VICTOR BASILI

and MARVIN ZELKOWITZ
University of Maryland

FRANK McGARRY,
JERRY PAGE,

and SHARON WALIGORA
Computer Sciences Corporation

ROSE PAJERSKI

NASA Goddard Space

Flight Center

SEL'S SOFTWARE
PROCESS-IMPROVEMENT
PROGRAM

In 1993, the IEEE Computer Society and the Software Engineering Institute jointly estab-
lished the Software Process Achievement Award to recognize outstanding improvement accom-
plishments. This award is to be given annually if suitable nominations are received by the SEI
before November 1 each year. The nominations are reviewed by an award committee of Barry
Boehm, Manny Lebman, Bill Riddle, myself, and Vic Basili (who did not participate in this
award decision because of bis involvement in the Software Engineering Laboratory).

It is particularly fitting that the SEL was selected as the first winner for this award. They
started their pioneering work nearly a decade before the Software Engineering Institute was
founded, and their work has been both a guide and an inspiration to all of us who bave attempt-

ed to follow in their footsteps.
— Watts Humphrey

For nearly 20 years, the
Software Engineering
Laboratory has worked to
understand, assess, and
improve software and the

software-development |
process within the produc- :

tion environment of the
Flight Dynamics Division

of NASA’s Goddard Space |

Flight Center. We have

conducted experiments on |

about 125 FDD projects, |

applying, measuring, and
analyzing numerous soft-
ware-process changes. As 2
result, the SEL has adopt-
ed and tailored processes
— based on FDD goals
and experience — to sig-
nificantly improve software
production.

The SEL is a coopera-

¢ the cost of software to
support flight projects, and

¢ the average time to
produce mission-support
software.

Our work has yielded an
extensive set of empirical
studies that has guided the
evolution of standards, man-
agement practices, technolo-
gies, and training within the
organization. The result has
been a 75 percent reduction
in defects, a 50 percent reduc-
tion in cost, and a 25 percent
reduction in cycle tme. Over

| time, the goals of SEL have
i matured. We now strive to:

¢ Understand baseline

i processes -and product

characteristics, such as cost,

. reliability, software size,

. reuse levels,

tive effort of NASA/ | classes. By characterizing a

Goddard’s FDD, the Univ- |

ersity of Maryland Depart-
ment of Computer Science,

Corporation s Flight Dyna-
mics Technology Group It
was established in 1976
with the goal of reducing

¢ the defect rate of .
delivered software,

and error

production environment,
we can gain better insight

| into the software process
and Computer Sciences

|

and its products.

4 Assess improvements
that have been incorporat-
ed into development pro-
- jects. By measuring the
impact of available tech-

- nologies on the software

process, we can determine
which technologies are
beneficial to the environ-
ment and — most impor-
tantly — how the technolo-
gies should be refined to
best match the process with
the environment.

¢ Package and infuse
improvements into the
standard SEL process and
update and refine stan-
dards, handbooks, training
materials, and develop-
ment-support tools.!-3 By
identifying process im-
provements, we can pack-
age the technology so it can
be applied in the produc-
tion environment.

As Figure 1 shows, these
goals are pursued in a
sequential, iterative process
that has been formalized by
Basili as the Quality Im-
provement Paradigm and
its use within the SEL for-
malized as the Experience
Factory.’

IMPROVING THE PROCESS

We select candidates

" I[EEE SOFTWARE

0740-7453/84/$04.00 © 1994 [EEE

83

i Recommended approaches |

i Training material|

Software
Management| :
Environment | ¢ Ada users manual |

—
I (leanroom process model

§ Manager's handbook |

ey

Compare fest technigues

Goals-Questions-Metrics model

| Assess design criteria |

« Evaluate Ada

Quality Improvement Paradigm

Evaluate cost and resource models ¢

Approach to data collection i

! VgV g Initial dleanroom study 1

{ Programmer’s handbook |

Experience Factory model

Initial Ado-Fortran study |

§ Reuse analysis |

i Error and change profiles |

§ Initial 00 studyi

Environments |

E Design measurements;

l Relotionship among development measures

|iesource and effort profiles % Subjective measures

Figure 1. The SEL goals are pursued in a sequential, iterative faszon. The dmgrm includes |
some of the many SEL studies that have been conducted over the years, including those of
Cleanroom, Ada, and Fortran.

for process change on the
basis of quandtied SEL expe-
riences (such as the most sig-
nificant causes of errors) and
clearly defined goals for the
software (such'as to decrease
error rates). After we select

the changes, we provide

training and formulate exper-
iment plans. We then apply
the new process to one or
more production projects and
take detailed measurements.
We assess a process’s success
by comparing these measures
with the continually evolving
baseline. Based upon the
results of the analysis, we
adopt, discard, or revise the
process.

Process improvement
applies to individual projects,
experiments (the observation

the early years, the SEL
emphasized building a clear
understanding of the process
and products within the envi-
ronment. This led us to
develop models, relations,
and general characteristics of
the SEL environment. Most
of our process changes con-
sisted of studying specific,

focused techniques (such as -

. program-description lan-

of two or three projects), as

well as the overall organiza-

tion (the observation of :
trends over many years). In

guage, structure charts, and
reading techniques), but the
major enhancement was the
infusion of measurement,
process-improvement con-
cepts, and the realization of
the significance of process in
the software culture.

SEL OPERATIONS

The SEL has collected
and archived data on more
than 125 of its software-

{Mﬂimennn(e choracterization]

development projects. We
use the data to build typical-

project profiles against |
which we compare and eval- |

uate ongoing projects. The |

SEL provides its managers

with tools for monitoring -

and assessing project status.

The FDD typically runs six |
to 10 projects simultaneous-
ly, each of which is consid- |

ered an experiment within
the SEL.

For each project, we col-
lect a basic set of informa-
tion (such as effort and
error data). From there, the
data we collect may vary
according to the experiment
or be modified as changes
are made to specific
processes (such as the use of
Ada). As the information is

collected, it is validated and |

placed in a central database.
We then use this data with

other information — such

as the subjective lessons
learned — to analyze the
impact of a specific software
process and to measure and
feed back results to both
ongoing and follow-on pro-
jects.

We also use the data to
build predictive models and
to provide a rationale for
refining current software
processes. As we analyze the
data, we generate papers
and reports that reflect the
results of numerous studies.
We also package the results
as standards, policies, train-
ing materials, and manage-
ment tools.

PROCESS AND PRODUCT
ANALYSIS

The FDD is responsible
for the development and
maintenance of flight-
dynamics ground-support
software for all Goddard
flight projects. Typical
FDD projects range in size
from 100,000 to 300,000
lines of code. Several pro-
jects exceed a million lines
of code; others are as small
as 10,000 lines of code. (At
SEL, reused code is not
“free”; it is counted as 20
percent of new Fortran code
and 30 percent of new Ada
code.) The SEL improve-
ment goal is to demonstrate
continual improvement of
the software process within
the FDD environment by
carrying out analysis, mea-
surement, and feedback to
projects within this environ-
ment.

Understanding. Under-
standing what an organiza-
tion does and how it oper-
ates is fundamental to any

84

NOVEMBER 1995

attempt to plan, manage, or
improve the software
process. This is especially

true for software-develop- -

ment organizations. The
SEL supports this under-

standing in several ways, .
including, for example, the .

study of effort distribution
and error-detection rate.
¢ Effort distribution

identifies which phases of -
the life cycle consume which -
portion of development :
effort. Figure 2 presents the |

effort distribution of 11
Fortran projects by life-cycle
phase and activity. Under-
standing these distributions
helps us plan new efforts,
evaluate new technologies,
and assess the similarities

and differences within an |

ongoing project.

¢ Error-detection rate |

provides the absolute error

rate expected in each phase.
At SEL, we collected infor- -
mation on software errors |
and built a model of the :

expected errors in each life-

cycle phase. For 1,000 lines

of code, we found about
four errors during imple-

mentation; two during sys- |

tem test; one during accep- :

tance test; and one-half dur-

ing operation and mainte-
nance. The trend we derive !

from this model is that

error detection rates fall by .
50 percent in each subse- .
quent phase. This pattern :

seems to be independent of
the actual error rates; it is

true even in recent projects, .
. in which the overall error

rates are declining. We use

this model of error rates, as |

well as other similar types

of models, to better predict, :
manage, and assess change .

on newly developed pro-

jects.

Assessing and refining. We
consider each SEL project
to be an experiment, in
which we study some soft-
ware method in detail.
Generally, the subject of the
study is a specific modifica-
ton to the standard process
— a process that obviously
comprises numerous soft-
ware methods.

For example, the Clean-
room software methodo-
logy® has been applied on
four projects within the
SEL, three of which have
been analyzed thus far.
Each project gave us addi-
tional insight into the
Cleanroom process and
helped us refine the method
for use in the FDD envi-
ronment. After training
teams in the Cleanroom
methodology, we defined a
modified set of Cleanroom-
specific data to be collected.
The teams studied the pro-
jects to assess the impact
that Cleanroom had on the
process, as well as on mea-
sures such as productivity
and reliability. Figure 3
shows the results of the
three analyzed projects.

The Cleanroom experi-
ments required significant
changes to the standard
SEL development method-

ology and thus extensive ;

training, preparation, and

careful study execution. As |
in all such experiments, we |

generated detailed experi-
mentation plans that
described the goals, the
questions that had to be
addressed, and the metrics
that had to be collected to
answer the questions.

Because Cleanroom consists |

of many specific methods —
such as box-structure de-
sign, statistical testing, and

Acceptonce
test
15%

e

Implementation
30%

(ode 21%

Figure 2. Effort distribution by (A) life-cycle phase and (B)
activity. Phase data counts hours charged to a project during
each calendar phase. Activity data counts hours attributed to a

particular activity (as reported by the programmer), regard-

less of when in the life cycle the activity occurved.

Errors
(per thousand lines of code)

Productivity
(lines of code per day)

40

Figure 3. Results of three completed Cleanroom projects,
compared against the SEL baseline.

rigorous inspections — each

particular method had to be !
analyzed, along with the |
Cleanroom methodology |

itself. As a result of these

projects, a slightly modified !

Cleanroom approach was

deemed beneficial for small- |

er SEL projects. Anecdotal
evidence from the recently

completed fourth Clean-

room project confirms the |

effectiveness of Cleanroom.
The revised Cleanroom-
process model was captured
in a process handbook for
future applications to SEL
projects. We have analyzed

and applied many other .

methodologies in this way.

Packaging. Once we have
identified beneficial meth-
ods and technologies, we
provide feedback for future
projects by capturing the
process in standards, tools,
and training. The SEL has
produced a set of standards
for its own use that reflect
the results of its studies.
Such standards must con-
tinually evolve to capture

modified characteristics of !

the process (the SEL typi-
cally updates its basic stan-
dard every five years.)
Standards we have pro-

i

i

I
I

IEEE SOFTWARE

85

TABLE 1
EARLY SEL BASELINE

Project Reuse

1. GROAGSS 14
2. COBEAGSS 12
3. GOESAGSS 12
4. UARSAGSS 10

8. UARSTELS 35

5. GROSIM 18
6. COBSIM 1
7. GOESIM 29

Mission Cost™ Reliability

(number & name) (percent) (staff months) (error/KSLOC)

8144
348 522
261 5.18
675 281
79 891
39 4.45
9% Ln
80 29

* Mission cost = cost of telemetry simulator + cost of AGSS (GRO = projects 1 + 5,
COBE=2+6. GOES =3+ 7, UARS =4+ 8).

TABLE 2
CURRENT SEL BASELINE

Project Reuse Cost* Reliability
(number & name) (percent) (staff months) (error/KSLOC)
1.EUVEAGSS 18 155 122

2. SAMPEX 83 77 76

3. WINDPOLR 18 476 n/at

4. EUVETELS 96 36 41
5.SAMPEXTS 95 21 48

6. POWITS 69 77 239

7. TOMSTELS 97 n/at 23

8. FASTELS 92 n/at 69

* Mission cost = cost of telemetry simulator + cost of AGSS (GRO = projects 1 + 3,
COBE = 2+6. GOES = 3+7, UARS =4 + §).
t Excluded because it used the Cleanyoom development methodology, which counts ervors

differently.

¢t Total mission cost for TOMS and FAST cannot be calcilated because AGSSs are
incomplete (they are not included in the cost baseline).

duced include:

¢ Manager’s Handbook for
Software Development,!

& Recommended Approach
to Software Development,? and

¢ The SEL Relations and
Models.3

In addition to the evolv-
ing development standards,
policiés, and training mater-
ial, successful packaging
includes generating experi-

ment results in the form of
post-development analysis,
formal papers, and guide-
books for applying specific
software techniques.

IMPACT OF SEL

Our studies have invol-
ved many technologies,
ranging {rom development

and management practices
to automation aids and
technologies that affect the
full life cycle. We have col-
lected and archived detailed
information so we can assess
the impact of technologies
on both the software
process and product.

Product impact. To deter-
mine the effect of sustained
SEL efforts as measured
against our major goals, we
routinely compare groups
of projects developed at dif-
ferent times. Projects are
grouped on the basis of
size, mission complexity,
mission characteristics, lan-
guage, and platform. On
these characteristic pro-
jects, we compared defect
rates, cost, schedule, and
levels of reuse. The reuse
levels were studied carefully
with the full expectation
that there would be a corre-
lation between higher reuse
and lower cost and defect
rates. These characteristic
projects become our “base-
lines.” Table 1 shows an
early baseline — eight pro-
jects completed between
1985 and 1989. These pro-
jects were all ground-based
attitude-determination and
-simulation systems ranging
in size from 50,000 to
150,000 lines of code that
were developed on large
IBM mainframes. Each was
also a success, meeting mis-
sion dates and requirements
within acceptable cost.
Table 2 shows the current
SEL baseline, which com-
prises seven similar projects
completed between 1990
and 1994.

As the tables show, the
early baseline projects had a
reliability rate that ranged

from 1.7 to 8.9 errors per
1,000 lines of code, with an
average rate of 4.5 errors.
The current baseline pro-
jects had a reliability rate
ranging from 0.2 to 2.4
errors per 1,000 lines of
code, with an average rate
of 1 error. This is about a
75-percent reduction over
the eight-year period.

The dramatic increase in
our reuse levels — aided by
experimentation with tech-
niques such as object-ori-
ented development and
domain-engineering con-
cepts — have been a major
contributor to improved
project cost and quality.
Reuse, along with increased
productivity, also con-
tributed to a significant
decrease in project cost. We
examined selected missions
from the two baselines and
found that, although the
total lines of code per mis-
sion remained relatively
equal, the total mission cost
decreased significantly. The
average mission cost in the
early baseline ranged from
357 to 755 staff-months,
with an average of 490. The
current baseline projects
had costs ranging from 98
to 277 staff-months with an
average of 210. This is a
decrease in average cost per
mission of more than 50
percent over the eighe-year
period. This reduction
occurred despite the
increased mission complexi-
ty, shown in Table 3.

Process impact. The most
significant changes in the
SEL environment are illus-
trated by the standards,
training programs, and
development approaches
incorporated into the FDD

86

NOVEMBER 1885

process. Although specitic
techniques and methods
have had a measurable
impact on a class of pro-
jects, significant improve-
ment to the software-devel-
opment process — and an
overall change in the envi-
ronment — has occurred
because we have continu-
ously incorporated detailed
techniques into higher level
organizational processes.

The most significant
process attributes that dis-
tinguish our current pro-
duction environment from
that of a decade earlier
include:

¢ Process change and
improvement has been
infused as a standard business
practice. All standards and
training material now con-
tain elements of our continu-
ous-improvement approach
to experimentation.

¢ Measurement is now
our way of doing business
rather than an add-on to
development. Measurement
is as much a part of our
software standards as docu-
mentation. It is expected,
applied, and effective.

¢ Change is driven by
process and product. As the
process-improvement pro-
gram matured over the
years, our concern for prod-
uct attributes grew to equal
our concern for process
attributes. Product goals are
always defined before
process change is infused.
Measures of product are
thus as important as those
of process (if not more so).

¢ Change is bottom-up.
Although process-improve-
ment analysts originally
assumed they could work
independently of develop-

ers, we have realized over
the years that change must
be guided by development-
project experience. Direct
input from developers as
well as measures extracted
from development activities
are key factors in change.

¢“People-oriented”
technologies are empha-
sized, rather than automa-
tion. The most effective
process changes are those
that leverage the thinking of
developers. These include
reviews, inspections, Clean-
room techniques, manage-
ment practices, and inde-
pendent-testing techniques
—- all of which are driven by
disciplined programmers
and managers. Automation
techniques have sometimes
provided improvement, but
people-driven approaches
have had farther reaching
impacts.

he SEL has invested

approximately 11 per-
cent of its total software
budget into process-im-
provement. This expense
includes project overhead,
as well as overhead for data
archiving and processing
and process and product
analysis. We have main-
tained detailed records so
we can accurately record
and report process-improve-
ment Costs.

Our investment in
process-improvement has
brought many benefits. The
cost, defect rates, and cycle
time of flight-dynamics
software have decreased sig-
nificantly since we started
the program. Today, our
software developers are
building better software

TABLE 3

COMPARING INCREASE
IN BASELINE COMPLEXITY

Attribute Early SEL baseline Current SEL baseline
Control Spin stabilized ~ Three-axis stabilized
Sensors 1 8toll
Torques 1 2t03
Onboard Analog Digital
computer simple control control
Telemetry 5 12015

Data rates 2.2 kbs 32 kbs
Accuracy 1 degree 0.02 degree

more efficiently — using

many techniques and meth- | Pt P
o 4 . Studies and the Computer Science

ods considered experimen-
tal only a few years ago.
Their progress has been
facilitated throughout by
the SEL focus on defining
organizational goals, ex-
panding domain under-
standing, and judiciously
applving new technology,
allowing the FDD to maxi-
mize the lessons from local
experience. .

REFERENCES

1. L. Landis etal., “Manager’s
Handbook for Software Devel
opment,” Revision 1, Tech.
Report SEL-84-101, Software
Eng. Laboratory, Greenbelr,
Md.. 1989.

2. L. Landis et al., “Recommended
Approach to Software Develop
ment,” Revision 3, Tech. Report
SEL-81-303, Software Eng.
Laboratory, Greenbelt, Md. 1992.

3. W. Decker, R. Hendrick, and J.
Valett. “Relationships, Models
and Measurement Rules,” Tech.
Report SEL-91-001, Software
Eng. Laboratory. Greenbelt,
Md., 1991,

4. V.R. Basili and D.M. Weiss, “A

Methodology for Collecting

Valid Sottware Engineering

Data.” IEEE Trans. Software Eng.,

Nov. 198+, pp. 728-738.

V'R. Basili, “Software Develop

ment: A Paradigm for the

Future,” Proc. Compsac, IEEE CS

Press, Los Alamitos, Calif., 1989,

pp. 471485,

6. V.R. Basili and S. Green, “Soft
ware Process Evolution at the
SEL.” [EEE Software, July 1994,
pp. 38-66.

[

Victor Basili is a professor in the
Institute for Advanced Computer

Department at the University of
Maryland. He is co-editor-in-chief of
the International Fournal on Empirical
Software Engineering.

Marvin Zelkowitz is a professor
in the Institute for Advanced
Computer Studies and the Computer
Science Department at the University
of Maryland and has been involved
with the SEL since its inception in
1976. His research interests include
language design, environments, and
formal methods.

Frank McGarry is a senior mem-
ber of the executive staff at Computer

i Sciences Corporation. Previously at

NASA, he was a founding director of
the SEL in 1976.

Jerry Page is the vice president

. of the System Science Division at

Computer Sciences Corporation.
Until last year, he managed SEL
activities within CSC.

Sharon Waligora has worked for
the Computer Science Corporation
since 1974 and directs the CSC
branch of the SEL, leading efforts in
software process improvement,
process definition, and measurement
activities.

Rose Pajerski has worked for the

| Goddard Space Flight Center for

more than 20 years and directs the
GSFC branch of the SEL. Her
research interests include testing
processes, systems management
through measurement, and tailoring
approaches for process-improvement
programs.

Address questions about this arti-
cle to Basili at the Department of
Computer Science, University of
Maryland, 4121 A.V. Williams,
College Park, MD 20742; basili@cs.

I umd.edu.

|IEEE SOFTWARE

87

