other projects, so
only part of their time
was allocated to the two subsystems.
Their other responsibilides often took
time and attenton away from the case
study, but this pardal allocation repre-
sents typical stffing in this environ-
ment. All other projects with which
the Project | staff were involved were
non-Cleanroom efforts. so staff mem-
bers would often be required to use
multiple develop-ment methodolo-

| gies during the same workday.

The primary goal of the first case
study was to increase software quality
and reliability without increasing cost.
We also wanted to compare the char-
acteristics of the Cleanroom method
with those typical of the FDD envi-
ronment. A well-calibrated baseline
was available for comparison that
described a variery of process charac-
teristics, including effort distribudon,
change rates, error rates, and produc-
avity. The baseline represents the his-
tory of many earlier SEL studies.
Figure 2 shows a sampie of the expect-
ed variatons from the SEL baselines
for a set of process characteristics.

Choosing ond tailoring processes. The
process models available for examina-
ton were the standard SEL model,’
which represents a reusc-oriente

- waterfall life-cycle model; the.

tTTC encTwWwWeaeQrs

61

IBM/FSD Cleanroom model, which
appeared in the literature and was
available through training; and the
experimental University of Marvland
Cleanroom model, which was used in
the earlier controlied experiment.é

We examined the lessons learned
from applving the IBM and University
of Maniand models. The results from
the IBM model were notably posidve,
showing that the basic process, meth-
ods, and techniques were effective for
that pardcular environment. However,
the process model had been applied by
the actual deveiopers of the methodol-
ogy, ir the environment for which it
was developed. The University of
Maryiand model also had specific
lessons, including the effects of not
allowing dcvclopcrs to test their code,
the effectiveness of the process on a
small project, and the conclusion that
formal methods appeared partxcular-
ly difficuit to applv and required specif-
ic sidlls.

On the basis of these lessons and the
characreristics of our
environment, we select-
ed a Clieanroom pro-
cess model with four
kev elements:

¢ separadon of devel-
opment angd test teams,

¢+ reliance on peer
review instead of unit-
level testing as the pri-
mary developer verifice-
dor. technique,

¢ use of informal
state machines and
funcdons to define the
system design. and

+ 2 statistical approach to testing
based on operatonal scenasios.

We alse provxdcc training for the
subiects, consistent with 3 Universia: of
Maryiand course on the Cleanroom
process modcl, methods, and tech-
niques, with emphasis on reading
through srcp\nse abstracgon. We aiso
stressed code reading by muitiple
reviewers because stepwise absoacton
was new to many subjects. Michacl

Dyer and Terry Baker of IBA/FSD

PROJECT
RESULTS

LED USTO
EMPHASIZE
PEER REVIEWS
AND USE OF
INDEPENDENT
TESTING.

provided additional training and mod-
vation by describing IBM's use of
Cleanroom.

To mitigate risk and address the
developers’ concerns, we examined
backout options for the experiment.
For example, because the subsystems
were highly mathematical, we were
afraid it would be difficult to find and
correct mathematical errors without
any developer testing. Because the pro-
jeet was part of an operational system
with mission deadlines, we discussed
options that ranged from allowing
developer unit tesung to dxsconunumv
Cleanroom altogether. These discus-
sions helped allav the primary appre-
hension of NASA Goddard manage-
ment in using the new mcthodolog'_\.
When we could not get information
abour process application, we followed
standard SEL process-model activides.

We also noted other management
and project-team concerns.
Requirements and specifications change
frequently during the dev clopmcnt
cvele in the FDD envi-
ronment. This instabili-
tv was of pardcular con-
cern because the Clean-
room method is built on
the precept of de-
veioping sofrware right
the first time. Another
concern was that, given
the difficuites encoun-
tered in the University
of Maryland experiment
about applying formal
methods, how success-
fully couid a classical
Cleanroom approach be
applxcd Finally, there was concern
about the psvcnonomcal eftects of sepa-
ratng development and tesung, specif-
1cnll\ the inability of the deveiopers to
execute their code. We ta*"eted all
these concerns for our postproject
analvsis.

Project 1 lasted from January 1988 |

through September 1990. We separat-
ed the five team members into a three-
person development team znd 2 two-

person test team. The development |

team broke the toral effort into six
incremental builds of approximately
6,500 LOC each. An experimenter
team consisting of NASA Goddard
managers, SEL representatves, a tech-
nology advocate familiar with the IBM
model, and the project lcader moni-
tored the overall process.

We modified the process in real
tme, as needed. For example, when we
merged Cleanroom products into the
standard FDD formal review and doc-
umentaton activites, we had to modify
both. We altered the design process to
combine the use of state machines and
traditional structured design. We also
collected daa for the monitoring tcam
at various points throughout the pro-
ject, although we wied 1o do this with
as lirde disturbance as possible to the
project team.

Ana!yzing ond pockaging results. The final
steps in the QIP involve analyzing and
packaging the process results. We
found significant differences in effort
distribution during dcvelopment
berween the Cicanroom project and
the baseline. Approximately six percent
of the total project efiort shifted from
coding to design activities in the
Cleanroom effort. Also, the baseline
development teams tradidonally spent
apprommatelv 85 percent of their cod-
ing effort writing code, 15 percent
reading it. The Cleanroom team spent
about 50 percent in each acovity.

The primary goal of the first case
study had been to improve reiiability
without increasing cost. Analvsis
showed a reduction in change rate of
nearly 50 percent and a reduction in
error rate of greater than a third.
Although the expectation was for pro-
ducdviry equivalent to the basciine. the
Cleanroom effort also improved in that
area by approximateiy 50 percent. We
also saw a decrease in rework, as
defined by the amount of time spent
correcuny ¢rrors. Addidonal analysis of
code reading revealed that three
fourths of all errors uncovered were
found by onlv one reader. This
prompted a renewed emphasis on mui-

62

JULY 18¢8¢

The Quality Improve-
ment Paradigm is an effec-
gve framework for conduct-
ing experiments and studies

concept for learning and
improvement.}
- The QIP has six steps:
1. Characterize the pro-
ject and its environment.

2. Set quandfiable goals
for succcssful project perfor-
mance and improvement. - .

- 3. Choose the appropri- *.
ate process models, support- *:
ing methods, and tools for e
the project.

4. Execute the proccsses,
construct the products, col-
lect and validate the pre- - :.-:_
scribed dam, and analvze the
data to provide real-time = . -
feedback for corrective - -

. acuon. wrnlion -
- 5. Analyze thc data to

: cvaluatc current practces,”
>derermine problems, rccord

- findings, and make recom-
mcndznons for furure

= knowledm: gmncd from this ;
» and earlier projects in'an’ cxpc
,nerce base for fumre pm)ecs

The QIP uses two tools:
the Goal/Quesuon/Metric
paradigm and the
Experience Factory

paradigm is a mechanism -
used in the planning phase - :
of the Qualiry Improvement
Paradigm for defining and 7.
evaluadng a set of opera- »
tional goals using measure-" <
ment.’ It provides a system-"
atic approach for tailoring -
. and integradng goals with
" models of the software
"processes, products, and
" quality perspectives of inter
est, according to the specific
" needs of the project and -
organimtion s
You define goals in an
opemuonal mactable way bv =
. refining them into a set of i
qucsuons that extract appro
priate informadon from the
‘models. The quesnons, in’
mm. define the D mcmm

pret the goals. & -
St A goal-gcncrauon tcm- et

i ?obuca of interest (like prod- :
uct or proccss)_,_' the aspect’of .

QUALITY IMPROVEMENT PARADIGM: FOUNDATION FOR IMPROVEMENT

like those described in the Organization. the study is performed (like
main text. It is an expen- customer’s or manager's),
mental but evoludonary GQM paradigm. The GQM . and the context in which the

- ented factors).

»-o-;.'~a

—-N
\y—ﬂs
A .x Xt

to detect defects), the pur-
pose of the study (like assess-
ment or predicton), the
point of view from which

" study is performed (like peo-
. ple-oriented or problcm-ori-

For cxamplc wo goals '
associated with the applica- -
don of the Cleanroom
method in the SEL were
analysis of the Cleanroom
process to characterize " .~ .
resource allocation from the > . Experience Factory provides -
prOJCCt manager’s point of
view, and analysis of the "
C_lga_x}_rqom product to char- ~

-pro;ect-dcvclopmem activi-
des bv prondmg svstemanc

learning and packaging of
reusable expeniences. It
packages experiences by
building informal, schema-
tzed, formal, and automated
models and measures of
software processes, products,
and other forms of knowl- -
edge, and distributes them -
through consultadon, docu- -
mentadon, and automatcd '
support. -

While pro;cct orgamu-
tion follows an evolutonary -
process model that reuses
packaged experiences, the

the set of processes needed
for lcaming, packaging, and
stormg the pro;cct organiza- °
"ton’s experience for reuse.,
The E.xpcnencc Factory =
rganization represents :he
mtcgmuon of these two -

.-, . e s . .. -~ -

R .

tiple readers throughout the SEL envi-
ronment.

We also examined the earlier con-
cerns expressed by munagers and the
project team. The results showed
increased effort in early requirements-
analysis and design activities and a
clearer set of in-line comments. This
led to a better understanding of the
whole system and enabled the project
team to understand and accommodate
changes with greater ease than was
npicai for that environment.

We reviewed the application of

classical Cleanroom and nored success-

es and difficulties. The strucrure of

independent teams and the emphasis
on peer review during deveiopment
was easy to apply. However, the devei-

opment team did have difficulty using
the associated formal methods. Also,
uniike the scheme in the classical
Cleanroom method, the test team fol-
lowed an approach that combined st-
tstical testing with traditional func-
donal tesdng.

Finally, the psvchological effects of
independent testing appeared to be
negligibie. All team menbers indicated

- high job sadsfacton as well as a will-
: ingmess to apply the method in furure

proiects.

We packaged these eariy results in
various reports and presentations,
including some at the SEL’s 1990
Sofrware Engincering Workshop. As a
reference for furure SEL Cleanroom

© projects, we also began efforts to pro-

duce a document describing the SEL
Cleanroom process model, including
derails on specific activities.s (The
completed document is now available
to current Cleanroom projects.)

Second case study. The first case study
showed us that we needed betrer train-
ing in the use of formal methods and
more guidance in applying the tesdng

. approach. We also realized that experi-

ences from the inigal proiect team had
to be disseminated and used.

Again, we followed the Quality
Improvemen: Paradigm. We selected
two projects: one similar to the iniZal
Cleanroom project, Project 2A, and
one more represengve of the typical
FDD contractor-support environment,

IEEE SCFRTWERE

63

EREISO B

¥

41103 QEM_

4t

e
s

§iv Y]
TN

..A
¥
A

Figure 3. Measurement €orINArisons Jor 1o casc stugics investigatin ¢ Cleanroon:.
The firs: case study rvoloed one project. Project 1. Tire second case study invoived
rwe projeces, Projeczs 2.4 and 2B. (A) Perceniage of roral developmen: effors Jor
varlous development aczizvizies, and (B) productrziry m dines of code per Gay. change
raze i changes per thousand lines of code, and reiiabiliey in errors per thousend
lines of code. ’ ’

Project 2B.

Project 24 involved a different sub-
system of another attitude ground-sup-
port system. This subsystem focused
on the processing of telemetry data,
comprising 22.000 LOC. The project
was staffed with four developers and
two testers. Project 2B involved an
endre mission artitude ground-support
system, consisting of approximately
160,000 LOC. At its peak, it was
staffed with 14 developers and four
testers.

Setting gools ond choosing processes. The
second case study had two goals. One
was to verify measures from the first
study by appiving the Cleanroom
method to Project 24, a project of
similar size and scope. The second was
to verify the applicability of
Cleanroom on Project 2B, a substan-
dgally larger project but one more rep-
resentative of the typical environment.
We also wanted to further tailor the
process model to the environment by
using results from the first case study
and applying more formal techniques.

Packages from the SEL Experience
Factory (described in the box on p. 63)
were available to support projest
development. These included an
evolved training program, a more
knowledgeable experimenter team to
monitor the projects, and several in-
process interactive sessions with the
project teams. Although we had begun
producing a handbook detailing the
SEL Cleanroom process model, it was
not ready in ume to give to the teams
at the start of these projects.

The proiect leader for the initial
Cleanroom project participated as a
member of the experimenter team,
served as the process modeler for the
handbool. and acted as a consultan: to
the curren: proiects.

We modificc the process according
to the experiences of the Cleanroom
team in the first study. Project 1's team
had had difficuity using stare machines
in system design, so we changed the
emphasis to Mills' box-sorucrure algo-
rithm.” W aiso added 2 more extensive

64

aspect
Reading vs.testing

Controlled experiments

(leanroom

: Project |

(leanroom tase studies

Project 2A

Project 28

G .n;..f.} V..
ue

pmdt:m ust:r r:{"‘*‘ O A e P gy i
s t"uil:“w.'-q—.mmas‘.umvu

N e -z.'vf: T e PR
. 'nu'ac-pcsond '
7. ment tearns (10 ctpcn--
_ment teams; five conrol | tw

£

.

T,

; 'Four-pcrson T

2 development team; -~
A 'pcrson test wam two—pcrson test team., four-pcrson test ol
7 teams), comman inde-5; ;‘;w;“:“o-;_,,,;,mh,, < ‘ : ;

Projectsize Small (145-365LOC) 1500 LOC, Fortran, | 40,000 LOC. Formran, 22,000 LOC, Forman, 160,000 LOC,

and appli- sample Fortran electronic message flight-dvnamics flight-dynamics Fortmn flight-

caton programs system for graduate ground-support ground- support dvnamics m'ound-
laboratory course svstem system support system

Fourtccn-pcrson w
- development tcam, by

G -5.4..2-.—5"‘30 Q '.L‘f ‘_'
..;L.- IO 2

appear more effec:
- ave than tesdng - e
: techmques for ?ault)
3 detccuon L2 W

rtquxrcmcnts more‘?”‘
<+ successfully,’and |
£4s ‘make huzhcr pemcnt
agc of schcduled i©

in design, uses fewer -
‘computer resources,’
‘and ac}ueva bettcr

ability than environ-
ment basclme

teey o T
[

Pro;cct spends higher. Pro;cct continues ©
percentage of effort ;- trend in berrer rcha- =, only slighdy bcm:r --
bxhtv while {nmnmq-_

- 3: Project rehabxhtv

" than baseline while ™3
roductvity falls <2
low bascimc

training program focusing on Clean-
room techniques, experiences from the
inidal Cleanroom team, and the reia-
tonship between the Cleanroom stud-
ies and the SEL’s general goals. The
instruction team included representa-
tives from the SEL, members of the
inigal ream, and Mills. Mills gave talks
on various aspects of the methodology,
as well as motvadonal remarks on the
potential benetits of the Cleanroom
method in the software communiry.
Project 2A ran from March 1990
through January 1992, Project 2B
ran from February 1990 through
December 1992, -\f'.nn. we examined
reiiabiliny, productivity, and process
chnr.:ct~rxst1cs comparing them to
Project 1 results and the SEL baseline.

Analyzing enc packoging results. As Figure
3 shows. there were significant differ-
ences between the two projects. Error
and change rates for Project 2A conan-
ued to be favorable. Productvin: rate,
however, recumed to the SEL bascline

continuing upward trend in the per-
centage of design effort, and a corre-
sponding decrease in coding effort.
Additional analysis indicated that
although the overall error rates were
below the baseline, the percentage of
system components found to conzain
errors during testng was sall represen-
wdve of baseline projects deveioped in
this environment. This suggests that
the breadth of error distribution did
not change with the Cleanroom
method.

In addition to evaluating objective
data for these two projects, we gath-
ered subjective input through written

i and verbal feedback from project par-

 ucipants.

value. Error and change rates for

Project 2B increased from Project 1 val-
ues. aithough they remained lower than
SEL baseline numbers. Producuvity,

however. dropped beiow the baseline.
When we examined the effort dis-

tribution among the baseline and

Projects I, 2A. and 2B, we found a

In general, input from
Project 2A team members, the smaller
of the two projects, was very favorable,
while Project 2B members, the larger
contractor team, had sigmificant reser-
vations about the method's application.
Interestingly, though, specific short-
comings were remarkably similar for
both teams. Four areas were generally
cited in the comments. Participants
were dissadsfied with the use of design
abstracdons and box szuctures, did not
fuliv accept the ragonale for having no
developer compilation, had problems

© coourdinating information berwesn
developers and testers, and cited the

need for a reference to the SEL Clean-

‘room process model.

Again, we packaged these results
into various reports and presentadons,
which formed the hasis for additional
process tailoring.

Third case study. We have recently
begun a third case study to examine
difficuldes in scaling up the Cleanroom
method in the typical contractor-
support environment and to verify pre-
vious wends and analvze addidonal tai-
loring or the SEL process model. We
expect the study to complete in
September.

In keeping with this goal, we again
selected 1 project representadve of the
FDD contractor-support environment,
but one that was esomared at 110,000
LOC. somewhat smaller than Project
2B. The project invoives deveiopment
of another entire mission artitude
ground-support system. Several team
members have prior experience with
the Cleanroom method through prewvi-
ous SEL studies.

Experience Factory packages avail-
able to this proiect inciude training in
the Cleanroom method. an experienced
experimenter team, and the SEL
Cicanroom Process Model (the completed
handbook). In addidon to modifying the
process mode] according to the results
from the first two case studies, we are

m
m
"
wn

65

providing regularly scheduled sessions in
which the team members and experi-
menters can interact. These sessions
give team members the opportunine to
communicate problems they are having
in applying the method, ask for clarifica-
gon, and get feedback on their acoviges..
This actvity is aimed at ciosing a com-
munication gap that the contractor team
fclt existed in Project 2B.

he concepts associated with the QIP

and its use of measurement have
given us an evolutonary framework for
undersanding, assessing, and packaging
the SEL’s experiences.

Table 1 shows how the evoiugon of
our Cleanroom study progressed as we
used measurements from each experi-
ment and case study to define the next
experiment or studv. The SEL Clean-
room process model has evoived on the
basis of results packaged through earlier
evaluadons. Some aspects of the target
methodology continue to evolve: Ex-
perimentaton with formal methods has
mansigoned from funcdonal decomposi-
ton and state machines to box-structure
design and again to box-structure appli-
canon as a way to abstract requirements.
Testng has shifted from a combined
statistical/functional approach, to a
purely statistical approach based on
operatonal scenarios. Our current case
study is examining the effect of aliowing
deveioper compiladon.

Along the wav, we have eliminated
some aspects of the candidate process:
we have not examined reliabiliny modeis,
for example, since the environment does
not currendy have suficden: daw 1o seed

hem. We have also emphasized some

aspecss. For example, we are conducting
studies that focus on the effect of peer
reviews and independent test tcams for
non-Cleanroom projects. \We are also
studying how to improve reading by
developing reading techniques through
ofi-line experimentadon.

The SEL baseline used for compari-
son Is undergoing continua; evolution.

Promising techniques are filzered into
the development organizador. as ceneral |

process improvements, and correspond-
ing measures of the modified process
(effort distribution, reliability, cost) indi-
cate the effect on the bascline.

The SEL Cleanroom process
model has evolved to a point where it
appears applicable to smaller projects
(fewer than 50,000 LOC). but addi-
tional understanding and tailoring is
still required for larger scale efforts.
The model will continue to evolve as
we gain more data from development
projects. Measurement will provide
baselines for comparison, identify
arcas of concern and improvement,
and provide insight into the effects of

ACKNOWLEDGMENTS

This work has been supported by
NASA/GSFC contract NSG-5123. We
thank all the members of the SEL tcam
who have been part of the Clanroom experi-
menter teams, the Cleanroom training
tcams, and the various Cleanroom project
tcams. We especially thank Frank
McGarry, Rosc Pajersia, Sallv Godirey,
Ara Kouchadiian, Sharon Waligora,
Harlan Mills, Michael Dyer, and Terry
Baker for their cflors.

REFERENCES

1. V.. Basili and R. Scliy, “Comipannc the
Eficcuvencss of Sofrware Tesang Svatepies,”
1EEE Trans. Sofrware Eng., Dec. 1987, pp.
1278-1296.

2. R. Linger, H. Mills. and B. Witr, Srucrured
Frogrammmmg: Tieory and Praanee, Addison-
Wesley, Reading, Mass., 1979.

- H. Mills, M. Dver, and R. Linger,
“Cleanroom Sofrware Enginecnng,” JEEE
Sofrzare, Sept. 1987, pp. 10-24.

. R. Sclby, Jr., V. Basili, anc¢ T. Balker,
“Cleanroom Sofrware Development: An
Empinical Evaluation,” IEEE Tran:. Sofrwarr

[

H

Eng., Sepe. 1987, pp. 1027-1037.

- L. Landss e1 al., “Recommended Approach to
Sofrware Development: Revision 3,” Tech.
Report SEL-81-305, Software Enpinecning
Laboratory, Greenbelt Md., 1992,

6. S. Green. Sofrware Engmeering Laroratory
(SLL) Cicanrvon: Process Model, Tech. Report
SEL-V]-(XW, Sofrware Engineenng
Laboraton. Greenbeit. Md., 1991,

7. 1L Mills, “stepwise Refinement and

i Venfiation in Box-Soructured Systerns,”

IELL Sormrary, June 1988, pp. 23-3¢6.

[

process modifications. In this way,
We can set quantitative expectations
and evaluate the degree to which
goals have been achieved.

By adhering to the Quality Im-

- provement Paradigm, we can refine

the process model from study 1o
study, assessing strengths and weak-
nesses, experiences, and goals.
However, our investigation into the
Cleanroom method illustrates that
the evolutionary infusion of technol-
ogy is not trivial and that process
improvement depends on a struc-
tured approach of understanding,
assessment, and packaging. *

Victor Basili is o professor
of computer science at the
Institute for Advanced
Computer Studies at the
University of Marvland at
Colicge Park. One of the
founders and principals of
the Software Enrincering
Laboratory, his interests
include quanttauve
approaches for sofrware
management, engineering, and quality assurance.
He is an the editonia! board of Fournai of Syscme
and Sofzrare.

Basiis received 3 BS in mathematics from
Fordham Colicge, an MS in mathematics from
Syracuse Universitv, and a PhD in computer sci-
ence from the University of Texas at Austin. He is
zr IELE fellow and 3 member of the IEEE
Computer Socicty.

Scott Green is a scnior sofrware engineer in
NASA Goddard's Flight Dyvnamics Division, where
he is invoived in the project management of
ground-suppon systems and in leading sofrware-
engincering studies at the Software Enpineering
Laboratory.

Green received s BS in computer science from
Lovola Colicge.

Address questions about this article to Basili at
CS Depi.. University of Manviand. Coliege Park,
MD 20742 basili@cs.umd.edu; or to Green at
NASA/GFSC, Code 55201, Greenbel:, MD 20771,

scgreen@ysiemaii.nasa.gov.

66

JULY 12394

