
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 339 

A Knowledge-Based Approach 
to the Analysis of Loops 

Salwa K. Abd-El-Hafiz, Member, /€E€ Computer Society, and Victor R. Basili, Fellow, /€€€ 

Abstract-This paper presents a knowledge-based analysis approach that generates first order predicate logic annotations of 
loops. A classification of loops according to their complexity levels is presented. Based on this taxonomy, variations on the basic 
analysis approach that best fit each of the different classes are described. In general, mechanical annotation of loops is performed 
by first decomposing them using data flow analysis. This decomposition encapsulates closely related statements in events, that can 
be analyzed individually. Specifications of the resulting loop events are then obtained by utilizing patterns, called plans, stored in a 
knowledge base. Finally, a consistent and rigorous functional abstraction of the whole loop is synthesized from the specifications of 
its individual events. To test the analysis techniques and to assess their effectiveness, a case study was performed on an existing 
program of reasonable size. Results concerning the analyzed loops and the plans designed for them are given. 

Index Terms-First order predicate logic, formal specifications, knowledge base, loops, program understanding, reverse engineering 

1 INTRODUCTION 
ROGRAM understanding plays an important role in P nearly all software related tasks. It is vital to the main- 

tenance and reuse activities. Such activities cannot be per- 
formed without a deep and correct understanding of the 
component to be maintained or reused. Program under- 
standing is also indispensable for improving the quality of 
software development activities such as code reviews, de- 
bugging, and some testing approaches. All these develop- 
ment activities require programmers to read and under- 
stand programs. 

Due to the importance of program understanding, there 
has been considerable research on techniques and tools for 
analyzing and understanding computer programs. Within 
these efforts, substantial interest is usually directed towards 
the specific topic of analyzing loops. This interest stems 
mainly from inherent reasoning difficulties involving re- 
peated program state modifications and the fact that loops 
have a major effect on program understandability [42]. 

To analyze loops and reason about their properties, some 
approaches define heuristics that can be used to guide a 
search for a loop invariant [I91 or function 1321. However, 
heuristic techniques in general are not always useful. After 
applying the heuristics a considerable number of times, one 
may or may not succeed in finding a correct invariant or 
function. Other approaches focus on developing algorithmic 
techniques for finding the invariants or functions of specific 
simple classes of loops. The research performed by Basu and 
Misra 181, Dunlop and Basili 1121, Katz and Manna 1261, and 
Wegbreit 1491 is representative of these loop analysis ap- 

S.K. Abd-El-Hafiz is with the Engineering Mathematics Depavtment, 
Faculty of Engineering, Cairo University, Giza, Egypt. 
E-mail: elhafiz@cairo.eun.edu. 

Maryland, College Park, M D  20742. E-mail: basili@cs.umd.edu, 
V.R. Basili is with the Department of Computer Science, University of 

Manuscript received Mar. 11,1994; revised Jan. 19,1996. 
Recommended for acceptance by D. Wile. 
For information on obtaining reprints of this article, please send e-mail to: 
transse@computer.org, and reference IEEECS Log Number S95491. 

proaches. These algorithmic approaches analyze loops 
through the use of formal, semantically sound, and unambi- 
guous notation. Although some of them provide guidelines 
on how to mechanically generate loop invariants or func- 
tions, no algorithmic techniques were actually used to im- 
plement automatic analysis systems. A different approach, 
that analyzes loops by mechanically decomposing them into 
smaller fragments, was adopted by Waters [47]. Even though 
Waters’ approach does not address the issue of how to use 
this decomposition to mechanically annotate loops, it is espe- 
cially interesting because of its practicality. 

To analyze complete programs, the knowledge-based ap- 
proaches utilize a knowledge base of plans in providing in- 
telligent analysis results. Plans are defined as units of knowl- 
edge representing, or necessary for identifying, abstract pro- 
gramming concepts 1151, [161, 1241, [371, 1381, 1481. These ap- 
proaches are inspired by the cognitive studies [311, [411, [43] 
which suggest that the understanding process is one in which 
programmers make use of stereotyped solutions to problems 
in making sophisticated high-level decisions about a pro- 
gram. These knowledge-based approaches are all imple- 
mented, to varying degrees, in automatic analysis systems. 
Some of these approaches are: graph-parsing [38], [50]; top- 
down analysis using the program’s goals as input [231, [241; 
top-down analysis using a functional representation of pro- 
grams that relates the program code and goals to a proof of 
correctness [6], [33]; heuristic-based object-oriented recogni- 
tion [15], [16]; transformation of a program into a semanti- 
cally equivalent but more abstract form with the help of 
plans and transformation rules [27], [29], 1461; and decompo- 
sition of a program into smaller more tractable parts using 
control flow analysis [17] or program slicing 1181. Even 
though these approaches demonstrate the feasibility and use- 
fulness of the automation of program understanding, they 
lack some important features. 

Most of the knowledge-based program analysis and un- 
derstanding approaches produce program documentation 

0098-5589/96$05.00 01996 IEEE 

mailto:elhafiz@cairo.eun.edu
mailto:basili@cs.umd.edu
mailto:transse@computer.org


J4U I C E 1  

that is generally in the form of structured natural language 
text [9], [151, [16], [17], [24], [36], [38], [50]. Such informal 
documentation gives expressive and intuitive descriptions 
of the code. However, there is no semantic basis that makes 
it possible to determine whether or not the documentation 
has the desired meaning. This lack of a firm semantic basis 
makes informal natural language documentation inherently 
ambiguous. 

Some of the knowledge-based approaches rely on real- 
time user-supplied information that might not be available 
at all times. For instance, goals a program is supposed to 
achieve [6], [24] or transformation rules that are appropriate 
for analyzing a specific code fragment 1271, [461 are not al- 
ways clear to the user. Others have difficulty in analyzing 
nonadjacent program statements [29]. In addition, a signifi- 
cant amount of program analysis and understanding re- 
search used toy programs that are less than 100 lines of 
code to validate proposed approaches. Realistic evaluations 
of these approaches, which give quantifiable results about 
recognizable and unrecognizable concepts in real and ex- 
isting programs, are needed. Such evaluations can also 
serve as a basis for empirical studies and future compari- 
sons with other approaches [40]. 

To address the above-mentioned drawbacks, we present 
a knowledge-based approach to the automation of program 
analysis. It combines and builds on the strengths of a prac- 
tical program decomposition method 1471, the axiomatic 
correctness notation [191, and the knowledge-based analysis 
approaches. It mechanically documents programs by gen- 
erating first order predicate logic annotations of their loops. 
The advantages of predicate logic annotations are that they 
are unambiguous and have a sound mathematical basis. 
This allows correctness conditions to be stated and verified, 
if desired. Another advantage is that they can be used in 
assisting formal development of software using such lan- 
guages as VDM and Z [251,[451. 

A family of analysis techniques has been developed and 
tailored to cover different levels of program Complexity. 
This complexity is determined by classifying while loops 
along three dimensions. The first dimension focuses on the 
control computation of the loop. As defined by Pratt [351, 
the control computation for a loop is that part concerned 
with the initialization, modification, and testing of the vari- 
ables which determine the flow of control into, through, 
and out of the loop. The second dimension focuses on the 
complexity of the loop condition as determined by the 
number of clauses it has. The third dimension focuses on 
the complexity of the loop body. Based on this taxonomy, 
the analysis techniques that can be applied to the different 
loop classes are described. 

In general, we annotate loops with predicate logic asser- 
tions in a step-by-step process as depicted in Fig. 1 [1]. The 
analysis of a loop starts by decomposing it into fragments, 
called events. Each event encapsulates the loop parts that 
are closely related, with respect to data flow, and separates 
them from the rest of the loop. The resulting events are then 
analyzed, using plans stored in a knowledge base, to de- 
duce their individual predicate logic annotations. Finally, 
the annotation of the whole loop is synthesized from the 
annotations of its events. 

This study tests several hypotheses related to the pre- 

A loop complexity dimensions are indicators of its 
amenability to analysis. 
The loop decomposition and plan design methods can 
make the plans applicable to many loops that are dif- 
ferent in their designs and functions. This, in turn, can 
increase plan utilization. 
The analysis techniques can be automated. 

To test the first two hypotheses and to characterize the 
practical limits of the analysis approach, a case study on a set 
of 77 loops in an existing Pascal program for scheduling uni- 
versity courses has been performed. The program has 1,400 
executable lines of code and the loops analyzed have the 
usual programming language features such as pointers, pro- 
cedure and function calls, and nested loops. However, the 
loops analyzed do not involve recursive function and proce- 
dure calls. Recursion is not currently being handled by our 
analysis approach. To test the third hypothesis, a prototype 
tool, which annotates loops with predicate logic annotations, 
was developed. 

Section 2 of this paper gives some of the definitions 
used. Section 3 introduces the loop taxonomy. Sections 4 
and 5 describe the techniques used for analyzing flat and 
nested loops, respectively. Section 6 discusses the approach 
presented and highlights its advantages and limitations. 
Section 7 describes how the case study was performed and 
gives the results of the analysis. Section 8 briefly explains 
the design and structure of the implemented prototype tool. 
Finally, conclusions and future research directions are 
given in Section 9. Appendices A and B give the notation 
and acronyms used throughout the rest of the paper. 

sented analysis approach: 

2 DEFINITIONS 
We start by defining some of the notation used throughout 
this paper. First, we give the definitions related to the rep- 
resentation of while loops. 

A control-fIozu graph is a directed graph that has one node 
for each simple statement and one node for each control 
predicate. There is an edge from node I to node J if an exe- 
cution of J can immediately follow that for I [21]. 

Let the abstract representation of the while loop be while B do 
S where the condition B has no side effects and the state- 
ments S are representable by a single-entry single-exit con- 
trol-flow graph. This representation abstracts from the 
syntax of the specific imperative programming language 
being used. Though the approach described here applies to 
all loops having this abstract representation, examples and 
illustrations are given using Pascal. Using this abstract rep- 
resentation, a contvol variable of the while loop is a variable 
that exists in the condition B and is modified in the body S. 
The sequence of values scanned by a control variable are 
these values that get assigned to the control variable and 
actually used in the loop body. 

Now, we give some definitions that introduce the lan- 
guage and terminology used in the analysis. A concurrent 
assignment is a statement in which several variables can be 
assigned simultaneously. We use the form U,, v2, . . ., un := e,, 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 

Dimension 
1. Control computation 
2. Complexity of condition 
3. Complexity of body 

341 

Complementary classes 

Noncomposite condition Composite condition 
Simple loop i Generalloop 

Flat loop ! Nestedloop 

' While Loop 

I .= I, , =11 .  
' h =o. 
' y -0. 
~ while i <= 10 do 

~ 

Fig. 1. Overview of the analysis approach 

Knowledge 
Base 

e2, . . ., e, to assign every ith expression from the right hand 
list to its corresponding ith variable from the left hand list 
[14], [32]. A conditional assignment is a set of one or more 
guarded concurrent assignments separated by commas 0'. 
When the guard (i.e., the Boolean expression), of a concur- 
rent assignment is satisfied, the modifications performed on 
a variable are given by the concurrent assignment [14], [32]. 
Similar to Gries' definition of the alternative command, all 
the guards must be well defined [14]. However, it is possi- 
ble that all guards evaluate to false. In this case, no variable 
is modified (i.e., the conditional assignment evaluates to a 
skip command [14]). It should also be noted that because 
we are only analyzing deterministic programs, all the 
guards are mutually exclusive. 

Any variable assigned in a conditional assignment de- 
fines the data flow out of the statement. Any variable refer- 
enced by a conditional assignment defines the data flow into 
the statement. Two conditional assignments are said to be 
circularly dependent if some variable is responsible for data 
flow out of one statement and into the other, either directly 
or indirectly, and vice versa. 

3 A LOOP TAXONOMY 
To design the analysis techniques that best fit different lev- 
els of program complexity, we classify while loops along 
three dimensions. The first dimension focuses on the con- 
trol computation part of the loop. The other two dimen- 
sions focus on the complexity of the loop condition and 
body. Along each dimension, a loop must belong to one of 
two complementary classes as shown in Table 1. In this 
classification, the loops in the middle column are expected 
to be more amenable to analysis than the corresponding 
ones in the right column. 

Within the first dimension, we differentiate between sim- 
ple and general loops. Simple loops have a behavior similar to 
that of for loops. They are defined by imposing two restric- 
tions: the loop has a unique control variable, and the modifi- 

Predicate 

* Annotation 
of the Whole 
While Loop 

Logic 

cation of the control variable does not depend on the values 
of other variables modified within the loop body. Loops that 
do not satisfy these conditions are called general loops. 

Along the second dimension, the complexity of the loop 
condition can vary between two cases. In the noncomposite 
case, B is a logical expression that consists of one clause of 
the conjunctive normal form [39]. In the composite case, 
more than one clause exists. Along the third dimension, the 
complexity of the loop body varies between flat and nested 
loop structures. In flat loop structures, the loop body cannot 
include other loops. In nested structures, however, the loop 
body includes one or more loops. 

TABLE 1 
THE THREE DIMENSIONS USED FOR CLASSIFYING LOOPS 

4 ANALYSIS OF FLAT LOOPS 

As depicted in Fig. 2, the analysis of flat loops is performed 
in a step-by-step process divided into four main phases. 
Descriptions of these phases and their application to the 
example shown in Fig. 3 are given in the remainder of this 
section [3]. In this example, a simple loop with a noncom- 
posite condition scans a segment of the array capacity 
searching for its minimum. 

0 Knowledge 

Fig. 2. Analysis of flat loops. 



342 

Name 

c, 
c2 

C? 

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

Conditional Assignment 

capacity[j] < min + index := j ,  
capacity[j] < min =1 min := cnpacity[jl,  

true =+ i := j + 1 

j ,  index, min, num-of-room: integer; 
capacity: array[ 1 . . mm-room] of integer; 

Order 
1 
2 
3 

while j < num-of-room + 1 do begm 
i f  capacity[i] < min then begin 

index := j ;  
min := capacityi[i]; 

end; 
J :=J+ 1 

end; 

Fig. 3. Analysis of flat loops. 

Name Segment 
s3 j : = j + l  
s2 
S1 

capacity[jl < min + min := capacityIj1 
capacity[j] < min =1 index := j 

4.1 Normalization of the Loop Representation 
The purpose of this phase is to make the loop representa- 
tion independent of the programming language and the 
implementation specific details. 

Normalization of the Loop Condition. The loop condi- 
tion is converted into a standard normal form, which is the 
conjunctive normal form. This normal form represents a well- 
formed formula (wff) in predicate logic as a conjunction of 
clauses where a clause is defined to be a wff in conjunctive 
normal form but with no instances of the and connector [391. 
For example, the loop condition x < a or (y < b and z < c) is 
transformed to the conjunction of two clauses. The first 
clause is (x < a or y < b)  and the second is (x < a or z < c). 

Normalization of the Loop Body. A single unwinding of 
the loop body is performed by symbolic execution [4] that 
gives the net modification performed on each variable in one 
iteration of the loop, if any 171. We use the conditional as- 
signment notation to represent the result of this symbolic 
execution. 

After converting the loop condition and body into the 
aforementioned standard forms, they are further normal- 
ized by performing some simplifications. Arithmetic ex- 
pressions are simplified by converting them into an internal 
canonical form for polynomials, manipulating them, and 
converting them back to their external form [34]. Predicate 
simplifications are performed using rule-based transforma- 
tions. Since the simplification details are dependent on our 
specific prototype implementation, they are not discussed 
during the description of the analysis phases. 

For the loop given in Fig. 3, the condition is already 
in conjunctive normal form containing the one clause 
j < num-of_yooms + 1. The symbolic execution does not 
change the body of the loop. However, the net modification 
performed on each variable is given in the form of a condi- 
tional assignment as follows: 

~~~ 

4.2 Decomposition of the Loop Body 
To facilitate the mechanical generation of loop annotations, 
the symbolic execution result is uniquely decomposed into 
segments of code that can be analyzed separately. Each seg- 
ment encapsulates the statements that are interdependent 
with respect to data flow. The loop segments are partitions of 
the loop body symbolic execution result. Each segment con- 

Notice that the segment that defines j ,  S,, has the lowest 
order because the other two segments, S, and S,, reference j 
(i.e., S, + S, and S, + S,). Similarly, S, + S, because min is 
defined in S, and referenced in S,. Since the premise of the 
conditional assignment that modifies j is true, it is removed. 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 343 

4.3 Formation of the Loop Events 
To represent the abstract concepts in a loop, we use the 
loop body segments and the clauses of the loop condition to 
form the loop events. We define two categories of loop 
events: basic events and augmentation events. 

Basic Events (BEs)  are the fragments that constitute the 
control computation of the loop. A BE consists of three parts: 
the condition, the enumeration, and the initialization. The condi- 
tion consists of only one clause from the loop condition. The 
enumeration is a segment responsible for the data flow into 
the condition (i.e., the variables assigned in the enumeration are 
referenced by the condition). The initialization is the initializa- 
tion of the variables defined in the enumeration. 

To form BEs, each clause of the loop condition is used as 
the condition of a unique BE. Then, the enumeration of each 
BE is constructed from the highest order segment(s) having 
data flow into the condition. If a clause has no segment re- 
sponsible for the data flow into it, this means that this clause 
is redundant and should be removed from the loop condi- 
tion. If a segment is responsible for the data flow into the 
loop condition but remains with no clause associated with it, 
this segment is used as the enumeration of a new BE whose 
condition is set to true. The initializations of the control vari- 
ables defined in a BE are included in the initialization part. 

The BE of the loop given in Fig. 3 is formed by combin- 
ing the unique condition clause, ( i  < num-of-rooms + l), 
with the only segment that is responsible for the data flow 
into it, S,. Since the loop under consideration has no ini- 
tializations, we use the notation j? to denote the initial 
value of the variable j. As a result, the BE has the following 
form: 

condition: 
enumeration: 
initialization: j := J ?  

Augmentation Events (AEs) are the fragments that con- 
stitute loop computations other than the control computa- 
tion. An AE consists of two parts: the body and the initializa- 
tion. The body is one segment of the loop body that is not 
responsible for the data flow into the loop condition. The 
initialization is the initialization of the variables defined in 
the body. 

After identifying the BEs, the AEs bodies are formed 
from the segments of the loop that did not get used in BEs. 
The initialization of each variable defined in an AE is then 
included in it. 

For the loop shown in Fig. 3, the remaining segments S, 
and S ,  constitute the bodies of two AEs given below. The 
notation win? and index? are used to denote the initial val- 
ues of the variables nzin and index 

j < numpof_rooms + 1 
j := j + 1 

1) AE1 
body: capacity[j] < min + min := capacityljl 
initialization: min := min? 

body: capacity[jl < min 
initialization: index := index? 

2) AE2 
index := j 

Finally, we give each event (basic or augmentation) the 
same order as the segment it utilizes. This enforces the con- 
dition that the variables referenced in an event are either 

defined in a lower order event or not modified within the 
loop at all. As mentioned in the previous subsection, this 
makes it possible to propagate the results of analyzing an 
event to the analysis of other events dependent on it. 

The three events of the loop shown in Fig. 3 are thus or- 
dered as follows. 

1) BE (order 1) 
condition: j < num-of-rooms + 1 
enumeration: j := j + 1 
initialization: j := j? 

body: capacity[jl < min + min := capacity[jl 
initialization: min := min? 

body: capacity[j]< min + index := j 
initialization: index := index? 

2) AE (order 2) 

3)  AE (order 3)  

4.4 A Knowledge Base of Plans 
To analyze the loop events, we utilize plans stored in a 
knowledge base. We use the term 'plan' to refer to a unit of 
knowledge required to identify an abstract concept in a 
program. Our plans are used as inference rules [151, [16]. 
Their basic structure is divided into two parts: the antece- 
dent and the consequent. When a loop event matches a plan 
antecedent, the plan is fired. The instantiation of the infor- 
mation in the consequent represents the contribution of this 
plan to the loop specifications. To guarantee the accuracy of 
the predicate logic specifications included in the conse- 
quents, no partial matches with antecedents are allowed 
(i.e., the antecedent has to be completely matched). 

The knowledge base is designed so that any two plans 
do not have similar antecedents. Thus, a loop event can 
only match the antecedent of a unique plan. It should also 
be noted that the possibility of designing as many plans as 
the number of loop events in a specific program is reduced 
because the loop events encapsulate abstract concepts that 
can occur in different loops. Section 7 will examine this is- 
sue of the knowledge base size in more detail. 

Corresponding to the two event categories, we have two 
plan categories: Basic Plans (BPs) and Augmentation Plans 
(APs). BPs analyze BEs and AI's analyze AEs. Plans are fur- 
ther classified according to the kind of loops they analyze. 

In case of simple loops, the sequences of values scanned 
by the control variable during and after the execution of a 
simple loop can be easily written because the control com- 
putation is isolated from the rest of the loop. The loop con- 
dition, the control variable's initial value, and the net modi- 
fication performed on the control variable in one loop it- 
eration, if any, provide sufficient information for writing 
these sequences. This specific information about the control 
computation of the loop can be used to produce equally 
specific loop specifications. The plans that analyze simple 
loops can include these sequences and utilize them in 
writing the loop specifications. The loop specifications pro- 
duced for simple loops are the preconditions, invariants, 
and postconditions. The formal approach used for deriving 
the invariants is the axiomatic approach [141, [191, [20]. In 
this approach, if we assume that B, S, So, I, P,  and (2 are the 
loop condition, body, initialization, invariant, precondition, 
and postcondition, respectively, then the relations between 



344 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

them are given in the following rules. In these rules, the 
notation P { S ) Q  means that if the predicate P is true before 
executing the first statement of the program part S, and if S 
terminates, then the predicate Q will be true after execution 
of S is complete. 

I (while B do S }  I and 
( I  and - B 3 Q), and 
( P  + T), where Tis deduced from T{So}I.  

The analysis of geneml loops is not as straightforward as 
that of simple ones. In many cases, it might not be easy, or 
even possible, to obtain such specific knowledge because 
the control computation of the loop is not as determinate 
and isolated as in the case of simple loops. The sequences of 
values scanned by the control variable(s) and the program 
state at the end of the loop are usually dependent on the 
combined indeterminate effects of several events and the 
values of some program variables. As a result, the plans 
that analyze general loops neither include the aforemen- 
tioned sequences nor utilize them in writing the loop speci- 
fications. The loop postcondition can only be deduced after 
the synthesis of the loop invariant. The postcondition is 
formed by taking the conjunction of the loop invariant with 
the negation of the loop condition [14], [19]. Using this 
method to obtain the loop postcondition yields predicates 
that might not be as informative and concise as those of 
simple loops. As a result, additional simplifications might 
be needed to reduce the complexity and improve the read- 
ability of general loops postconditions. 

For instance, consider the simple loop shown in Fig. 3. 
The sequence scanned by the control variable at any point 
during the loop execution is j? to j - 1. This sequence is 
needed to write the part of the invariant: 

min = MIN({min?I U {capacity[j? .. j - ll}), 
where MIN(s)  is the minimum of the set s and U is the set 
union operator. The final sequence of values scanned by the 
control variable in this loop is j? to num_of_yooms. This se- 
quence is needed to write the part of the postcondition: 

min = MIN({min?J U {capacity[j? .. num_of_yooms I}). 
In the general loop given in Fig. 4, however, there is no 

guarantee that the final sequence scanned by the control 
variable j will be j? to num_of_moms. The value of the final 
sequence is dependent on the interaction of the two events 
that modify flag and j ,  and the contents of the variables ca- 
pacity and limit. As a result of this generality of the control 
computation, the sequences of values scanned by the con- 
trol variable(s) and, consequently, the postcondition parts 
of the individual events cannot be written. 

B, 

while (j <= num-of-rooms + 1) and (flag =fake)  do begin 
if capncityb] < limit then begin 

index := j ;  
flag := true 

end; 
j : = j +  1 

end 

Fig. 4. Example of a general loop. 

To accommodate the differences between simple and 
general loops, we have two categories of BPs. Determinate 
BPs (DBPs) contain in their consequents information re- 
garding the postcondition and the sequences of values 
scanned by the control variable. Indeterminate BPs (IBPs), 
on the other hand, do not contain such information. We 
also have two categories of APs. Simple AI's (SAPS) utilize 
the above sequences in writing the loop specifications, in- 
cluding its postcondition. General APs (GAPS) do not in- 
clude the loop postcondition part or utilize the above se- 
quences. These plan categories are shown in Fig. 5. It 
should be noticed that because the information contained in 
the consequents of IBPs is a subset of that contained in the 
consequents of DBPs, DBPs can be used in analyzing gen- 
eral loops. In such cases, we neglect the information re- 
garding the control sequences and the postcondition in the 
DBPs consequents. However, because IBPs consequents do 
not contain such specific information, IBPs cannot be used 
in analyzing simple loops. 

Basic Plans (BPs) Augmentation Plans ( A P s )  

A A 
Determinate BPs Indeterminate BPs Simple APs General APs 

CDBPs) WPS) ( S A P S )  ( G a s )  

Fig. 5. Plan categories. 

In general, The information included in a plans antece- 
dent and consequent are described below. In this descrip- 
tion, the words printed in bold correspond to fields in the 
plans (see Figs. 6 and 7). 

An antecedent contains the following information: 

An individual listing of the control variables, in the 
control-variables part, which serves to underscore 
their importance and to facilitate the design, read- 
ability, and comprehension of the plan. 
Generic patterns of BEs and AEs that are used to 
match stereotyped loop events. 
Knowledge needed for the correct identification of the 
plans such as data taype informaiton and the results 
of analyzing previous events. This knowledge is 
given in the firing-condition. 

A consequent includes the following information: 
1) Knowledge necessary for the annotation of loops with 

their Hoare-style [19] specifications. The precondition 
and invariant have the usual meaning 1191. The post- 
condition part gives information, in case of simple 
loops, about the variables values after the loop execu- 
tion ends. It is correct provided that the loop executes 
at least once. If the loop does not execute, no variable 
gets modified. 

2) In case of DBPs, knowledge about the sequence of 
values scanned by the control variables at any point 
during and after the loop execution is captured in se- 
quence and final-sequence, respectively. 

Fig. 6 and Fig. 7 show two example plans of the categories 
DBP and SAP, respectively. To convey the basic analysis 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 345 

ideas within a reasonable space limit, we only show simpli- 
fied versions of the plans. The suffix '#' is used to indicate 
terms in the antecedent (or consequent) that must be 
matched (or instantiated) with actual values in the loop 
events. 

plan-name 
antecedent 

control-variables 
condition 
enumeration 
initialization 
firing-condition 

consequent 
precondition 
invariant 
postcondition 
sequence 
final-sequence 
inner-addition 

where, 
Z J  
SIJC'C' (x) 
PRED (x) 
SIIIFT 

DBPl (ascendmg enumeration) 

var# 
var# K# ex@ 
var# := SUCC(var#) 
vari: := var?# 
(R# is relational operator that equals < or <) and 
(var# is of a discrete ordinal type) and 
(Noncomposite or general loop condition) 

PRED(var?X) R# exp# 
var?K < var# R# SUCC(exp#) 
vnr# = Sl /Cc ' (SHI~(expi ) )  
var?# , . PRED(var#) 
var?# ., SHIFT(exph) 
var?# 5 var# R# exp# 

Sequence of integers from i up to j inclusive. 
The successor of x .  
The predecessor of x .  
The identity function i fR#  equals 5, Equals 
PRED otherwise. 

Fig. 6. A determinate basic plan. 

plan-name 
antecedent 

control-variables 
body 
initialization 
firing-condition 

precondition 
invariant 

postcondition 

consequent 

inner-addition 
where, 

MIN(s) 

SAPs  (find minimum) 

V# 

a#[exp#] R# lhs# 3 lhs# := a#[exp#] 
lhs := lhs?# 
(R# equals 5 or <) 

true 
lhs =MIN({lhs?#) U {a#[exp# &,em, I}) 
lhs MIN( { lhs ?#} .U 

1)) 

- - 
V #  

{a#[ex@ rial  -sequence 

Same as invariant. 

The minimum of the sets  

Fig. 7. A simple augmentation plan 

The plan DBP, (Fig. 6) represents an enumeration con- 
struct that goes over a sequence of values of a discrete ordi- 
nal type in an ascending order with a unit step. In the case 
where the loop has a composite condition, the sequence, fi- 
nal-sequence and postcondition of this plan are written in a 
more general form that enables deducing the corresponding 
sequence, final-sequence and postcondition of the loop 
from the multiple BEs it contains. The plan SAPS (Fig. 7) 
searches for the minimum of a segment of the array a# and 
stores it in the variable Iks#. 

The knowledge base in a specific application domain 
should be created by an expert in both formal specifications 
and this domain. The expert should analyze the commonly 
used events in this domain and create new plans or im- 
prove on already existing ones. In creating this knowledge 
base, its size should be controlled by increasing the utiliza- 

tion of the designed plans. The loop decomposition method 
was designed for this purpose; to reveal the common algo- 
rithmic constructs that can be incorporated in many differ- 
ent loops. The hypothesis is that this decomposition can 
have a positive effect on plan utilization and, hence, on the 
size of the knowledge base. Improvements on the structure 
and/or the knowledge represented in the plans can also 
make the plans applicable to a larger set of events. 

Knowledge representation improvements, called abstvac- 
tions, involve replacing some of the terms in a plan with 
more abstract ones that make the plan capable of analyzing 
more cases. For example, replacing the addition operator, +, 
in a plan that analyzes an accumulation by summation 
event by a more abstract one that denotes either addition or 
multiplication represents an abstraction of this plan. The 
new plan can analyze both accumulation by summation 
and accumulation by multiplication events. 

Structural improvements to a plan modify the basic 
structure into a tree structure that allows the inclusion of sev- 
eral similar plans in one tree-structured plan. The root of the 
tree corresponds to an antecedent part that should match 
loop events. The edges of the tree correspond to local firing- 
conditions that control the selection of the appropriate con- 
sequents given in the remaining tree nodes. In other words, a 
tree-structured plan consists of a single antecedent and sev- 
eral consequents organized into one or more tree structures 
as shown in Fig. 8. The consequents are organized into one 
tree if the default consequent exists. Otherwise, they are or- 
ganized into more than one tree (forest). In order to select a 
specific tree-structured plan, the event under consideration 
should satisfy the antecedent first. Within the plan, local fir- 
ing-conditions guide the search for the suitable consequent. 
The more general the consequent, the closer it is to the root of 
its tree (e.g., consequent 1 of Fig. 8 is more general than con- 
sequent 1.1). Firing-conditions located at the same level are 
mutually exclusive. This means that only forward search is 
needed and no backtracking is required. When the event sat- 
isfies the antecedent, the search for the appropriate conse- 
quent starts at the appropriate root going down in the tree as 
far as possible. The edge between a parent and a child can 
only be taken if the local firing-condition associated with 
this edge is satisfied. 

Tree-structured plans can be used to detect special cases 
and output loop specifications that are simple and concise. 
They can also be used to analyze similar events whose 
specifications vary depending on their environment (e.g., 
data types, control computation of the loop, . . ., etc.). 

For instance, the plan SAPs (Fig. 7) can be structurally im- 
proved as shown in Fig. 9. The antecedent is similar to that 
shown in Fig. 7 except for the firing condition. The antece- 
dent firing-condition now allows R# to be matched with 
more relational operators. Three local firing-conditions and 
the consequents cover three different variations. Consequent 
1, which is similar to the consequent of the basic plan in Fig. 
7, is for finding the minimum. Consequent 1.2 further simpli- 
fies the resulting annotations based on special values of Ihs# 
and the analysis information of the control variable U#. Con- 
sequent 2 is for finding the maximum. 

Using the tree-structured plans can lead to a reduction in 
the size of the knowledge base since several plans can be 



346 

precondition: true 
invariant: I ~ S #  = MEV({I~SW} U {a#[exp# ::,,,,I}) 
postcondition: lhs# = MIN({lhs?#} U {a#[ 

v: 
ex# final-sequence 1))  

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

precondition: true 
invariant: Ihs# =MAX((lhs?#} U {a#[exp#sv~uen,,])) 
postcondition: Ihs# = MAX({lhs?#} U {a#[ 

vi: 
ex@ finatsequence I}) 

Antecedent 1 

Conseauent 1.1 

1 true 

Default 
Consequent 

Consequent 1 Consequent 2 

(v# IS analyzed by DBP, wth 
final-sequence = init# final#) and 
Ohs?# = aX-[PREDiinit)l) 

Fig 8 The tree structure of a plan 

(Shown m Fig 7) 

precondition: true 
invariant: Ihs# = a{ a#[exp# p.’:*,nrz,, FREPC”) 

Fig. 9. Structural improvement to the plan SAP, 

combined together into a larger one having a unique antece- 
dent. However, the identification of the proper consequent 
becomes more complicated due to the required tree search. 

4.5 Analysis of the Events 
The events are analyzed by trying to match them with the 
antecedents of the knowledge base plans. When an event 
satisfies the antecedent of a plan, the appropriate conse- 
quent of the matched plan is instantiated giving the contri- 
bution of the event to the loop specification. The precondi- 
tion, invariant, and postcondition of the loop are formed by 
taking the conjunction of the corresponding parts of the 
event analysis results. When some event(s) do not match 
any library plans, the analysis only generates partial speci- 
fications of the loop. 

To represent the results of matching loop events with 
plan antecedents, we define the Analysis Knowledge nota- 
tion. The Analysis Knowledge, AK(v), of a variable v modified 
by a certain loop event consists of an n-tuple where n is 
dependent on the specific matched plan. The first term of 
the tuple is the name of the matched plan. The remaining 
(n - 1) terms are the results of matching the # terms with 
the actual values in the event. 

The resulting AK tuples for the events of the loop given 
in Fig. 3 are shown in Fig. 10. The first line of Fig. 10 shows 
that the event that modifies the variable j is matched with 
the antecedent of plan DBP, (Fig. 6). The plan variables var# 
and var?# are matched with the event variables j and j?, 
respectively. The plan relational operator R# and expres- 
sion exp# are matched with < and num_of-rooms + 1, re- 
spectively. The remaining two lines of Fig. 10 can be simi- 
larly interpreted. This AK information is used to instantiate 
the consequents of identified plans. The instantiation re- 
sults are given in Fig. 11. In this figure, the event and plan 
responsible for the production of each predicate are shown 
to its left. The first two events are analyzed by the plans 
DBP, (Fig. 6) and SAP, (Fig. 7), respectively. The plan, 
SAP,, which analyzes the third event is not shown here 
because it is similar to the plan SAP,. It searches for the 
location of the minimum instead of the minimum. Finally, 
the synthesized loop specifications are shown in Fig. 12. 

AKO) = (DBPI, vu# J. vnr”# ~7~ R# <, exp# num-of-rooms + 1) 
AK(mm) = (SAP,, v# J ,  a# capacity, ex@ J ,  Ihs#- mm, IhsW min?) 
AK(mndex) = (SAP,,, & J ,  nii capacity, e r p # : ~ ,  rhs# mm, rh?# mm?, Ihs# mdex, l k ? #  m d e x l )  

Fig. 10. The AK tuples for the events of the loop given in Fig. 3 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 347 

Precondition 
Event Plan Predicate 

1 DBP, J ?  - 1 < num-of-rooms + 1 
2 S A P 5  time 
3 SAP,l capaczfy[mdex?] = mzn? 

lnvanant 
Event Plan Predicate 

1 DBP, J ?  < J num-of-room + 2 
2 S A P ,  mzn=MN({min?} U {capacztyb? J - I])) 
3 SAP,, capaczty[mdex] = mzn 

Postcondibon 
Event Plan Predicate 

1 DBP, J = num-of-rooms + 1 
2 SAP, mzn =k1XV({mzn7} U (capaczfy,[l? num-of-room]}) 
3 SAPHI capaczty[mndex] = mm 

Fig. 11. The instantiations for the events of the loop given in Fig. 3 

Precondition: 
0‘7 - 1 < num-of-rooms + 1)  and 
(capaci@[index?] = min?) 

Invariant: 
0’7 5 j < num-of-room + 2 )  and 
(mzB = MIN( { mzn? } U { capacj@b? . . j - 1 I}) and 
(capacify[zndex] = min) 

Postcondition: 
(j = num-of-rooms + 1) and 
(min = MhV( { mzn?} U { capaczty[i?.. num-of-rooms]})) and 
(capacity[zndex] = mzn) 

Fig. 12. The synthesized specifications of the loop given in Fig. 3. 

5 ANALYSIS OF NESTED LOOPS 

To rigorously analyze nested loops using Hoare’s axiomatic 
approach [19], 1201, the following problems need to be 
solved: 

How to represent and utilize the analysis results- of 
inner loops? A technique for analyzing flat loops has 
been described in Section 4. Can the same basic tech- 
nique be used for outer loops (loops containing other 
loops)? What modifications, if any, need to be per- 
formed on the basic analysis technique to utilize the 
results of analyzing inner loops in the analysis of 
outer loops? 
How to modify the resulting specifications to facili- 
tate Hoare-style verification? [19], [20] This problem 
can be further divided into two subproblems, which 
are explained using the nested construct shown in 
Fig. 13. In this nested construct, let Il  and I ,  be the in- 
variants of the inner and outer loops, respectively. 

Can the above invariants be used to satisfy Hoare 
verification conditions that connect the specifica- 
tions of inner and outer loops in the nested con- 
struct? In other words, is it possible to prove the 
following rules: 

(1) 

(2) 
If the above invariants use the notation vav? to denote 

(I, and 7 (€31) 6,) I, 

(I, and B,) {SI) II 

the initial value of a variable vav, does this notation 
consistently refer to the value of VUY before the start of 
the outermost loop in the nested construct? If not, 
how can this inconsistency be removed? 

end; 

s* 
end; 

Fig. 13. A nested structure of while loops. 

To solve these problems, the analysis of nested loops is 
performed by recursively analyzing the innermost loops 
and replacing them with sequential constructs that repre- 
sent their functional abstraction. The functional abstraction 
of an outer loop depends on the functional abstraction of 
the inner ones and not on the details of their implementa- 
tion or structure. 

Since this recursive analysis approach is performed bot- 
tom-up, complete knowledge of inner loop functions is 
available during the analysis of an outer loop. Thus, the 
invariant of an outer loop can be directly designed to satisfy 
the verification rules that are similar to rule (2) listed above. 
Despite the fact that inner loops are likely to contain refer- 
ences to variables defined in the outer loops, inner loops are 
analyzed in isolation of the outer ones enclosing them. As a 
result, a complete proof of nested constructs requires 
adapting the inner loop specifications to the context and 
initializations provided by the outer loop. More specifically, 
inner loop invariants and, consequently, postconditions 
might not be strong enough to satisfy the verification rules 
that are similar to rule (1). Some predicates might need to 
be added to the inner loop invariants and postconditions to 
enable the verification of such rules. The context adaptation 
phase derives these predicates and adds them to the inner 
loop specifications. Moreover, the consistency of using the 
notation vav? to denote the initial value of a variable vav is 
ensured using the initializatioiz adaptation phase. 

We start in Section 5.1 with some definitions that explain 
how we extract the initialization of a loop in a nested con- 
struct, whether it is the outermost loop or an inner one. 
Sections 5.2-5.4 present solutions to the two research prob- 
lems mentioned above. Sections 5.2 and 5.3 offer a solution 
to the first research problem. Section 5.4 presents a partial 
solution to the second problem. In these sections, the de- 
scriptions of the analysis steps are interspersed with their 
application on the selection sorting example given in Fig. 
14. In this example, a simple nested loop repeatedly scans 
an array segment searching for its minimum. It inter- 
changes the minimum with the first element in the seg- 
ment. It stops after the array capaci ty[ l  .. numpofpvooms1 has 
been sorted in ascending order. The inner loop of this ex- 
ample is the same one given in Fig. 3. 



348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

5.1 Definitions 
In the following definitions, we limit the initialization of a 
loop to assignment statements. Conditional statements are 
not considered as initializations to reduce the complexity of 
the resulting loop specifications. Thus, resulting loop speci- 
fications are representative of the loop function without 
composing it with the function of preceding conditional 
statements. 

i, j ,  index, min, num-of_rooms: integer; 
capacity: array[ 1 . . m-rooms] of integer; 

i := 1- 
whde i 2 num_of_rooms - 1 do begin 

index := i; 
min := capaci@[i]; 
i : = i +  1; 
j : = i ;  
while j < num-of-rooms + 1 do begin 

if capacityb] < min then begin 
index := j ;  
min := c a p a c i t y ~ ] ;  

end; 
j :=J+ 1 

end; 
capaci@[index] := capaci@[i - I]; 
capaci@[i - 11 := min 

end; 

Fig. 14. Example of a nested loop. 

The initialization of a loop that is not enclosed by another loop 
is assumed to be a set of assignment statements of the form 
identifier := expression, which are immediately placed before 
its start. These statements give initial values for identifiers 
that get modified within the loop body. If this assumption 
cannot be satisfied or, equivalently, the loop initialization is 
unavailable, the notation v? is used to denote the initial 
value of a variable U just before the start of the loop. 

If we have two nested while loops, the adaptation path of 
the inner loop is a sequence of statements extracted from 
their control-flow graph representation. This sequence con- 
tains all the statements, simple or compound, that are com- 
pletely located along the paths starting from the outer loop 
control predicate node and ending at the inner loop control 
predicate node. In this path, the relative order of the state- 
ments is kept unchanged. 

The initialization of an inner loop in a nested construct is 
obtained by, first, symbolically executing its adaptation 
path to produce the net modification performed on each 
variable, if possible. Statements of the form identifier := ex- 
pression are, then, extracted from the symbolic execution 
result. Statements are extracted if they satisfy the following 
two conditions: 

1) The identifier is one of the variables modified within 

2) The expression does not reference any of the variables 

If the initialization of a variable U that gets modified within 
the loop body is not given by the extracted statements, the 

the inner loop body. 

modified along the adaptation path. 

notation U? is used to denote its initial value just before the 
start of the loop. 

The first condition, in the above definition, ensures that 
the initialization statements are utilized by the inner loop 
events. The second condition ensures that the values of iden- 
tifier and expression, just before the start of the inner loop, are 
equal. For example, if the adaptation path is i := i + 1; j := i, 
then its symbolic execution gives the concurrent assignment 
i, j := i + 1, i + 1. Taking j := i + 1 as an initialization statement 
is not allowed because the values of j and i + 1, just before the 
start of the loop, are not equal (the values of j and i are 
equal). The second condition also prevents using statements 
of the form, say, x := x + 1 as initializations. 

To extract the initialization of the inner loop given in Fig. 
14, we use the above definitions. First, we need to symboli- 
cally execute the adaptation path of the inner loop. Since 
there is only one path between the start of the outer loop and 
the start of the inner one, the adaptation path includes all the 
statements completely located on this path. The adaptation 
path is: index := i; min := capacity[il; i := i + 1; j := i. 

The symbolic execution of the adaptation path yields the 
concurrent assignment: index, min, i, j := i, capacity[i], i + 1, 
i + l .  

Then, we need to extract initialization statements of the 
form identifier := expression from the symbolic execution 
result. The variables modified within the inner loop body 
are: iizdex, min, and j. Thus, the statements that satisfy the 
first condition of the above definition are: index := i, 
iizin := capacity[i], and j := i + 1. However, these statements 
are not valid initialization statements because their right 
hand sides reference the variable i that gets modified along 
the adaptation path. In other words, these statements do 
not satisfy the second condition of the above definition. As 
a result, the initialization statements of the inner loop are 
written by using the notation U? to denote the initial value 
of a variable v as follows: index := index?, min := min?, and 
j := j?. 

5.2 Analysis of Inner Loops and Representation of 

The analysis of inner loops is performed using the same four 
phases described, in Section 4, for flat loops. To analyze an 
outer loop in a nested construct, the analysis results of its 
inner loops must be represented in a way that reveals the 
functionality of the inner loops and the flow of data into and 
out of the inner loops. The data flow information is needed to 
perform the decomposition of the outer loop body. 

Though the resulting AK tuples or predicate logic anno- 
tations can be used to represent the inner loop analysis re- 
sults, they either include too much detail or the deduction 
of the required information is difficult, respectively. Hence, 
the solution is to use a formalism that is similar to function 
calls; the name encapsulates the functionality while the ar- 
guments indicate the data flow information. The formalism 
used for this purpose is called an Abstraction Class (AC). 

An AC is a knowledge base object that transforms the de- 
tailed analysis results of an inner loop to a more abstract rep- 
resentation that facilitates the analysis of outer loops. It 
groups AK tuples based on some common functionality and 
ignores the unnecessary implementation specific details. The 

Their Analysis Results 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 349 

common functionality is documented to explain the purpose 
of designing the AC and to enhance its modifiability. Fur- 
thermore, the definition of an AC offers an abstract repre- 
sentation of its elements that specifies the data flow informa- 
tion. This abstract representation facilitates the mechanical 
manipulation of ACs. An Abstraction Class (AC) consists of 
three parts: 

1) The elements part consists of generic AK tuples that 
are separated by the symbol ' I '. 

2) The common-function describes the functionality that 
the elements of this class share by using common in- 
stantiated final-sequence, postcondition, or invari- 
ant parts of the matched plans. 

3) The representation is a unique abstract representation 
that gives the class name, followed by the following 
arguments (separated by semicolons and enclosed 
between two parentheses): the list of expressions re- 
sponsible for the data flow into this AC, the list of 
variables defined by the AC, the control variables of 
the loop under consideration, and a unique number 
identifying the loop being analyzed. 

The representation part contains the class name that is 
an arbitrary and unique name. It also contains the argu- 
ments responsible for the data flow into and out of the AC 
so that they can be used during the data flow analysis. The 
control variables and unique number of the loop are used 
in the design of some plan consequents. To simplify the 
presentation, the last two arguments are only listed when 
needed. 

The AK of some variable belongs to a specific AC if it 
matches an AK tuple existing in the elements part. The 
symbol '*' is used to denote irrelevant information. An ex- 
pression, exp,  enclosed between two brackets in the ele- 
ments part implies that the expression should be matched 
with the corresponding instantiated element of the actual 
AK to deduce the value of the variables defined in it. Some 
of these variables are utilized in forming the AC arguments. 

The AK of the variable j analyzed in the inner loop of 
Fig. 14 has the following form: 

AK(j) = (DBP,, var# j ,  vau?# j? ,  R# <, exp# num_of_rooms + 1). 

This AK belongs to the AC in Fig. 15 because it matches 
the first AK tuple of the elements part. If we had imple- 
mented this loop with the condition j 2 num_of_rooms in- 
stead of j < num_of_Yooms + 1, it would have belonged to 
the same AC. This is because it matches the second AK tu- 
ple of the elements part. These two different implementa- 
tions belong to the same AC because they have the common 
function of going over the integer sequence j ?  .. 
num-of-yooms in an ascending order. 

elements (DBP,, var#: [ V I ,  var?#: *, R#: <, ex@: vnal l )  

(DBP,, var#:[v], var?#: *, R#: <, ex$: [SUCCyinal)]) 
The instantiated final-sequence of the plan is: v? .. 
jinal 

I 

common-function 

representation ,4CDBl (v,finaL; v) 

Fig. 15. An abstraction class for ascending enumeration. 

Using similar analysis, the AK of the variable m i n  is 
found to belong to ACSA, (Fig. 16). The AK of the variable 
index belongs to ACsAi,, . Because ACsAiil is similar to 
ACsAs, it is not shown here. ACsA5 includes the AK tuples 

that have the common function of finding the minimum of 
an array segment irrespective of the enumeration direction 
(ascending or descending) and the index of the array ele- 
ment being checked ( U ,  PRED(v), or SUCC(v)). It should be 
mentioned that ACDB2 is similar to ACDRl but for descend- 
ing enumeration. The ACs of the variables modified in the 
inner loop of Fig. 14 are, thus, as follows: 
AK(j) E ACDB, ( j ,  nnm- of- rooms; j )  
AK(min) E ACsA5 (capacity, j ,  num- of- rooms, min; min) 

AK(index) E ACsAn, (capacity, j ,  nnm- of- moms, min, index; index) 

elements 

common-function 

representation 

(SAP,, v#: [VI, a#: [a], exp#:[PRED(v)], lh.#: [lhs], lhsW. *),where 
A q v )  E A C ~ ~ ~  ([SUN"nul) l .  [S~:C'CVnzt)l) 

I 
(SAP,, vk': [VI, a#: [a], ex@: [VI, IhsK: [lhs], 1hsW *),where 

AK(v) A C ~ B ~  (Vinal], W l )  or 

. W v )  E ACDB, ([lnrtl, Vinall) 
I 
[SAP,, vR: [VI, a f :  [U] ,  expi;. [srlcrq~)], Ihsft: [lhs], lhs?%. *), 
where 

The instantiated postcondition of the plan is. 
lhs=MIN({lhs?} w {a[init ..finall}) 
ACsA,(a, init,final, lhs; Ihs) 

AK(v) E ACDB1([f"D(inrt)], [PmD(finai)l) 

Fig. 16. An abstraction class for finding the minimum 

After analyzing an inner loop, we replace it with the 
concurrent assignment that assigns to the list of variables 
modified by it the result of their analysis. If the AK of a 
variable belongs to a predefined AC, its abstract represen- 
tation, as deduced from the identified AC, is assigned to it. 
If the AK of the variable, v u ,  does not belong to a prede- 
fined AC, we assign the form UAC(ak-list; vav) to it, where 
UAC stands for Unknown AC and ak-list is a list represent- 
ing the AK data. The ak-list and vay are used, during auto- 
matic analysis, to provide information on the unanalyzed 
parts of the loop. 

Conceptually, the described replacement is equivalent to 
replacing the inner loop with a set of function calls that as- 
sign to each variable changed in the inner loop the desired 
value. This replacement preserves the control flow depend- 
encies because the concurrent assignment is placed at the 
same relative location within the outer loop body. It also 
preserves the data flow dependencies between the variables 
because the ACs clearly state what variables are responsible 
for the data flow into and out of it. 

Replacing the inner loops given in Fig. 14 with the de- 
scribed concurrent assignment gives the following modi- 
fied outer loop: 

i := 1; 
while i 2 num-of-rooms - 1 do begin 

index := i; 
min := capacity[i]; 
i := i + 1; 



350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

. .  
] := 1;  

j, min, index := ACDBl (j, num- of- rooms; j), 
ACSA, (capacity, j ,  num- of - rooms, min; min), 
ACsnn, (capacity, j, num- o f -  rooms, min, index; index); 
capacity[index] := capacity[i - 11; 
capacity[i - 11 := min 

The first event is matched with the antecedent of the 
plan DBP, (Fig. 6). The second event is matched with a 
Simple High-level AP (SHAP) that represents the selection 
sorting concept. Because the variables j, min and index do 
not explicitly contribute to the outer loop specifications, the 
last three events are matched with SHAPs that produce true 
predicates. These variables implicitly affect the outer loop 
specifications through their abstraction classes that get used end; 

5.3 Analysis of Outer Loops 
After modifying an outer loop body, we analyze it using the 
previously described method for analyzing flat loops (Section 
4), as if it does not contain any other loops inside it. This can 
be done since the inner loop(s) have been replaced by ordi- 
nary sequential constructs. The only difference, in this case, is 
that high-level plans are used in addition to the usual (low- 
level) ones. High-level plans are those that utilize ACs. 

Adding another classification level, based on whether 
the plan is low-level or high-level, to the four plan catego- 
ries shown in Fig. 5, we get eight plan categories. These 
new plan categories are shown in Fig. 17. The advantage of 
this plan classification scheme is that it indexes plans for 
rapid access given the loop and event types. 

The strength of this approach for analyzing nested con- 
structs is that it can scale up to handle more than two nested 
loops. This is because the inner loops can be recursively ana- 
lyzed and replaced by sequential constructs. Any outer loop 
can thus be analyzed by using the higli-level plans in addi- 
tion to the low-level ones. If we are unable to analyze one of 
the inner loops, the analysis of the outer loop proceeds as far 
as possible. That is, we can only analyze outer loop events 
that are independent of the unanalyzed inner loop events. In 
such cases, partial analysis results are produced. An outline 
of the application of the analysis steps on the modified outer 
loop of Fig. 14 is given below. 

The ordered events of the modified outer loop are as 
follows: 

1) BE (order 1) 
condition: 
enumeration: 
initialization: i := 1 

i 5 num-of-rooms - 1 
i := i + 1 

2) AE (order 2) 
body: capacity[i], capacity[AC,A,,i (capacity, i + 1, 

num- of - yooms, capacity[il, i; index)] : = 

ACSA5(capacity, i + 1, num- of- rooms, 
capacity[il; min), cnpacity[i] 

initialization: capacity := capacity? 

body: j :=ACDB,(i + 1, num-of-rooms; j); 
initialization: j := j? 

body: min :(ACsA,(capacity, i + 1, Mum-of-rooms, 

3) AE (order 2) 

4) AE (order 3) 

~ - 
by the second event. For details concerning the plans used 
and the event analysis results, refer to [l]. The final synthe- 
sized analysis results are given below. The first event is 
responsible for the production of the first conjugate of each 
predicate. The second event is responsible for the produc- 
tion of the rest of the specifications. 

Precondition: 

(0 5 i?LiJR-Of-YOOlRS - 1) 

Invariant: 

(1 5 i 5 num-of-rooms) and 
(FORALL ind: 1 I ind I i - 1: capacity[indl = 
MIN({capacity[ind.. num-of-rooms])) and 
PERM(capacity, capacity?) 

Postcondition: 
(i = num-of-rooms) and 
(FORALL iizd: 1 I ind 5 Mum-of-rooms - 1: capacity[ind] = 

MIN({capacity[ind .. num-of-roomsll) and 
PEM(capacity, capacity?) 

The resulting predicate logic annotations produced for 
the inner and outer loops can be used to assist the under- 
standing of the nested construct. An understanding of the 
sorting algorithm can be formed using the predicate 

(min = MIN({min?)  U {capacity[j?.. num-of-roomsll)) and 
(cnpncity[index] = min) 

of the inner loop postcondition and the predicate 

(FORALL ind: 1 5 ind 5 num-of-yooms - 1: capacity[ind] = 

MIN({capacify[ind .. num-of-rooms]}) and 
PEM(capacify, capacity?) 

of the outer loop postcondition. However, such specifica- 
tions cannot be proved using Hoare-style [19] axiomatic 
correctness. To be able to prove the outer loop invariant, the 
predicate 

(1 5 i - 1 5 n~im-of-~ooms - 1) and 
(FOXALL ind: 1 5 ind 5 i - 2: capacity[i?zd] = 

MIN({capacity[ind .. num-of-rooms]}) and 
PERM(cnpacity, capacity?) 

should be added to the invariant of the inner loop. This 
predicate provides information about the context of the 
inner loop, which is needed to prove rule (1) of the second 
research problem that is given at the beginning of this sec- 
tion. In addition, i?, min?, and index? in the inner loon , ,  

capacity[i]; min) 
initialization: min := min? 

body: index := (ACsAnl capacity, i + 1, num-of-rooms, 
capacity[i], i; index) 
initialization: index := index? 

specifications should be replaced with i, capacity[i - 11, and 
i - 1, respectively. 

5m4 Adaptation of Inner Loop Specifications 
To be able to prove that the implementations of nested con- 
structs satisfy their specifications, the specifications of inner 

5) AE (order 3) 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 

- 

351 

Plans 

M Augmentation Plans ( U s )  
Basic Plans (BPs) 

D e t e r m A P s )  I n d x  (IBPs) 

Determinate Determinate Indeterminate Indeterminate Simple Lon-level hR S h p l o  Higlr-le\el AI's General Lon-levd APs  Geoeral High-levd APs 
Lon-Iwd BPs Em-level EPs Low-level BPS High-level BPa (SLAPS) (SHaW) (GL*ps) (CE*Rj) 

Fig. 17. New plan categories 

loops need to be strengthened to include information about 
the context of outer loops enclosing them. To ensure that 
the notation var? is consistently used to denote the initial 
value of a variable var before the start of the outermost 
loop, variables of the form var? in specifications of inner 
loops need to be replaced by their actual values. These tasks 
are performed in the context and initialization adaptation 
phases. The remainder of this subsection describes how to 
perform these adaptations. In this description, it is assumed 
that the adaptation path of an inner loop, that is defined in 
Section 5.1, only includes assignment and conditional 
statements. The cases in which this assumption is not satis- 
fied are discussed in Section 6. 

Context Adaptation. While analyzing the outer loop, we 
have complete knowledge of an inner loop function. Thus, 
this is the best time to generate a context related predicate 
inner-addition, which strengthens inner loop invariants. By 
studying the differences between the current outer loop 
invariant part and the generated inner loop invariant part, 
we design and add an inner-addition field to the conse- 
quents of the knowledge base plans. This field provides any 
predicates that should be added to the invariants of inner 
loops to enable the verification of rules similar to: (Ii and 
B;) (5'2) Io. After analyzing an outer loop, the instantiated 
inner-addition fields are synthesized, by conjunction, to 
form the predicate inner-addition. 

For instance, assume that the plan DBPl (Fig. 6) is used 
to analyze an ascending enumeration construct of an outer 
loop having the control variable var#. While analyzing the 
inner loop in isolation, no knowledge exists about var# be- 
ing an outer loop control variable that scans a specific se- 
quence of values. Hence, the inner-addition filed of DBP1 
should provide this information in the form of the predi- 
cate: var?# <: var# R# exp#. 

Analyzing the BE of the outer loop given in Fig. 14 using 
DPB, yields the following instantiated inner-addition: 

(1 5 i 5 num-of-rooms -- 1) 

Similarly, when the inner loop of this sorting example is 
analyzed in isolation, its invariant does not include any 
information about the sorted segment of the array capacity. 
Thus, the inner-addition part of the outer loop selection 
sorting plan should provide the following predicate: 

(FORALL ind: 1 5 2nd 5 i - 1: capacity[ind] = 

MIN({capacity[ind .. num-of-rooms]}) and 
PERM(capacity, capacity?) 

By taking the conjunction of the two instantiated inner- 
addition parts, the inner-addition of the example given in 
Fig. 14 is: 

(1 5 i 5 num-of-rooms - 1) and 
(FOXALL ind: 1 5 ind 5 i - 1: capacity[indl = 

MIN( {capacity[iizd.. numpof-rooms] )) and 
PEXM(capacity, capacity?) 
However, the synthesized innev-addition is designed to be 

correct at a fixed reference point which is location L, (see 
Fig. 13). This is because during the design of the library 
plans there is no knowledge, a priori, of the statements 
physically located along the adaptation path. The effect of 
the statements along the adaptation path should be taken 
into consideration to get the corresponding correct predi- 
cate, inner-addition,, at location L,. 

By comparing the inner-addition produced for the loop 
given in Fig. 14 to the predicate that should be added to the 
inner loop specifications (given at the end of Section 5.31, it 
is clear that they are not exactly the same. This is because 
the effect of the statements along the adaptation path has 
not been taken into consideration yet. 

The context adaptation uses inner-addition and the ad- 
aptation path to find inner-addifion2.The predicate inner- 
addition, is deduced by reversing the effect of the state- 
ments along the adaptation path on the variables in inner- 
addition 1141. For example, if the adaptation path changes i 
to i - 1, then all the free occurrences of i in inner-addition are 
replaced by i + 1 to generate inner-addition,. 

This reversing (or inversion) is performed, mechanically, 
by introducing a set of auxiliary variables that replace all 
the free occurrences, in inner-addition, of the variables modi- 
fied along the adaptation path. Conceptually, the auxiliary 
variables denote the state of the corresponding original 
ones at location L,. 

For the example shown in Fig. 14, the auxiliary variable 
i, replaces the variable i in inner-addition. Since the variable 
capacity is not modified along the adaptation path, no corre- 
sponding auxiliary variable is introduced for it. The modi- 
fied inner-addition, which is called inner-additionl, has the 
form: 

(1 5 i, 5 num-of-rooms - 1) and 
(FORALL ind: 1 5 ind 5 i, - 1: capacity[ind] = 

MIN({capacity[ind.. num-of-rooms]}) and 
PERM(capacity, capacity?) 



352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

We then form a predicate, aux-values, that represents the 
relation between the auxiliary variables, used at location L,, 
and the corresponding original ones, used at location L,. 
This predicate is formed using the symbolic execution re- 
sult of the adaptation path. First, the introduced auxiliary 
variables should replace their corresponding actual ones 
that are responsible for the data flow into the symbolic exe- 
cution result. The predicate equivalent of the statements 
that modify the original variables are, then, generated and 
conjunctioned together. 

The predicate equivalent of an assignment statement is 
produced by replacing the assignment sign with an equal 
sign. Conditional assignments can be converted into as- 
signment statements of the form: var := choice (conditiolzl, 
valuel, condition2, value2, ..., etc.), where the right hand side 
is equal to value1 if condition1 is true, value2 if condition2 is 
true, and so on. The resulting assignment statement is con- 
verted into a predicate as described before. 

In the example shown in Fig. 14, the symbolic execution 
result of the adaptation path is: 

index, min, i,  j := i, capacitytil, i tl, i tl. 
The context adaptation replaces i by i, in the right hand side 
to produce: 

index, min, i, j := i,, capacity[i,], i,+1, i,+1. 

The statement that modifies the original variable i is i := 
i, + 1. The predicate equivalent of this statement, i = i, + 1, is 
the predicate nux-values. 

The required correct predicate inner-addition, is the con- 
junction of aux-values and inner-addition,. The predicate in 
ner-addition,, which is actually added to the inner loop in- 
variant, has the form: 

(1 5 i, 5 num-of-rooms - 1) and 
(FORALL ind: 1 < ind 6 i, - 1: capacity[indl 

MIN({capacity[ind .. num-of-vooms] 1) and 
PERM(capacity, capacity?) and 
i = i , + l  

Initialization Adaptation. The initialization adaptation 
replaces each variable of the form vav?, in an inner loop 
specification, with its value as deduced from its adaptation 
path and the invariant of the enclosing loop. After this re- 
placement, the notation var? is reserved for referring to the 
state of a variable var before the start of the outermost loop. 
The notation ~ l a r ~ , , ~ ~ ~  is used to refer the value of vay as de- 
duced from the invariant of the loop enclosing it. 

The initial value of a variable v a ~  is extracted from the 
symbolic execution result of the adaptation path. If the 
symbolic execution result assigns the value uarndapi to vav, 
then uarndnpi is the needed initial value. However, varndapf 
needs to be modified so that it is expressed in terms of the 
program state at location L2 and not location L1. This modi- 
fication is performed in the same way we modified inner- 
addition. That is, varfldapl is modified to varadnpi 

However, if ziav itself occurs in varndnpt, it should, first, be 
replaced by va~(,,~,, to avoid a circular definition of the ini- 
tial value of var. In short, every var? in the inner loop speci- 

oviginal variables 
auxillinry oarinbles 

)ouig@i variables 
fication is replaced by ((uaradaapt)g:o,,ier nuxiliary uariables). 

For instance, the symbolic execution result of the adap- 
tation path of the example shown in Fig. 14  is: 

index, min, i, j := i, capacity[i], i + 1, i + 1. 

The variable j? in the inner loop specification is replaced by 
((i + l ~ ~ o t c ~ c r ) ~ l ~ ,  where i = i, + 1. So, j? is effectively replaced 
by i. Similar analysis shows that min? and index? should be 
replaced by capacity[i - 11 and i - 1, respectively. 

In summary, the specification of the inner loop shown in 
Fig. 14 is adapted by adding the predicate inner-addition, 
that is simplified to: 

(1 5 i - 1 5 num_of_room - 1) and 

(FORALL ind: 1 5 i d  2 i - 2: capacity[ind] = 
MIN({capac i t y [ ind  .. num-of-rooms]}) and 
PERM(capacity, capacity?) 

The initial variables j?, min?, and index? are replaced with i, 
capacity[i - 11, and i - 1, respectively. These adaptation re- 
sults are exactly the ones described at the end of Section 5.3. 

6 DISCUSSION 
In this paper, a knowledge-based program understanding 
approach has been described. The resulting predicate logic 
annotations are unambiguous and have a sound mathe- 
matical basis that allows correctness conditions to be stated 
and verified, if desired. The analysis approach does not rely 
on real-time user-supplied information and can analyze 
nonadjacent loop parts. 

However, there are limitations to this approach. These are: 
Practical limitations related to the effort and ingenuity 
needed to design the plans. 
Theoretical limitation related to the generation of con- 
cise postconditions for general loops. 

* Theoretical limitation related to the adaptation of in- 
ner loop specifications in some nested loops. 

The practical limits stem from the plan designers inabil- 
ity to formally analyze complicated loops and find their 
invariants despite the fact that these invariants exist theo- 
retically. The resulting specifications are as accurate, read- 
able, and correct as the plans are. That is why the tasks of 
designing plans and managing the knowledge base, for a 
specific application domain of interest, should be per- 
formed by an expert in both the desired domain and formal 
specifications. 

The first theoretical limit was discussed in Section 4.4. In 
case of general loops, we cannot produce loop postcondi- 
tions as intelligently and concisely as for simple loops be- 
cause it was not possible to include postcondition parts in 
the plans designed for analyzing individual events of gen- 
eral loops. Thus, additional simplifications of the postcon- 
ditions that transforms them into more readable ones might 
be required. 

The second theoretical limit occurs in nested structures 
having the following characteristic: the adaptation path of 
an inner loop contains statements other than assignment 
and conditional statements (e.g., loops or procedure calls). 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 353 

The context and initialization adaptations cannot, in gen- 
eral, be performed for such cases. The reason for this limi- 
tation is that the context and initialization adaptations are 
based on the fact that assignment statements and, to a lesser 
extent, conditional statements can be easily inverted in a 
mechanical way [14]. However, if there are loops, proce- 
dure calls, or function calls, this inversion cannot be per- 
formed mechanically. Performing such an inversion is 
equivalent to finding the specifications of arbitrary pro- 
gram fragments containing nonsequential constructs and 
representing their analysis results in terms of equational 
specifications that can be easily inverted. The presented 
approach can perform symbolic execution of sequential 
constructs and can produce first order predicate logic speci- 
fications of loops. However, these two different capabilities 
have not been integrated to produce invertible equational 
specifications of arbitrary program fragments. 

The second theoretical limitation only affects the ability 
to prove that the loop implementations satisfy the resulting 
specifications. It does not affect the ability to assist the un- 
derstanding of nested loops. This is because the approach 
still produces meaningful specifications of the whole con- 
struct. For instance, it has been shown that an understand- 
ing of the sorting algorithm in our example was possible 
before performing the adaptation steps. In addition, the 
context and initialization adaptation can be performed in 
some special cases. One special case occurs when the vari- 
ables used in the inner-addition do not get modified along 
the adaptation path. Another special case happens when 
variables, whose initial values need to be replaced, do not 
get modified along the adaptation path. In the first case, the 
context adaptation does not need to modify the predicate 
inner-addition. In the second case, the initialization adapta- 
tion directly replaces var?, if any, with its value as deduced 
from the outer loop invariant. A third special case occurs 
when the loops located on the adaptation path are simple 
ones. In this case, the adaptation of an inner loop specifica- 
tion can be performed using postcondition parts of its pre- 
ceding loop, which are in equational form, instead of its 
outer loop invariant. It should be noted that the first theo- 
retical limit partly affects the second one. If we were able to 
include equational postconditions in the plans that analyze 
general loops, they could have been used in the adaptation 
steps. 

7 CASE STUDY 
The program chosen as a case study of our loop analysis 
process deals with scheduling a set of university courses. It 
has about 1,400 lines of executable Pascal source code. 
There are a total of 39 modules (functions and procedures). 
A complete listing of the requirements, specifications, de- 
sign, and code documents is given elsewhere [22]. In this 
program, there are 77 loops that cover all the classes in our 
taxonomy. Many of these loops involve sorting, searching, 
and scheduling algorithms. Because of the interactive na- 
ture of this program, it contains several other loops that 
perform input error detection as well as warning and error 
messages generation. 

7.1 Objectives 
The main objective of this case study was to test our analy- 
sis approach and to assess its effectiveness when applied to 
a fixed set of loops in a real and pre-existing program of 
some practical value. To this effect, we collected the data 
needed for performing the following validations and 
characterizations: 

Test the hypothesis that a loop complexity dimensions 
are valid indicators of its amenability to analysis. 
Test the hypothesis that the loop decomposition and 
plan design methods of our approach can make the 
plans applicable in many different loops and, hence, 
increase their utilization. 
Characterize the practical limits of the analysis 
approach. 

7.2 Method 
The case study was performed, manually, prior to the im- 
plementation of the prototype tool. Case study results are, 
thus, not affected by the limits of the implementation that 
are given at the end of Section 8. The set of 77 loops in the 
described program were extracted along with their initiali- 
zations. This set included 25 for loops, which were trans- 
formed to their equivalent while loops. The loops analyzed 
had the usual programming language features such as 
pointers, procedure and function calls, and nested loops. To 
design, and prove, assertions of loops containing pointer 
variables, the notation and techniques of Luckham and 
Suzuki [30] were used. Procedures that were called from 
within loops had to be formally analyzed, using Hoare 
techniques 1201, to obtain rigorous descriptions of their 
functionality and data flowing into and out of them. 

During the study, every loop under consideration was 
first decomposed into its basic and augmentation events. 
Then, every event was analyzed in order to design a plan 
suitable for it. If no plan was available in the knowledge 
base to match the event under consideration, or a similar 
event, a new plan was developed with designer defined, 
candidate specifications. The plan was then modified and 
tailored to give correct specifications by trying to prove the 
loop invariant using Hoare techniques [191. If a plan that 
matched a similar event, but not the exact one under con- 
sideration, existed in the knowledge base, improvements on 
the structure and/or the knowledge represented in the ex- 
isting plan were considered. 

As the number of analyzed loops increased, the experi- 
ence gained led to the evolution of the knowledge base. The 
monitored usage of the knowledge base served to improve 
some of the plans in terms of their structure, knowledge 
representation, number, and naming conventions. As a re- 
sult, the knowledge base was more suitable for the domain 
under consideration. 

The designed plans (BI's and AI's) were not only limited 
to those which provided functional specifications but also 
included plans that discarded unnecessary detail about 
temporary variables and plans that provided warning and 
error messages. It should also be mentioned that the re- 
sulting formal specifications were not formulated in terms 
of concepts specific to the application domain. Even though 



354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

Analysis statistics 

.4valablenumber 
Number analyzed 

Percentageanalyzed 

such domain independent specifications can increase the 
chance of reusing the plans, they sometimes have the dis- 
advantage of being more difficult to read [7]. 

We decided not to specifically design plans for the 
analysis of 12 loops (15.6%) in the case study. The unique 
and complex nature of these loops suggested that the effort 
needed to design their analysis plans highly outweighs ad- 
vantages that could be gained from their expected extent of 
utilization in this specific application domain. That is, the 
partial analysis of the 12 loops in this case study is mainly 
attributed to the practical limitation discussed in the previ- 
ous section. These 12 loops were arbitrarily numbered from 
pl  through p12. They were analyzed using the available set 
of plans to determine whether useful partial specifications 
could be obtained. 

7.3 Results and Analysis 
Tables 2 and 3 give the data collected to test the hypothesis 
that a loop complexity dimensions are indicators of its 
amenability to analysis. Table 2 gives the number of loops 
completely analyzed in each class defined by our taxon- 
omy. Along the first dimension, the available and analyzed 
numbers of Simple (S) and General (G) loops are given. In 
the second dimension, the available and analyzed numbers 
of loops with Noncomposite (N) and Composite ( C )  condi- 
tions are given. Finally, the available and analyzed num- 
bers of Flat (F) and Nested (N) loops are given along the 
third dimension. Using the three classification dimensions, 
any loop must belong to one of the 8 (23) equivalence 
classes given in Table 3. In this table, the available and 
analyzed numbers of loops in each of these equivalence 
classes are shown. The table also gives the total numbers of 
events and their averages for the analyzed loops in each 
class. 

The results given in Tables 2 and 3 support the hypothe- 
sis that the classification taxonomy helps in predicting a 
loop amenability to analysis. Table 2 shows that the pre- 
sumably more complex classes always have lower percent- 
ages of completely analyzed loops than the presumably less 
complex ones. For example, the percentages of completely 
analyzed flat and nested loops are 98 and 54, respectively. 
All flat loops were completely analyzed except for one loop 
(loop p10) that contained a call to a procedure with a par- 
tially analyzed nested loop (loop p9). This percentage 
variation is even more notable when further investigated 
along the five available equivalence classes of Table 3. Per- 
centages range from 100% for SNF and SCF to 22% for 
GCN. The numbers of events in the analyzed loops further 
support the interpretation that the classification of a loop is 
an indicator of its complexity and, correspondingly, its 
amenability to analysis. For example, while SNF loops 
(Flat) have an average of 2.4 events/loop, SNN loops 
(Nested) have an average of 5.6 events/loop. 

Table 4 summarizes the data collected to examine the 
plan utilization issue. It shows the number of events ana- 
lyzed by each of the designed plans. It also shows the total 
utilization of the plans in each of the six available catego- 
ries. Since only one high-level basic plan (IBP,) was de- 
signed, we do not differentiate between low and high-level 
BPs. During the iterative process of designing the plans, 

Dimension 
1 2 3 

Simple General Noncomposite Composite Flat Nested 
loop loop condition condition body body 
52 25 46 31 53 24 
48 17 42 23 52 13 

14 98 54 92 68 91 

some of them underwent abstractions and others were 
structurally improved into tree structures. The * or + super- 
script is used to denote those plans that underwent ab- 
stractions or structural improvements, respectively. For 
example, plan DBP, was used 45 times and had a tree- 
structured design. 

The 48 plans designed were utilized in analyzing a total 
of 235 events. A closer examination of the results in Table 4 
shows that a set of 27 plans (56%) analyzed 214 events 
(91%). The remaining 21 plans were only used once. These 
results indicate that if we focus on a specific application 
domain, there is bound to be a kernel of events that can be 
captured by a relatively reasonable number of plans. On the 
other hand, there will also be plans that, as in our study, 
may be used just once. The emphasis should be on the de- 
sign of the plans that cover the kernel. 

TABLE 2 
NUMBER OF COMPLETELY ANALYZED LOOPS 

ALONG THE THREE DIMENSIONS 

Analysis 
statistics 

Avalablenumber 

Equivalence class 
SNF I SCF 1 SNN I SCN I GNF I GCF I GNN 1 GCN 
31 1 6 I 15 I 0 1 0 I 16 I 0 I 9 

Name 
(subscript) 

1 
2 
3 
4 
5 
6 
I 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

TABLE 4 
UTILIZATION OF THE DESIGNED PLANS 

Plan ( 
SLAP 
23*+ 
19+ 
3* 
1 
1 
1 
1 

20 
3 
- 

- 
- 
- 

- 
- 
__ 
- 
- 

S H A P  
3+ 

13*+ 
1 
1 
1 
1 
2 
2 
2 
1 
2 
1 
1 
1 
2 
1 
3 
1 

The 10 plans that underwent improvements to their 
structure and knowledge representation (21 %) analyzed 
149 events (63%). The average number of utilization of the 
plans vary from 4.9 (with standard deviation of 8) for all 48 
plans to 14.9 (with standard deviation of 11.8) for the 10 



355 ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 

Loop # 

pl 

improved plans that are marked with the * dnd + super- 
scripts. These numbers support the argument that com- 
monly used plans get more chances to be revised and 
adapted and this, in turn, leads to their higher utilization. 

We also notice, from Table 4, that even though nine 
SLAPS analyzed 72 events, double the number of SHAPs 
(19) only analyzed 39 events. This indicates that simple 
'low-level' blocks of code are more frequently utilized than 
the more complex 'high-level' ones. 

In general, the results in Table 4 show that the 
events/plan ratio is high (4.9), especially in case of the 
plans that underwent structural and knowledge represen- 
tation improvements (14.9). This indicates that the decom- 
position and plan design methods tend to have a positive 
effect on plan utilization and, consequently, on the size of 
the knowledge base. However, since our main objective 
was to validate and evaluate the analysis approach, we de- 
signed many plans (21) that were only used once. These 
plans helped us in evaluating the analysis approach in 
loops with, say, high nesting level or a large number of pro- 
cedure calls. Since these plans were designed to handle sin- 
gle specific events, they are probably not fully developed. 
The analysis of more loops in the same application domain 
should either eliminate or improve them. 

Tables 5 and 6 summarize the data collected to deter- 
mine which kinds of loops are more appropriately analyzed 
by the approach. Table 5 provides some insight into the 
practical limits of the approach. It gives different charac- 
teristics of the partially analyzed loops. Table 6 compares 
some of these characteristics to the corresponding ones of 
the completely analyzed loops. To provide a more detailed 
insight into the analyzed loops, some loop source codes are 
given in Appendix C. 

The second theoretical limitation, described in Section 6, 
only occurred in loop p9. That is, the partial analysis of the 
12 loops in this case study was mainly because of practical 
limitations. Analyzing loops pl-p6 and p8-p9 using the 
current set of plans yielded no partial results. Loop p10, 
whose characteristics are compatible with those of the 
completely analyzed loops, was almost completely ana- 
lyzed; four out of five events were analyzed. The fifth event 
was not analyzed because it contained a call to a procedure 
with a partially analyzed nested loop (loop p9). Loops p7 
and p12 yielded some minor partial analysis results. Loop 
pl 1 gave considerable partial analysis results. 

It is clear from Table 5 that almost all of the partially 
analyzed loops are nested (11 out of 12) and contain proce- 
dure calls (10 out of 12). They have an average size of 43.2 
executable source lines of code and an average of 12.4 
modified variables. Table 6 shows that some of these char- 
acteristics are considerably different from the correspond- 
ing ones for the completely analyzed loops. For example, 
the completely analyzed loops have an average size of 10.5 
executable source lines of code and an average of 3.4 modi- 
fied variables. While the average number of events in the 
completely analyzed loops is 3.3, the partially analyzed 
loops have 11.9 events on the average. This case study has 
given us the impression that loops of up to five events were 
more easily analyzed than others. 

Characteristics 
Class Events Executable Mad6edvanabler Pointer Procedure Fmctmn Inom 

SLOC control 1 non-control vanables calls calls loops 
G C N I  13 1 4 8  1 3  1 10 1 0  1 5  1 4  1 1  

However, we noticed in some loops (p7, p8, pll, and 
p12) that some events closely match some of the designed 
plans. A larger domain of study could have improved those 
plans or resulted in designing similar ones that can contrib- 
ute more to the specifications of such loops. 

Even though the results of the case study are encourag- 
ing, further experimentation is, in our opinion, needed to 
investigate the generality and efficiency of the presented 
approach with respect to various application domains. This 
experimentation can serve to characterize the cases in 
which this approach can work best. 

p2 
p3 
p-4 
p5 
p6 
p7 
p8 
p9 
p10 
p l l  
p12 

TABLE 5 
CHARACTERISTICS OF THE 12 PARTIALLY ANALYZED LOOPS 

6 0 2 2 1  GCN 9 30 3 
GCN 13 46 3 10 0 3 2 2 
GCN 9 32 3 6 0 2 2 1  
GCN 13 49 3 10 0 4 2 2 
SNN 17 53 1 16 2 I 2 1 
SNN 20 53 1 19 4 0 1 1 

7 GCN 8 36 2 2 4 0 1  
SNN 5 29 1 4 3 0 0 2  
GCF 5 13 2 4 0 1 2 0  
GCN 12 52 3 1 1  4 1 4 2  
SNN 19 I1 1 20 4 1 4 3 

Characteristics 
(in terms of average numbers) 

Events 

Executable SLOC 

Modified variables 

Completely analyzed Partially analyzed 
loops loops 
3.3 11.9 

10.5 43.2 

3.4 12.4 

(SD = 2.1) 

(SD = 8.3) 

(SD = 2.5) 

(SD = 4.8) 

(SD = 15.7) 

(SD = 4.9) 

8 IMPLEMENTATION 
To demonstrate the feasibility of automating our knowledge- 
based analysis approach, a prototype tool, which annotates 
loops with predicate logic annotations, has been designed [2]. 
LANTeRN, which stands for "Loop ANalysis Tool for Rec- 
ognizing Natural-concepts," has been developed using Lisp. 
The input to the current version of LANTeRN is in the form 
of a loop to be analyzed, and its declarations, written in a 
subset of Pascal. It is assumed that the input Pascal program 
has been previously compiled successfully. LANTeRNs out- 
put includes the loop classification, loop events along with 
names of the plans they match, individual event analysis 
results, and synthesized and adapted final results. Its knowl- 
edge bases contain plans and ACs from the case study. The 
test cases were also used from the case study. It should also 
be mentioned that the specifications presented in this paper 
were generated by LANTeRN. 

In the current implementation, construction of the plans 
and ACs is not automated. That is, we manually populated 
the knowledge bases. However, no human interaction is 
needed during the utilization of the plans and ACs during 
analyzing loops. The construction of the tree-structured 
plans, especially in case of large knowledge bases, can be 
facilitated by the design of automated techniques that assist 



356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5 ,  MAY 1996 

in their acquisition and development. For instance, several 
knowledge base plans might have the same antecedent 
parts except for the firing-conditions. Other plans might 
have antecedents that represent special cases of a more 
general antecedent. Automatically identifying such plans 
and combining them into more sophisticated tree structures 
is an interesting topic for future study. 

The first phase in the implementation is a translation 
phase that converts the input into a language independent 
form. The loop initialization and body are converted into a 
set of lisp function calls. The loop condition, however, is left 
in its predicate form. Data type information is also ex- 
tracted. The translation results are stored in a global data 
base so that they can be easily accessed by all analysis 
phases. After the translation phase, the rest of the prototype 
can be used to analyze loops independent of the imperative 
programming language used. 

Starting from the innermost loop(s), all input loops are 
recursively analyzed. If the loop body contains inner 
loop(s), the AK tuples of the inner loop(s) are used to 
search for the matching ACs in the AC knowledge base. 
The inner loop(s) are then replaced by a concurrent assign- 
ment in terms of the found ACs as explained in Section 5.2. 
After this replacement, the four main phases of the loop 
analysis approach are implemented by following the de- 
scriptions given in Section 4. Two kinds of simplifications 
are performed in LANTeRN. The simplification of arithme- 
tic expressions is performed by converting input expres- 
sions into an internal canonical form for polynomials, ma- 
nipulating them, and converting them back to their external 
form [341. Predicate simplifications, however, are limited. 
They are performed using rule-based translation with a set 
of logical identities serving as rules. 

Because LANTeRN was designed for the specific pur- 
pose of demonstrating that our approach can be automated, 
its user interface is primitive and the only structured type 
currently being handled is the array type. Because of the 
second limitation, all loops considered in our case study 
were analyzed by LANTeRN except for those which in- 
cluded pointers. 

9 CONCLUSION 
In this paper, a knowledge-based loop analysis approach has 
been described. This approach mechanically generates rigor- 
ous unambiguous predicate logic annotations of computer 
programs. It is a bottom-up analysis approach that does not 
rely on real-time user-supplied information that might not be 
available at all times (e.g., the goals a program is supposed to 
achieve). In addition, it enables partial recognition and analy- 
sis of stereotyped, nonadjacent program parts. 

A case study was performed on a real and existing pro- 
gram of some practical value. This case study served to 
partially validate the analysis approach and to characterize 
its practical limits. To demonstrate the feasibility of auto- 
mating our knowledge-based analysis approach, a proto- 
type tool, which annotates loops with predicate logic an- 
notations, has been designed and implemented [Z]. 

The approach can assist in the maintenance and reuse 
activities by producing semantically sound and expressive 

predicate logic annotations of programs. Since many pro- 
grams are undocumented, underdocumented, or misdocu- 
mented, a major part of the maintenance task is spent in 
recognizing and understanding abstract programming con- 
cepts [5], [28]. Automation of program analysis and under- 
standing can, thus, contribute to maintenance tools and 
methods and provide support for various maintenance ac- 
tivities. Program analysis and understanding is also crucial 
for code reuse since the reuser must be aware of what a 
code component does. Understanding reusable code com- 
ponents can be achieved by augmenting them with a pre- 
cise and clear description of their functionality [7]. If these 
descriptions are in the form of formal specifications, they 
can be further used in generating test cases and assessing 
the correctness of the implementation. Automation of pro- 
gram understanding is needed to facilitate the quick and 
efficient population of a reuse repository with well docu- 
mented components [4], [ll]. 

However, when annotating complicated and large pro- 
gram parts, these formal specifications can become hard to 
read. The readability of such specifications can be enhanced 
if they are further abstracted. This abstraction can be per- 
formed by replacing a formal statement with another one 
that is formulated in terms of a more widely known and 
understood concept [ 131. Domain abstractions can further 
abstract the formal specifications with concepts specific to 
the application domain. The domain specific replacements 
can be explicitly performed by producing the abstract and 
then the domain specific ones. Otherwise, they can be im- 
plicitly performed by designing the plans such that their 
consequents are directly written in terms of the domain 
specific terms. In the former case, the knowledge base plans 
are more general and can be used in several different do- 
mains. The last stage that performs the higher level ab- 
stractions can be tailored to the needs of different domains 
and thus enhances the portability of the system. The latter 
approach, however, is easier to implement mechanically 
but reduces the generality of the plans. 

With respect to software development, predicate logic 
plays an important role in development of software using 
such languages as VDM and Z [25], 1441, [51]. Since our 
loop analysis technique produces predicate logic annota- 
tions, it can assist such formal development methods. Our 
reverse engineering approach can provide assistance in the 
last development stage that moves from operation specifi- 
cations to imperative programming language implementa- 
tions. That is, the presented loop analysis technique can 
help in showing that proof obligations generated during the 
operation refinement process are satisfied. It should be 
noted, however, that the mathematical notations used in 
VDM, Z ,  and our plans are not the same. To transform one 
mathematical notation to another, simple syntactic varia- 
tions need to be performed. For a detailed description of 
how our approach can assist in program development with 
VDM and Z ,  refer to [2]. 

There are some practical and theoretical limits to the 
presented approach. The practical limits are due to the dif- 
ficulty of designing the knowledge base plans. The theo- 
retical limits occur in nested structures with adaptation 
paths that contain statements other than assignment and 
conditional statements. They also occur while deriving the 
postconditions of general loops. 



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 357 

Future work includes extensions and improvements of the 
analysis approach, experimenting with the techniques in 
various application domains, and improvements on the pro- 
totype tool. The analysis approach needs to be expanded to 
perform an intelligent analysis of complete program modules 
that include nonalgorithmic constructs such as stacks and 
queues. We need to investigate the utilization of additional 
information and knowledge in the source code (e.g., com- 
ments, variable names) to assist in plan recognition. Per- 
forming empirical studies in various application domains can 
serve to address and investigate several issues related to the 
acquisition and development of plans and the generality and 
efficiency of the presented approach with respect to different 
application domains. Finally, the developed tool served to 
demonstrate that the analysis techniques can be automated 
[2]. For practical utilization of such a tool, it needs to be en- 
hanced to support additional programming language fea- 
tures and improve the user interface. 

APPENDIX A - NOTATION 

(FORALL x: p l :  p2)  
and 
B 
MIN s 
MAX s 
or 

py' 

P{SlQ 

PERM(a,  b) 
PRED(x) 
SUCC(x)  

The negation operator 
The implication operator 
x is an element of y 
Union of the sets x  and y 
Denotes an irrelevant information 
Value of var before an operation or a loop 
Value of var as deduced from the outer 
loop invariant 
Value of var as deduced from the adapta- 
tion path of the current inner loop 
Sequence of integers from i up  to j inclu- 
sive 
For all x values that satisfy p1 ,  p2 is true 
The logical conjunction operator 
While loop condition 
The minimum of the set (or sequence) s 
The maximum of the set (or sequence) s 
The logical disjunction operator 
The result of substituting y for each free 
occurrence of x in P 
If the predicate P is true before executing 
the first statement of the program part S, 
and if S terminates, then the predicate Q 
will be true after the execution of S is 
complete 
Array a is a permutation of the array b 
The predecessor of x 
The successor of x 

APPENDIX B - ACRONYMS 

AC,, 

AE 
AK 
AP 
BE 
BP 
UBP 
GAP 
GCF 

Abstraction Class 
AC that abstracts AK tuples whose first term is 
a DBP 
AC that abstracts AK tuples whose first item is a 
SAP 
Augmentation Event 
Analysis Knowledge 
Augmentation Plan 
Basic Event 
Basic Plan 
Determinate Basic Plan 
General Augmentation Plan 
General loop, Composite condition, Flat 

GCN 
GHAP 
GLAP 
GNF 
GNN 
IBP 
LANTeRN 

SCF 
SCN 
SHAP 
SLAP 
SNF 
SNN 
UAC 

General loop, Composite condition, Nested 
General High-level Augmentation Plan 
General Low-level Augmentation Plan 
General loop, Noncomposite condition, Flat 
General loop, Noncomposite condition, Nested 
Indeterminate Basic Plan 
Loop ANalysis Tool for Recognizing Natural- 
concepts 
Simple loop, Composite condition, Flat 
Simple loop, Composite condition, Nested 
Simple High-level Augmentation Plan 
Simple Low-level Augmentation Plan 
Simple loop, Noncomposite condition, Flat 
Simple loop, Noncomposite condition, Nested 
Unknown Abstraction Class 

APPENDIX C - EXAMPLE LOOPS 
The following four figures provide a more detailed insight 
into the analyzed loops. The first two figures (Figs. 18 and 
19) show two of the completely analyzed loops. The last 
two figures (Figs. 20 and 21) demonstrate two of the par- 
tially analyzed loops. These two loops were referenced as 
p l  and p9, respectively. 

i .= 1 -  
course-i := 0; 
flag :=false; 
whle (i <= nun-of-courses) and not flag do begin 

if course-no = course-no-db[i] then bwi1 
course-i := i; 
flag :=true 

end else 
i : = i +  1 

end 

Fig. 18. First example of a completely analyzed loop. 

numofgref = 0, 
vahdgref_llst = ml, 
wlule pref-list <> ml do begn 

nun-ofgref = num-ofgref + 1, 
1 = 1 ,  
flag =false, 

wlule (i <= numof-times) and not flag do begm 
if preflist".p-index = time_slot-db[i] then begin 

new(temp1ist); 
templist".p-index := i; 
if nun-ofgref = 1 then 

else 

validgref-list := templist; 
flag :=true 

temp-list".pgtr := nil 

templist".pgtr := validgref-list: 

end else 
i : = i + l  

end: 

if I > num-of-hmes then begm 
wnteln('lme # I, Ime-no 3, ' ** ', msgbuf), 
wnteln(' no such preference m the db I, pref-list" p-mdex), 
num-ofgref = numofgref - 1 

end, 
pref-list = pref-list" p g t r  

end 

Fig 19. Second example of a completely analyzed loop 



358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

error := false; 
nun-of-rooms := 0; 
get-neXtline(1, buffer); 
lineno := line-no + 1 ; 
msgbuf := buffer; 
flag := false; 
while (buffer <> ’eof) and (num-of-rooms < maxrooms)and not flag do begin 

token := get-token([’;’, ’:’I, buffer); 
if token = ’; ’ then begin 

end; 
if not flag then begin 

flag :=true 

if not chk-fm-rn-no(token) then begin 

end: 
error :=true 

{The following loop was completely analyzed.} 
i := 1; 
while i <= strlength do begin 

roomno[i] := token[i]; 
i : = i t  1 

end; 
token := get-token([’;’, ’:’I, buffer); 
if token = ’: ’ then 

cap := string-to-&(token); 
if not chl-range-cap(cap) then 

error :=true; 
if not error then 

if not chk-dup(roomn0) then begin 

token := get-token([’;’, ’:’I, buffer); 

num-of-rooms := numofrooms + 1 ; 
classroom-db [nm-ofrooms] .room-no := roomno; 
classroom~db[num~of~rooms] .capacity := cap 

end else begm 
writeln(’1ine #’, line-no: 3, ’ ** ’, msgbuf); 
writeln(’ classroom entry specified more than once :’, room-no, ’** ignored **’) 

end; 
token := gettoken([’;’, ’:’I, buffer); 
if token = ’; ’ then 

flag :=true 
else 

if nun-ofrooms <> maxrooms then begin 
get-nextline(1, buffer); 
lineno := lineno + 1; 
msgbuf := buffer 

end 
end 

end; 

Fig. 20. Partially analyzed loop number p l .  



ABD-EL-HAFIZ AND BASILI: A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS OF LOOPS 359 

slot-tldl :=true; 
tempqg-res := pg-reserve; 
whle tempgg-res <> nil do begin 

(The following loop was completely analyzed.} 
temp-timeslots := tempgg-res”.timeslots; 
while (temp-timeslots<%il)and(temp-timeslots*.timeslot<%me) do 

temp-timeslots := temp-timeslots”.tgtr; 

if temp-timeslots <> nil then begin 
temp-room-list := temp-timeslots*,roomlist; 
if (temp-roomlist <> nil) and (temp_roomlist*.r-index = room) then begin 

temp-timeslots*. roomlist := temp-timeslots*,roomlist*. r q t r ;  
if temp-timeslots*.roomlist <> nil then 
slot-full := false 

slot-full := false; 
if temp-roomlist <> nil then begin 

end else begin 

{The following loop was completely analyzed. ) 
flag := false; 
whle not flag and (temp-roomlist*.rqtr <> nil) do 

temp-roomlist := temp-room-list*.rgtr 

flag :=true; 

if temp-roomlist*.rqtr”’.r-index <> room then begin 

end else 

if temproomlist*.rqtr <> nil then 
temp-roomlist”.rqtr := temp-roomlist*.rqtr*.rgtr; 

end 
end 

end; 
tempgg-res := tempgg-res”.res-next 

end; 

Fig. 21. Partially analyzed loop number p9. 

ACKNOWLEDGMENT 
We thank Lionel Briand, Gianluigi Caldiera, Walcelio Melo, 
Carolyn Seaman and  Barbara Swain for their helpful con- 
tributions to  a variety of aspects presented in this paper. 
This research was  supported in part  by  the Office of Naval 
Research under  Grant No. N00014-87-k-0307 to the Uni- 
versity of Maryland. 

REFERENCES 
[11 S.K. Abd-El-Hafiz and V.R. Basili, A Knowledge-Based Approach to 

Program Understanding. Kluwer Academic Publishers, 1995. 
[21 S.K. Abd-El-Hafiz and V.R. Basili, “A Tool for Assisting the Un- 

derstanding and Formal Development of Software,” Proc. Sixth 
Int‘l Conf. Software Engineering and Knowledge Engineering, Jur- 
mala, Latvia, pp. 36-45,1994. 

[3] S.K. Abd-El-Hafiz and V.R. Basili, ”Documenting Programs Us- 
ing a Library of Tree Structured Plans,” Proc. Conf. Software Main- 
tenance,” Montreal, Canada, pp. 152-161,1993. 

[4] S.K. Abd-El-Hafiz, V.R. Basili, and G. Caldiera, ”Towards Auto- 
mated Support for Extraction of Reusable Components,” Proc. 
Conf. Software Maintenance, Sorrento, Italy, pp. 212-219,1991. 

[5] A. Abran and H. Nguyenkim, ”Analysis of Maintenance Work 
Categories Through Measurement,” Proc. Conf. Software Mainte- 
nance, Sorrento, Italy, pp. 104-113,1991. 

161 D. Allemang and B. Chandrasekaran, “Functional Representation 
and Program Debugging,“ Proc. Sixth Ann.  Knowledge-Based Soft- 
zuare Engincerifig Conf., Syracuse, N.Y., pp. 167-178, 1991. 

171 V.R. Basili and S.K. Abd-El-Hafiz, ”A Method for Documenting 
Code Components,” Tke J. of Systems and Software, to appear. 

181 S.K. Basu and J. Misra, “Proving Loop Programs,” I E E E  Trans. 
Software Engineering, vol. 1, no. 1, pp. 76-86,1975. 

[Yl K. Bertels, P. Vanneste, and C. De Backer, ”A Cognitive Ap- 
proach to Program Understanding,” Proc. Working Conf. Reverse 
Engineering, Baltimore, Md., pp. 1-7, 1993. 

[lo] G. Brassard and P. Bratley, Algoritkmics: Tkeorzy Practice. Prentice 
Hall, 1988. 

I111 G. Caldiera and V.R. Basili, ”Identifying and Qualifying Reusable 
Software Components,” Computer, vol. 24, no. 2, pp. 61-70,1991. 

1121 D.D. Dunlop and V.R. Basili, “A Heuristic for Deriving Loop 
Functions,” IEEE Trans. Software Engineering, vol. 10, no. 3, pp. 

1131 R.B. France and V.R. Basili, ”A Pattern-Driven Approach to Code 
Analysis for Reuse,” Tech. Report CS-TR-2802, Dept. of Computer 
Science, Univ. of Maryland, College Park, Md. 1991. 

275-285, 1984. 

[14] D. Gries, Tke Science of Programmizg. Springer-Verlag, 1981. 
[15] M.T. Harandi and J.Q. Ning, ”PAT: A Knowledge-Based Program 

Analysis Tool,” Proc. Conf. Software Maintenance, Phoenix, Ariz., 
pp. 312-318,1988. 

[16] M.T. Harandi and J.Q. Ning, ”Knowledge-Based Program Analy- 
sis,”IEEE Software, vol. 7, no. 1, pp. 74-81,1990. 

[171 J. Hartman, ”Understanding Natural Programs Using Proper 
decomposition,” Proc. 13th Int’l Conf Softzoare Engineering, pp. 62- 
73, Austin, Tex., 1991. 

[181 P.A. Hausler, M.G. Pleszkoch, R.C. Linger, and A.R. Hevner, 
“Using Function Abstraction to Understand Program Behavior,” 
l E E E  Software, vol. 7, no. 1, pp. 55-63,1990. 

[19] C.A.R. Hoare, “An Axiomatic Basis for Computer Programming,” 
Comm. ACM,  vol. 12, no. 10, pp. 576-580, 583, 1969. 



360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

17-01 

i251 

1261 

[271 

1281 

1291 

1301 

1321 

[331 

1341 

1351 

1371 

1411 

1431 

1441 

1451 

[461 

1471 

1481 

1491 

1501 

1511 

C.A.R. Hoare, “Procedures and Parameters: An Axiomatic Ap- 
proach,” Synzp. Seinantics of Algorithmic Languages, pp. 102.116. 
Springer-Verlag, 1971. 
C.S. Hsieh, ”Slice, Chunk, and Dataflow Anomaly as Datalog 
Rules,” TheJ. ofSystems and Software, vol. 16, no. 3, pp. 197-203,1991. 
P. Jalote, A n  Integrated Approach to Software Engineering. Springer- 
Verlag, 1991. 
W.L. Johnson, Intention-Based Diagnosis of Novice Programming 
Errors, Morgan I<aufmann, 1986. 
W.L. Johnson and E. Soloway, ”PROUST: Knowledge-Based Pro- 
gram Understanding,” IEEE Trans. Softzuare Engineering, vol. 11, 
no. 3, pp. 267-275,1985. 
C.B. Jones, Systematic Software Development Using V D M .  Prentice 
Hall Int’l, 1990. 
S. Katz and 2. Manna, “Logical Analysis of Programs,” Coinni. 
ACM,  vol. 19, no. 4, pp. 188-206,1976. 
K. Lano and P. Breuer, ”From Programs to 2 Specifications,” Z 
User Woricshop, I .E.  Nicholls , pp. 46-70. Springer-Verlag, 1989. 
B.P. Leintz and E.B. Swanson, Software Maintenance Manageineiit. 
Addison-Wesley, 1980. 
S. Letovsky, “Program Understanding with the Lambda Calcu- 
lus,” Proc. 10th Int’l Joint Conf. on AI, pp. 512-514,1987. 
D.C. Luckham and N. Suzuki, ”Verification of Array, Record, and 
Pointer Operations in Pascal,” TOPLAS, vol. I, no. 2, pp. 226-244, 
Oct. 1979. 
K.B. McKeithen, J.S. Reitman, H.H. Rueter, and S.C. Hirtle, 
“Knowledge Organization and Skill Differences in Computer 
Programmers,” Cognitive Psychology. vol. 13, pp. 307-325, 1981. 
H.D. Mills, V.R. Basili, J.D. Gannon, and R.G. Hamlet, Principles of 
Computer Programming: A Mathematical Approach. Allyn and Ba- 
con, 1987. 
W.R. Murray, Automatic Program Debugging for Intelligent Tutoring 
Sys tms .  Morgan Kaufmann, 1988. 
P. Norvig, Paradigms of Artificial Intelligence Programmiizg: Case 
Studies in Common Lisp. Morgan Kaufmann, 1992. 
T.W. Pratt, ”Control Computations and the Design of Loop Con- 
trol Structures,” I E E E  Trans. Softzuare Engineering, vol. 4, no. 2, pp. 

A. Quilici, “A Hybrid Approach to Recognizing Programming 
plans,” Pvoc. Working Conf. Reverse Engineering, pp. 126-133, Bal- 
timore, Md., 1993. 
C. Rich, ”A Formal Representation for Plans in the Programmer’s 
Apprentice,” Proc. Seventh Int’l Joint Conf. on AI, pp. 1,044-1,052, 
Aug. 1981. 
C. R~ch and L.M. Wills, “Recognizing a Program’s Design: A Graph- 
Parsing Approach,” I E E E  Software, vol. 7, no. 1, pp. 82-89,1990. 
E. Rich and K. Knight, Artificial Intelligence. McGraw-Hill, 1991. 
P.G. Selfridge, R.C. Waters, and E.J. Chikofsky, ”Challenges to the 
field of Reverse Engineering,” Proc. Working Conf. Reverse Engi- 
neering, Baltimore, Md., pp. 144-150,1993. 
E. Soloway, “Learning to Program = Learning to Construct 
Mechanisms and Explanations,” Comm. ACM,  vol. 29, no. 9,pp. 

E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive Strategies and 
Looping Constructs: an Empirical Study,” Comm. ACM,  vol. 26, 
no. 11, pp. 853-860,1983. 
E. Soloway and K. Ehrlich, ”Empirical Studies of Programming 
Knowledge,” IEEE Trans. Software Engineering, vol. 10, no. 5,1984. 
J.M. Spivey, “An Introduction to Z and Formal Specifications,” 
Software Engineering I . ,  pp. 40-50, Jan. 1989. 
J.M. Spivey, The Z Notation: a Reference Manual. Prentice Hall Int’l, 
1992. 
M. Ward, F.W. Calliss, and M. Munro, ”The Maintainer’s Assis- 
tant,” Proc. Conf. Software Maintenance, Miami, Fla., pp. 307-315, 
1989. 
R.C. Waters, ”A Method for Analyzing Loop Programs,” IEEE 
Trans. Software Engineering, vol. 5, no. 3, pp. 237-247, 1979. 
R.C. Waters, ”The Programmer’s Apprentice: A Session with 
KBEmacs,” I E E E  Trans. Software Engineering, vol. 11, no. 11, pp. 
1,296-1,320, Nov. 1985. 
B. Wegbreit, ”The Synthesis of Loop Predicates,” Comm. ACM,  
vol. 17, no. 2, pp. 102-112,1974. 
L.M. Wills, ”Flexible Control for Program Recognition,” Proc. the 
Working Conf. Reverse Engineering, Baltimore, Md., pp. 134-143, 
1993. 
J.C.P. Woodcock, “Structuring Specifications in Z,” Softzoare Engi- 
neering I . ,  pp. 51-66, Jan. 1989. 

81-89,1978. 

850-858,1986. 

Salwa K. Abd-El-Hafiz received the BS degree 
in electrical engineering from Cairo University, 
Egypt, in 1986 and the MS and PhD degrees in 
computer science from the University of Mary- 
land, College Park, Maryland, in 1990 and 1994, 
respectively She is currently an assistant pro- 
fessor at the Engineering Mathematics Depart- 
ment, Faculty of Engineering, Cairo University, 
Giza, Egypt Her primary research interests in 
software engineering are program understand- 
ing, the application of artificial intelligence to 

software analysis, and software specification. Other interests include 
software maintenance, reuse, and measurements. Dr. Abd-El-Hafiz is 
a member of the IEEE Computer Society 

Victor R. Basili ((M’83-SM’84-F’90) is a pro- 
fessor in the Institute for Advanced Computer 
Studies (UMIACS) and the Computer Science 
Department at the University of Maryland, Col- 
lege Park, Maryland, where he served as chair- 
man for six years He was involved in the design 
and development of several software projects, 
including the SIMPL family of programming 
languages He is currently measuring and 
evaluating software development in industrial 
and government settings and has served as a 

consultant to many agencies and organizations, including IBM, Mo- 
torola, HP, Boeing, Xerox, NRL, NSWC, and NASA. 

Dr Basili works on the development of quantitative approaches for 
software management, engineering, and quality assurance, using 
models and metrics for improving the software development process 
and product He helped found and is one of the principals of the Soft- 
ware Engineering Laboratory, a joint venture between the NASA God- 
dard Space Flight Center, the University of Maryland, and the Com- 
puter Sciences Corporation that was established in 1976 He received 
the first Process Improvement Achievement Award for the GRO Ada 
experiment in 1989 and the NASNGSFC Productivity Improvement 
and Quality Enhancement Award for the Cleanroom project in 1990 

Dr Basili has authored more than 100 journal and refereed confer- 
ence papers In 1982, he received the Outstanding Paper Award from 
/€E€ Transactions on Software Engmeermg for his paper on the 
evaluation of methodologies He has served as editor-in-chief of /€E€ 
Transactions on Software Engmeermg, general chair of the 15th Inter- 
national Conference on Software Engineering held in 1993 in Balti- 
more, Maryland, program chair of the sixth International Conference on 
Software Engineering in 1982 in Japan, and general or program chair 
of several other conferences He was treasurer of the IEEE Computing 
Society Board of Governors and a member of the Board of Directors of 
Verdix Corp He serves on the editorial board of the Journal of Sys- 
tems and Software and is an IEEE fellow He is a member of the Engi- 
neering Excellence Council for the Xerox Corp He serves as a co- 
editor-in-chief of a new journal, Empirical Software Engmeermg, An 
international Journal, to be published by Kluwer Academic Publishers 
beginning in April 1996 


