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A Validation of Object-Oriented Design 
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Abstract-This paper presents the results of a study in which we empirically investigated the suite of object-oriented (00) design 
metrics introduced in [13]. More specifically, our goal is to assess these metrics as predictors of fault-prone classes and, therefore, 
determine whether they can be used as early quality indicators. This study is complementary to the work described in [30] where the 
same suite of metrics had been used to assess frequencies of maintenance changes to classes. To perform our validation 
accurately, we collected data on the development of eight medium-sized information management systems based on identical 
requirements. All eight projects were developed using a sequential life cycle model, a well-known 00 analysis/design method and 
the C++ programming language. Based on empirical and quantitative analysis, the advantages and drawbacks of these 00 metrics 
are discussed. Several of Chidamber and Kemerer’s 00 metrics appear to be useful to predict class fault-proneness during the 
early phases of the life-cycle. Also, on our data set, they are better predictors than “traditional” code metrics, which can only be 
collected at a later phase of the software development processes. 

Index Terms-Object-oriented design metrics, error prediction model, object-oriented software development, C++ programming 
language. 

1 INTRODUCTION 
1 .I Motivation 

HE development of a large software system is a time- T and resource-consuming activity. Even with the in- 
creasing automation of software development activities, 
resources are still scarce. Therefore, we need to be able to 
provide accurate information and guidelines to managers 
to help them make decisions, plan and schedule activities, 
and allocate resources for the different software activities 
that take place during software development. Software 
metrics are, thus, necessary to identify where the resources 
are needed; they are a crucial source of information for de- 
cision-making [22]. 

Testing of large systems is an example of a resource- and 
time-consuming activity. Applying equal testing and verifi- 
cation effort to all parts of a software system has become 
cost-prohibitive. Therefore, one needs to be able to identify 
fault-prone modules so that testing / verification effort can 
be concentrated on these modules [21]. The availability of 
adequate product design metrics for characterizing error- 
prone modules is, thus, vital. 
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Many product metrics have been proposed [16], [26], 
used, and, sometimes, empirically validated [3], [4], [19], 
[30], e.g., number of lines of code, McCabe complexity met- 
ric, etc. In fact, many companies have built their own cost, 
quality, and resource prediction models based on product 
metrics. TRW [7], the Software Engineering Laboratory 
(SEL) [31], and Hewlett Packard [20] are examples of soft- 
ware organizations that have been using product metrics to 
build their cost, resource, defect, and productivity models. 

1.2 Issues 
In the last decade, many companies have started to intro- 
duce object-oriented (00) technology into their software 
development environments. 00 analysis / design methods, 
00 languages, and 00 development environments are 
currently popular worldwide in both small and large soft- 
ware organizations. The insertion of 00 technology in the 
software industry, however, has created new challenges for 
companies which use product metrics as a tool for moni- 
toring, controlling, and improving the way they develop 
and maintain software. Therefore, metrics which reflect the 
specificities of the 00 paradigm must be defined and vali- 
dated in order to be used in industry. Some studies have 
concluded that ”traditional” product metrics are not suffi- 
cient for characterizing, assessing, and predicting the qual- 
ity of 00 software systems. For example, in [12] it was re- 
ported that McCabe cyclomatic complexity appeared to be 
an inadequate metric for use in software development 
based on 00 technology. 

To address this issue, 00 metrics have recently been 
proposed in the literature [l], [6], [13]. However, with a few 
exceptions [lo], [30], most of them have not undergone an 
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empirical validation (see [9] and [35] for further discussion 
of the empirical validation of measures). Empirical valida- 
tion aims at demonstrating the usefulness of a measure in 
practice and is, therefore, a crucial activity to establish the 
overall validity of a measure. A measure may be correct 
from a measurement theory perspective (i.e., be consistent 
with the agreed upon empirical relational system) but be of 
no practical relevance to the problem at hand. On the other 
hand, a measure may not be entirely satisfactory from a 
theoretical perspective but can be a good enough approxi- 
mation and work fine in practice. 

In this paper, we present the results of a study in which 
we performed an empirical validation of the 00 metric 
suite defined in [13] with regard to their ability to identify 
fault-prone classes. However, the theoretical validation of 
these metrics is not addressed here and, as a complement to 
this paper, the reader may refer to a discussion about the 
mathematical properties of Chidamber and Kemerer's met- 
rics in [ll], [24]. 

Data were collected during the development of eight 
medium-sized information management systems based on 
identical requirements. All eight projects were developed 
using a sequential life cycle model, a well-known Object- 
Oriented analysis/design method [33], and the C++ pro- 
gramming language [36]. Despite the fact that these projects 
were run in a university setting, we set up a framework that 
was representative of currently used technology in indus- 
trial settings. 

1.3 Outline 
This paper is organized as follows. Section 2 presents the 
suite of 00 metrics proposed by Chidamber and Kemerer 
[13], offers the experimental hypotheses to be tested, and 
then shows a case study from which process and product 
data were collected allowing a quantitative validation of 
this suite of metrics. Section 3 presents the actual data col- 
lected together with the statistical analysis of the data. Sec- 
tion 4 compares our study with other works on the subject. 
Section 5 concludes the paper by presenting lessons learned 
and future work. 

2 DESIGN OF THE EMPIRICAL STUDY 

2.1 Dependent and independent Variables 
The goal of this study was to analyze empirically the 00 
design metrics proposed in [13] for the purpose of evaluat- 
ing whether or not these metrics are useful for predicting 
the probability of detecting faulty classes. Assuming testing 
was performed properly and thoroughly, the probability of 
fault detection in a class during acceptance testing should 
be a good indicator of its probability of containing a fault 
and, therefore, a relevant measure of fault-proneness. The 
construct validity of our dependent variable can, thus, be 
demonstrated. 

Other measures such as class fault density could have 
been used. However, the variability in terms of number of 

1 

1. Construct validity is discussed further in [27]. It is defined as the extent 
to which the theoretical construct of interest (e.g., our dependent variable: 
fault-proneness) i s  measured successfully, i.e , do we really measure what 
we purport to measure? 

faults in our data set is small: Faults were detected only in 
36 percent of the classes and 84 percent of the classes con- 
tain less than three faults. Therefore, using a dependent 
variable with low variability would have affected our abil- 
ity to identify significant relationships between 00 design 
metrics and t h s  dependent variable. 

In addition, it was difficult to decide what was the best 
way to measure the size of classes given the large number 
of alternatives (e.g., LOC, SLOC, number of methods, num- 
ber of attributes, etc.). The probability of fault detection 
was, therefore, the most straightforward and practical 
measure of fault-proneness and, therefore, a suitable de- 
pendent variable for our study. Based on [13], [14], and 
[15], it is clear that the definitions of these metrics are not 
language independent. As a consequence, we had to 
slightly adjust some of Chidamber and Kemerer's metrics 
in order to reflect the specificities of C++. These metrics are 
as follows: 

0 Weighted Methods per Class (WMC). WMC measures 
the complexity of an individual class. Based on [13], if 
we consider all methods of a class to be equally com- 
plex, then WMC is simply the number of methods de- 
fined in each class. In this study, we adopted this ap- 
proach for the sake of simplicity and because the 
choice of a complexity metric would be somewhat ar- 
bitrary since it is not fully specified in the metric suite. 
Thus, WMC is defined as being the number of all 
member functions and operators defined in each 
class. However, "friend operators (C++ specific con- 
struct) are not counted. Member functions and op- 
erators inherited from the ancestors of a class are also 
not counted. This definition is identical to the one de- 
scribed in [14]. 

In [E], Churcher and Shepperd have argued that 
WMC can be measured in different ways depending 
on how member functions and operations defined in 
a C++ class are counted. We believe that the different 
counting rules proposed in [15] correspond to differ- 
ent metrics, similar to the WMC metric, and which 
must be empirically validated as well. A validation of 
Churcher and Shepperd's WMC-like metrics is, how- 
ever, beyond the scope of this paper. 

0 Depth of Inheritance Tree of a class (DIT)-DIT is de- 
fined as the maximum depth of the inheritance graph 
of each class. C++ allows multiple inheritance and, 
therefore, classes can be organized into a directed 
acyclic graph instead of trees. DIT, in our case, meas- 
ures the number of ancestors of a class. 
Number Of Children of a Class (N0C)-This is the 
number of direct descendants for each class. 

0 Coupling Between Object classes (CB0)-A class is 
coupled to another one if it uses its member functions 
and/ or instance variables. CBO provides the number 
of classes to which a given class is coupled. 

0 Response For a Class (RFC)-T~IS is the number of 
methods that can potentially be executed in response to 
a message received by an object of that class. In our 
study, RFC is the number of C++ functions directly in- 
voked by member functions or operators of a C++ class. 
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Lack of Cohesion on Methods (LC0M)-This is the 
number of pairs of member functions without shared 
instance variables, minus the number of pairs of 
member functions with shared instance variables. 
However, the metric is set to zero whenever the above 
subtraction is negative. 

Readers acquainted with C++ can see that some par- 
ticularities of C++ are not taken into account by Chidamber 
and Kemerer’s metrics, e.g., C++ templates, friend classes, 
etc. In fact, additional work is necessary in order to extend 
the proposed 00 metric set with metrics specifically tai- 
lored to C++. 

2.2 Hypotheses 
In order to validate the above metrics as quality indicators, 
their expected relationship with fault-proneness (or rather 
the measure we selected for this attribute: probability of fault 
detection) must be validated. The experimental hypotheses to 
be statistically tested are, for each metric, as follows: 

H-WMC: A class with significantly more member 
functions than its peers is more complex and, by con- 
sequence, tends to be more fault-prone. 
H-DIT: Well-designed 00 systems are those struc- 
tured as forests of classes, rather than as one very 
large inheritance lattice. In other words, a class lo- 
cated deeper in a class inheritance lattice is supposed 
to be more fault-prone because the class inherits a 
large number of definitions from its ancestors. In ad- 
dition, deep hierarchies often imply problems of con- 
ceptual integrity, i.e., it becomes unclear which class 
to specialize from in order to include a subclass in the 
inheritance hierarchy [17]. 
H-NOC: Classes with large number of children 
(i.e., subclasses) are difficult to modify and usually 
require more testing because the class potentially af- 
fects all of its children. Furthermore, a class with nu- 
merous children may have to provide services in a 
larger number of contexts and must be more flexible. 
We expect this to introduce more complexity into the 
class design and, therefore, we expect classes with 
large number of children to be more fault-prone. 
H-CBO: Highly coupled classes are more fault-prone 
than weakly coupled classes because they depend 
more heavily on methods and objects defined in other 
classes. 
H-RFC: Classes with larger response sets implement 
more complex functionalities and are, therefore, more 
fault-prone. 
H-LCOM: Classes with low cohesion among its meth- 
ods suggests an inappropriate design (i.e., the encap- 
sulation of unrelated program objects and member 
functions that should not be together) which is likely 
to be more fault-prone. 

2.3 Study Participants 
In order to validate the hypotheses stated in the previous 
section, we ran an empirical study over four months (from 
September to December 1994). The study participants were 
the students of an upper division undergraduate / graduate 

level course offered by the Department of Computer Sci- 
ence at the University of Maryland. The objective of this 
class was to teach 00 software analysis and design. The 
students were not required to have previous experience or 
training in the application domain or 00 methods. A11 stu- 
dents had some experience with C or C++ programming 
and relational databases and, therefore, had the basic skills 
necessary for such a study. 

In order to control for differences in skills and experience 
among students, the students were randomly grouped into 
eight teams of three students. Furthermore, in order to ensure 
the groups were comparable with respect to the ability of 
their members, the following procedure (i.e., known as 
”blocking” [27]) was used to assign students to groups: 

First, the level of experience of each student was 
characterized at the beginning of the study. We used 
questionnaires and performed interviews. We asked 
the students information regarding their previous 
working experience, their student status (part-time, 
full-time student), their computer science degree (BS, 
MSc, PhD), their previous experiences with analy- 
sis / design methods, and their skill regarding various 
programming languages. 
Second, each of the eight most experienced students 
was randomly assigned to a different group 
(i.e., team). Students considered most experienced 
were computer science PhD candidates who had al- 
ready implemented large (2 10 thousands source lines 
of code, KSLOC) C or C++ programs and those with 
industrial experience greater than two years in C pro- 
gramming. None of the students had significant expe- 
rience in Object-Oriented software analysis and de- 
sign methods. Similarly, each of the eight next most 
experienced students were randomly assigned to dif- 
ferent groups and this was repeated for the remaining 
eight students. 

2.4 The Development Process ~ 

Each team was asked to develop a medium-sized manage- 
ment information system that supports the rental / return 
process of a hypothetical video rental business, and main- 
tains customer and video databases. Such an application 
domain had the advantage of being easily comprehensible 
and, therefore, we could make sure that system require- 
ments could be easily interpreted by students regardless of 
their educational background. 

The development process was performed according to a 
sequential software engineering life-cycle model derived 
from the Waterfall model. This model includes the follow- 
ing phases: analysis, design, implementation, testing, and 
repair. At the end of each phase, a document was delivered: 
Analysis document, design document, code, error report, 
and finally, modified code, respectively. Requirement 
specifications and design documents were checked to verify 
that they matched the system requirements. Errors found in 
these first two phases were reported to the students. This 
maximized the chances that the implementation began with 
a correct 00 analysis/ design. Acceptance testing was per- 
formed by an independent group (see Section 2.5). During 



754 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. IO, OCTOBER 1996 

the repair phase, the students were asked to correct their 
system based on the errors found by the independent test 
group. 

OMT, an 00 Analysis/Design method, was used during 
the analysis and design phases [33]. The C++ programming 
language, the GNU software development environment, 
and OSF / MOTIF were used during the implementation. 
Sparc Sun stations were used as the implementation plat- 
form. Therefore, the development environment and tech- 
nology we used are representative of what is currently used 
in industry and academia. Our results are, thus, more likely 
to be generalizable to other development environments 
(external validity). 

The following libraries were provided to the students: 
1) MotvApp. This public domain library provides a set of 

C++ classes on top of OSF/MOTIF for manipulation 
of windows, dialogues, menus, etc. [37]. The 
MotifApp library provides a way to use the 
OSF/Motif widgets in an 00 programming/design 
style. 

2) GNU library. This public domain library is provided 
in the GNU C++ programming environment. It 
contains functions for manipulation of string, files, 
lists, etc. 

3)  C++ database library. This library provides a C++ im- 
plementation of multi-indexed B-Trees. 

We also provided a specific domain application library 
in order to make our study more representative of indus- 
trial conditions. This library implemented the graphical 
user interface for insertion/removal of customers and was 
implemented in such a way that the main resources of the 
OSF / Motif widgets and MotifApp library were used. 
Therefore, this library contained a small part of the im- 
plementation required for the development of the rental 
system. 

No special training was provided for the students to 
teach them how to use these libraries. However, a tutorial 
describing how to implement OSF / Motif applications was 
given to the students. In addition, a C++ programmer, fa- 
miliar with OSFIMotif applications, was available to an- 
swer questions about the use of OSF/Motif widgets and the 
libraries. A hundred small programs exemplifying how to 
use OSF/Motif widgets were also provided. In addition, 
the source code and the complete documentation of the 
libraries were made available. Finally, it is important to 
note the students were not required to use the libraries and, 
depending on the particular design they adopted, different 
reuse choices were expected. 

2.5 Testing 
The testing phase was accomplished by an independent 
group composed of experienced software professionals. 
This group tested all systems according to similar test plans 
and using functional testing techniques, spending eight 
hours testing each system. 

2.6 Nature of the Study 
Our empirical study is not what could be called formally a 
controlled experiment since the independent variables 
(i.e., 00 design metrics) are not controlled for and not as- 

signed randomly to classes. Such a design would not be 
implementable. Rather, our study is more observational in 
nature. However, it is important to note that we have tried 
to make the results of our study as generalizable as possible 
(i.e./ maximizing external validity) by a careful selection of 
the study participants, the study material, and the devel- 
opment process. Nevertheless, there is a greater danger that 
the study be exposed to confounding variables and all sig- 
nificant relationships should be carefully interpreted. 

2.7 Data Collection Procedures and Measurement 

We collected: 
Instruments 

1) the source code of the C++ programs delivered at the 

2) data about these programs, 
3)  data about errors found during the testing phase and 

4) the repaired source code of the C++ programs deliv- 

GEN++ [18] was used to extract Chidamber and Kemerer’s 
00 design metrics directly from the source code of the pro- 
grams delivered at the end of the implementation phase. To 
collect items 2) and 3), we used the following forms, which 
have been tailored from those used by the Software Engi- 
neering Laboratory [23]: 

* Fault Report Form. 
* Component Origination Form. 

In the following sections, we comment on the purpose of 
the Component Origination and Fault Report forms used in 
our study and the data they helped collect. 

2.7. I Data Collection Forms 

end of the implementation phase, 

fixes during the repair phase, and 

ered at the end of the life cycle. 

A fault report form was used to gather data about 
1) the faults found during the testing phase, 
2) classes changed to correct such faults, and 
3)  the effort in correcting them. 

The latter was not used in this study. Further details can be 
found in [5]. 

A component origination form was used to record in- 
formation that characterizes each class under development 
in the project at the time it goes into configuration man- 
agement. First, this form was used to capture whether the 
class has been developed from scratch or has been devel- 
oped from a reused class. In the latter case, we collected the 
amount of modification needed to meet the system re- 
quirements and design: none, slight (less than 25 percent of 
code changed), or extensive (more than 25 percent of code 
change) as well as the name of the reused class. Classes 
reused without modification were labeled: verbatim reused. 

In addition, the name of the sub-system to which the 
class belonged was also collected. In our study, we had two 
types of sub-systems: user interface (UI) and database pro- 
cessing (DB). 

2.7.2 Data Collected 
Chidamber and Kemerer’s 00 design metrics were col- 
lected for each of the 180 classes across the eight systems 
under study. In addition, all faults detected during testing 
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Fig. 1. Distribution of the analyzed 00 metrics. The X axes represents 

activities were located in the systems and, therefore, associ- 
ated with one or several of their classes. 

3 DATA ANALYSIS 
In this section, we will assess empirically whether the 00 
design metrics defined in [13] are useful predictors of 
fault-prone classes. This will help us assess these metrics 
as quality indicators and how they compare to common 
code metrics. We intend to provide the type of empirical 
validation that we think is necessary before any attempt 
to use such metrics as objective and early indicators of 
quality is made [9]. Section 3.1 shows the descriptive distri- 
butions of the 00 metrics in the studied sample whereas 
Section 3.2 provides the results of univariate and multivari- 
ate analyses of the relationships between 00 metrics and 
fault-proneness. 

3.1 Distribution and Correlation Analyses 
Fig. 1 shows the distributions of the analyzed 00 metrics 
based on 180 classes present in the studied systems. Table 1 
provides common descriptive statistics of the metric distri- 
butions. These results indicate that inheritance hierarchies 
are somewhat flat (DIT) and that classes have, in general, 
few children (NOC) (this result is similar to what was 
found in [13]). In addition, most classes show a lack of 

120 , 1 
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DIT 

160 I . . . . . . . . . . . . . .  , 

60 I I 

0 3 6 Y 12 15 18 21 24 27 30 

CBO 

the values of the metric. The Y axes represents the number of class. 

cohesion (LCOM) near zero. This latter metric does not 
seem to differentiate classes well and this may stem from its 
definition which prevents any negative measure. This issue 
will be discussed further in Section 3.2. 

TABLE 1 
DESCRIPTIVE STATISTICS OF THE 180 STUDIED c++ CLASSES 

WMC DIT RFC NOC LCOM CBO 
Maximum 99.00 9.00 105.00 13.00 426.00 30.00 
Minimum 1.00 0.00 0.00 0.00 0.00 0.00 
Median 9.50 0.00 19.50 0.00 0.00 5.00 
Mean 13.40 1.32 33.91 0.23 9.70 6.80 
Std Dev 14.90 1.99 33.37 1.54 63.77 7.56 

Descriptive statistics will be useful to help us interpret the results of the 
analysis in the remainder of this section. In addition, they will facilitate com- 
parisons of resultsfromfuture similar studies. 

TABLE 2 
CORRELATION ANALYSIS 

R~ Values 

WMC 
DIT 
RFC 
NOC 
LCOM - 

NMC DIT RFC NOC LCOM CBO 
1 0.02 0.24 0 0.38 0.13 

0.01 0 1 0 0 

1 0 0.09 0.31 

1 0 0 

1 0.01 
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Table 2 shows very clearly that linear Pearson's correla- 
tions (R': Coefficient of determination) between the studied 
00 metrics are, in general, very weak. Three coefficients of 
determination appear somewhat more significant (bold co- 
efficients in Table 2). However, when looking at the scat- 
terplots, only the relationship between CBO and RFC seems 
not to be due to outliers. We conclude that these metrics are 
mostly statistically independent and, therefore, do not 
capture a great deal of redundant information. 

3.2 The Relationships Between Fault Probability and 

3.2. I Analysis Methodology 
The response variable we use to validate the 00 design 
metrics is binary, i.e., was a fault detected in a class during 
testing phases? We used logistic regression, a standard 
technique based on maximum likelihood estimation, to 
analyze the relationships between metrics and the fault- 
proneness of classes. Currently, logistic regression is a 
standard classification technique [25] used in experimental 
sciences. It has already been used in software engineering 
to predict error-prone components [8] ,  [29], [32]. 

Other classification techniques such as classification 
trees [34], Optimized Set Reduction [8], or neural networks 
[28] could have been used. However, our goal here is not to 
compare multivariate analysis techniques (see [8] for a 
comparison study) but, based on a suitable and standard 
technique, to validate empirically a set of metrics. 

We first used univariate logistic regression, to evaluate 
the relationship of each of the metrics in isolation and fault- 
proneness. Then, we performed multivariate logistic re- 
gression, to evaluate the predictive capability of those 
metrics that had been assessed sufficiently significant in 
the univariate analysis. This modeling process is further 
described in [25]. 

A multivariate logistic regression model is based on the 
following relationship equation (the univariate logistic re- 
gression model is a special case of this, where only one 
variable appears): 

00 Metrics 

where n is the probability that a fault was found in a class 
during the validation phase, and the X,s  are the design met- 
rics included as explanatory variables in the model (called 
covaviates of the logistic regression equation). The curve 
between rc and any single XI-i.e., assuming that all other 
X J s  are constant-takes a flexible S shape which ranges 
between two extreme cases: 

1) when a variable is not significant, then the curve ap- 
proximates a horizontal line, i.e., 7c does not depend 
on X,, and 

2) when a variable entirely differentiates error-prone 
software parts, then the curve approximates a step 
function. 

Such a S shape is perfectly suitable as long as the relationshp 
between X i s  and rc is monotonic, an assumption consistent with 
the empirical hypotheses to be tested in tlus study. Otherwise, 
higher degree terms have to be introduced in equation ("). 

The coefficients Cis will be estimated through the maxi- 
mization of a likelihood function, built in the usual fashion, 
i.e., as the product of the probabilities of the single obser- 
vations, which are functions of the covariates (whose values 
are known in the observations) and the coefficients (which 
are the unknowns). For mathematical convenience, 
1 = In[L], the loglikelihood, is usually the function to be 
maximized. This procedure assumes that all observations 
are statistically independent. In our context, an observation 
is the (non)detection of a fault in a C++ class. Each (non) 
detection of a fault is assumed to be an event independent 
from other fault (non)detections. Each data vector in the 
data set describes an observation and has the following 
components: An event category (fault, no fault) and a set of 
00 design metrics (described in Section 2.1) characterizing 
either the class where the fault was detected or a class 
where no fault was detected. 

The global measure of goodness of fit we will use for 
such a model is assessed via R2-not to be confused with 
the least-square regression R2-they are built upon very 
different formulae, even though they both range between 
zero and one and are similar from an intuitive perspective. 
The higher R2, the higher the effect of the model's explana- 
tory variables, the more accurate the model. However, as 
opposed to the R2 of least-square regression, high R2s are 
rare for logistic regression. For this reason, the reader 
should not interpret logistic regression R2s using the usual 
heuristics for least-square regression R2s. (The interested 
reader may refer to [21] for a detailed discussion of this 
issue.). Logistic regression R' is defined by the following 
ratio: 

LL, -LL 

LLS 
R =  

where 

4 LL is the loglikelihood obtained by Maximum Likeli- 
hood Estimation of the model described in formula (") 

4 LL, is the loglikelihood obtained by Maximum Likeli- 
hood Estimation of a model without any variables, 
i.e., with only Co. By carrying out all the calculations, 
it can be shown that LL, is given by 

where mo (resp., ml) represents the number of observations 
for which there are no faults (resp., there is a fault). Looking 
at the above formula, LLs/ (mo + ml) may be interpreted as 
the uncertainty associated with the distribution of the de- 
pendent variable Y, according to Information Theory con- 
cepts. It is the uncertainty left when the variable-less model 
is used. Likewise, LL/(mo + ml) may be interpreted as the 
uncertainty left when the model with the covariates is used. 
As a consequence, (LL, - LL) / (mo + ml) may be interpreted 
as the part of uncertainty that is explained by the model. 
Therefore, the ratio (LLs - LL)/LLs may be interpreted as 
the proportion of uncertainty explained by the model. 

Tables 3 and 4 contain the results we obtained through, 
respectively, univariate and multivariate logistic regression 
on all of the 180 classes. We report those related to the met- 
rics that turned out to be the most significant across all 
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eight development projects. For each metric, we provide the 
following statistics: 

Coefzcient (appearing in Tables 3 and 4)’ the estimated 
regression coefficient. The larger the coefficient in absolute 
value, the stronger the impact (positive or negative, ac- 
cording to the sign of the coefficient) of the explanatory 
variable on the probability p of a fault to be detected in a 
class. 

TABLE 3 
UNlVARlATE ANALYSIS-SUMMARY OF RESULTS 

Metrics Coefficient AV p -value R* Classes 

WMC (2) 0.086 9% 0.0003 0.024 New-Ext 
WMC (1) 0.022 2% 0.0607 0.007 ALL 

WMC (3) 0.027 3% 0.0656 0.015 DB 
WMC(4)  0.094 10% 0.0019 0.047 UI 

DIT (1) 0.485 62% 0.0000 0.065 ALL 
DIT (2) 0.868 138% 0.0000 0.131 New-Ext 
DIT (3) 0.475 60% 0.043 0.019 DB 

RFC (2) 0.087 8% 0.0000 0.248 New-Ext 

DIT (4) 0.29 34% 0.024 0.017 UI 
RFC (1) 0.085 9% 0.0000 0.065 ALL 

RFC (3) 0.077 8% 0.0000 0.188 DB 

NOC (I)  -3.3848 -96% 0.0000 0.143 ALL 

NOC(3) -2.05 -77% 0.0000 0.083 DB 
CBO (1) 0.142 15% 0.0000 0.068 ALL 

RFC (4) 0.108 11% 0.0000 0.362 UI 

NOC (2) -3.62 -97% 0.0011 0.362 New-Ext 

CBO (2) 0.079 8% 0.017 0.020 New-Ext 
CBO (3) 0.086 9% 0.006 0.034 DB 

ALL means all the classes. New-Ext standsfor classes which have been cre- 
atedfrom scratch or extensively modified. DB labels classes implementing 
database manipulations. UI labels classes implementing user interface 
functions. 

CBO (4) 0.284 33% 0.0000 0.170 UI 

TABLE 4 
MULTIVARIATE ANALYSIS WITH 00 DESIGN METRICS 

Coefficient p-value 
Intercept 3.13 0.0000 
DIT 0.50 0.0004 
RFC 0.1 1 0.0000 
NOC -2.01 0.01 78 
CBO 0.13 0.0072 
Class Origin 1.84 0.0000 

A y  (appearing in Table 3 only), which is based on the 
notion of odd ratio [25], and provides an evaluation of 
the impact of the metric on the response variable. 
More specifically, the odds ratio y(X) represents the 
ratio between the probability of having a fault and the 
probability of not having a fault when the value of the 
metric is X. As an example, if, for a given value X, 
y(X) is two, then it is twice as likely that the class does 
contain a fault than that it does not contain a fault. 
The value of A y  is computed by means of the follow- 
ing formula: 

Therefore, A y  represents the reduction/ increase in the 
odds ratio (expressed as a percentage in Table 3) when 
the value X increases by one unit. This is designed to 
provide an intuitive insight into the impact of ex- 
planatory variables. 

The statistical significance (p-value, appearing in 
Tables 3 and 4) provides an insight into the accuracy 
of the coefficient estimates. It tells the reader about 
the probability of the coefficient being different from 
zero by chance. Historically, a significance threshold 
of a = 0.05 (i.e., 5 percent probability) has often been 
used to determine whether an explanatory variable 
was a significant predictor. However, the choice of a 
particular level of significance is ultimately a subjec- 
tive decision and other levels such as a = 0.01 or 0.1 
are common. Also, the larger the level of significance, 
the larger the standard deviation of the estimated co- 
efficients, and the less believable the calculated im- 
pact of the explanatory variables. The significance test 
is based on a likelihood ratio test [25] commonly used 
in the framework of logistic regression. 

3.2.2 Univariate Analysis 
In this section, we analyze the relationships between six 00 
metrics introduced in 1131 (though slightly adapted to our 
context) and the probability of fault detection in a class 
during test phases. Thus, we intend to test the hypotheses 
stated in Section 2.2. 

Weighted Methods per Class (WMC) was shown to be 
somewhat significant (p-value = 0.06) overall. For 
new and extensively modified classes and for U1 
(Graphical and Textual User Interface) classes, the re- 
sults are more significant: p-value = 0.0003 and 
p-value = 0.001, respectively. Therefore, the H-WMC 
hypothesis is supported by these results: The larger 
the WMC, the larger the probability of fault detection. 
These results can be explained by the fact that the in- 
ternal complexity does not have a strong impact if the 
class is reused verbatim or with very slight modifica- 
tions. In that case, the class interface properties will 
have the most significant impact. 
Depth of Inheritance Tree of a class (DIT) was shown 
to be very significant (p-value = 0.0000) overall. The 
H-DIT hypothesis is supported by the results: The 
larger the DIT, the larger the probability of fault de- 
tection. A ain, the strength of the relationship in- 
crease6 (R goes from 0.06 to 0.13) when only new and 
extensively modified classes are considered. 

0 Response For a Class (RFC) was shown to be very 
significant overall (p-value = 0.0000). The H-RFC hy- 
pothesis is supported by the results: The larger the 
RFC, the larger the probability of fault detection. 
Again, R2 improved significantly for new and exten- 
sively modified classes and U1 classes (from 0.06 to 
0.24 and 0.36, respectively). Reasons are believed to be 
the same as for WMC for extensively modified 
classes. In addition, U1 classes show a distribution 
which is significantly different from that of DB 
classes: The mean and median are significantly 
higher. This, as a result, may strengthen the impact of 
RFC when performing the analysis. 
Number Of Children of a Class (NOC) appeared to be 
very significant (except in the case of U1 classes) but 
the observed trend is contrary to what was stated by 

B 
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the H-NOC hypothesis: The larger the NOC, the 
lower the probability of fault detection. This surpris- 
ing trend can be explained by the combined facts that 
most classes do not have more than one child and that 
verbatim reused classes are somewhat associated with 
a large NOC. Since we have observed that reuse was a 
significant negative factor on fault density [5], this 
explains why large NOC classes are less fault-prone. 
Moreover, there is some instability across class sub- 
sets with respect to the impact of NOC on the prob- 
ability of detecting a fault in a class (see A\vs in Table 
3). This may be explained in part by the lack of vari- 
ability on the NOC measurement scale (see descriptive 
analysis in Table 1 and distribution in Fig. 1). 
Lack of Cohesion on Methods (LCOM) was shown to 
be insignificant in all cases (this is why the results are 
not shown in Table 3) and this should be expected 
since the distribution of LCOM shows a lack of vari- 
ability and a few very large outliers. This stems in 
part from the definition of LCOM where the metric is 
set to zero when the number of class pairs sharing 
variable instances is larger than that of the ones not 
sharing any instances. This definition is definitely not 
appropriate in our case since it sets cohesion to zero 
for classes with very different cohesions and keeps us 
from analyzing the actual impact of cohesion based 
on our data sample. 

0 Coupling Between Object classes (CBO) is significant 
and more particularly so for U1 classes (p-value = 

0.0000 and Rz = 0.17). No satisfactory explanation 
could be found for differences in pattern between U1 
and DB classes. 

It is important to remember, when looking at the results 
in Table 3, that the various metrics have different units. 
Some of these units represent ”big steps” on each respective 
measurement scale while others represent ”smaller steps.” 
As a consequence, some coefficients show a very small im- 
pact (i.e., Avs) when compared to others. This, however, is 
not a valid criterion to evaluate the predictive usefulness of 
such metrics. 

Most importantly, aside from NOC, all metrics appear to 
have a very stable impact across various categories of 
classes (i.e., DB, UI, New-Ext, etc.). This is somewhat en- 
couraging since it tells us that, in that respect, the various 
types of components are comparable. If we were consider- 
ing different types of faults separately, the results might be 
different. Such a refinement is, however, part of our future 
research plans. 

3.2.3 Multivariate Analysis 
The 00 design metrics presented in the previous section 
can be used early in the life cycle (high- or low-level design) 
to build a predictive model of fault-prone classes. In order 
to obtain an optimal model, we included these metrics into 
a multivariate logistic regression model. However, only the 
metrics that significantly improve the predictive power of 
the multivariate model were included through a stepwise 
selection process. Another significant predictor of fault- 
proneness is the level of reuse of the class (called ”Class 
origin” in Table 4). This information is available at the end 
of the design phase when reuse candidates have been iden- 

tified in available libraries and the amount of change re- 
quired can be estimated. Table 4 describes the computed 
multivariate model. Using such a model for classification, 
the results shown in Table 5 are obtained by using a clas- 
sification threshold of n(Fau1t detection) = 0.5, i.e., when 
TC > 0.5, the class is classified as faulty and, otherwise, as 
nonfaulty. As expected, classes predicted as faulty contain a 
large number of faults (250 faults on 48 classes) because 
those classes tend to show a better classification accuracy. 

TABLE 5 
CLASSIFICATION RESULTS WITH 00 DESIGN METRICS 

Thefigures before parentheses zn the right column are the number of classes 
classlfed as faulty The figures within the parentheses are the faults contained 
zn those classes. 

We now assess the impact of using such a prediction 
model by assuming, in order to simplify computations, that 
inspections of classes are 100 percent effective in finding 
faults. In that case, 80 classes (predicted as faulty) out of 180 
would be inspected and 48 faulty classes out of 58 would be 
identified before testing. If we now take into account indi- 
vidual faults, 250 faults out of 258 would be detected during 
inspection. As mentioned above, such a good result stems 
from the fact that the prediction model is more accurate for 
multiple-faults classes. To summarize, results show that the 
studied 00 metrics are useful predictors of fault-proneness. 

In order to evaluate the predictive accuracy of these 00 
design metrics, it would be interesting to compare their 
predictive capability and that of usual code metrics even 
though they can only be obtained later in the development 
life cycle. Three code metrics, from the set provided by the 
Amadeus tool’ [2], were selected through a stepwise logis- 
tic regression procedure. Table 6 shows the resulting pa- 
rameter estimations of the multivariate logistic regression 
model where: MaxStatNext is the maximum level of state- 
ment nesting in a class, FunctDefis the number of function 
declarations, and FuncfCall is the number of function calls. 
It should be noted that other multivariate models can be 
generated using different metrics provided by Amadeus 
and yield results of similar accuracy. The model in Table 6 
happens to be, however, the one resulting from the use of a 
standard, stepwise logistic regression analysis procedure. 

TABLE 6 
MULTIVARIATE ANALYSIS WITH CODE METRICS 

Coefficient p-value 
Intercept 0.39 0.0384 
MaxStatNest -0.286 0 0252 
FunctDef 0.166 0.001 0 
FunctCall -0.0277 0.0000 

In addition to being collectable only later in the process, 
code metrics appear to be somewhat poorer as predictors of 
class fault-proneness (see Table 7). In this case, 112 classes 

2. The Amadeus tool provides 35 code metrics, e.g., lines of code with 
and without blank, executable statements, declaration statements, function 
declaration, function definitions, function calls, cyclomatic complexity, loop 
statements, maximum class depth and width in a file, number of method 
declarations, definitions, and average number of methods. 
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Actual 
No Fault 
Fault 

Predicted 
No fault Fault 

61 61 
7 (37) 51 (231) 

TABLE 8 
CLASSIFICATION ACCURACIES BASED ON 00 AND CODE 

METRICS SHOWN IN TABLE 3 AND TABLE 6 

CRITERIA 
Suite of 
Metrics 

Typeof 
products 

Dependent 
variable 

Statistical 
technique 

Model Accuracy 00 metrics Code metrics 
Completeness 88% (93%) 83% (86Yo) 
Correctness 60% (92%) 45.5% (86Yo) 

3.2.4 Threats to Validity 
Several threats to the external validity of our study may 
limit the generalizability of our results: 

Briand et al. [I 01 Li and Henry [30] 
ADT Cohesion CK metrics CK metrics 
and Coupling 

Ada 00 dialect of Ada C++ 

fault occurrence number of fault occurrence in 
in Ada packages changes in com- 

logistic least-square logistic regression 
regression regression 

Our work 

C++ classes 
ponent’s 

The programs developed lie between five KSLOC and 
14 KSLOC. Those programs are small as compared to 
large industry systems. The relationships between the 
studied 00 design metrics and the fault introduction 
probability are the results of a complex psychological 
phenomenon and they may look very different in 
larger programs. 
The conceptual complexity of these systems was 
rather limited. Again, many different problems may 
arise in more complex systems. 
It is likely that the study participants were not as well 
trained and as experienced as average professional 
programmers. However, this was partially addressed 
as discussed in Section 2.4. 

4 RELATED WORK 
In [lo], metrics for measuring abstract data type (ADT) co- 
hesion and coupling are proposed and are validated as 
predictors of faulty ADTs. The main differences and simi- 
larities between the work here and [lo] are as follows (see 
Table 9). They did not empirically validate their metrics on 
00 programs in a context of inheritance but they used a 
similar validation approach. In both cases, statistical model 

were built to predict component (i.e., ADTs and classes, 
respectively) fault-proneness (i.e., probability of fault de- 
tection) by using multiple logistic regression. 

In [30], a validation of Chidamber and Kemerer’s 00 
metrics studying the number of changes performed in two 
commercial systems implemented with an 00 dialect of Ada 
was conducted. They show that Chidamber and Kemerer’s 
00 metrics appeared to be adequate in predicting the fre- 
quency of changes across classes during the maintenance 
phase. They provided a model to predict the number of 
modifications in a class, which they assume is proportional to 
change effort and is representative of class maintainability. 

The work described in [30] is comparable to our work in 
the following ways (see Table 9). Li and Henry [30] used 
the same suite of 00 metrics we used. They also used data 
from products implemented in an 00 language which pro- 
vides multiple inheritance, overloading, and polymor- 
phism. On the other hand, we used the probability of fault 
detection as the dependent variable of our statistical model. 
Thus, our goal was to assess whether Chidamber and Ke- 
merer’s 00 metrics were useful predictors of fault-prone 
classes. In addition, in [30] (multivariate) least-square linear 
regression was used to build a predictive model whereas 
we used logistic regression (i.e., a classification technique 
for binary dependent variables). The nature of our depend- 
ent variable (i.e., (non)occurrence of fault detection) has led 
us to use logistic regression [25]. 

TABLE 9 
SOME DIFFERENCES AND SIMILARITIES BETWEEN 

[I 01, [30], AND OUR WORK 

VALIDATION WORK 

5 CONCLUSIONS AND FURTHER WORK 

In this study, we collected data about faults found in object- 
oriented classes. Based on these data, we verified how 
much fault-proneness is influenced by internal (e.g., size, 
cohesion) and external (e.g., coupling) design characteris- 
tics of 00 classes. From the results presented above, five 
out of the six Chidamber and Kemerer’s 00 metrics appear 
to be useful to predict class fault-proneness during the 
high- and low-level design phases of the life-cycle. In addi- 
tion, Chidamber and Kemerer’s 00 metrics show to be 
better predictors than the best set of ”traditional” code met- 
rics, which can only be collected during later phases of the 
software development processes. 

This empirical validation provides the practitioner with 
some empirical evidence demonstrating that most of Chi- 
damber and Kemerer’s 00 metrics can be useful quality 
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indicators. Furthermore, most of these metrics appear to be ACKNOWLEDGMENTS _ _  
complementary indicators which are relatively independent 
from each other. The results we obtained provide motiva- 
tion for further investigation and refinement of Chidamber 
and Kemerer’s 00 metrics. 

Finally, results seem to show that one would likely be able 
to make inspections of design or code artifacts more efficient 
if they were driven by models such as the one we built in 
Section 3.2.3, based on Chidamber and Kemerer’s 00 met- 
rics. However, how to help focus inspections on error-prone 
parts in large programs is still an important issue to be fur- 
ther investigated. Our results should be interpreted as maxi- 
mum possible gains and not as expected gains. 

Our future work includes: 
* Replicating this study in an industrial setting: A sam- 

ple of large-scale projects developed in C++ and 
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teach the OMT method; (2) A. Belkhelladi, K. El Emam, C. 
Kemerer, J. Kontio, C. Seaman, F. Shull, and R. Tesoriero for 
their suggestions that helped improve both the content and 
the form of this paper; and (3) the students of University of 
Maryland for their participation on this study. This work 
will not be possible without the help of Prem Devanbu 
(AT&T Labs). Finally, we wish to thank the anonymous 
reviewers and Hausi Muller, the editor of this paper, for 
their valuable comments. This work was supported, in part, 
by the National Aeronautics and Space Administration un- 
der Grant No. NSG-5123, the National Science Foundation 
under Grant No. 01-5-24845, Fraunhofer Gesellschaft, 
UMIACS, and Westinghouse Corporation. 

Ida95 in thve framework of the NAsA Goddard Flight 
Dynamics Division (Software Engineering Labora- 
tory). This work should help us better l.lnderstand the 
prediction capabilities of the suite of 00 metrics de- 
scribed in this paper. Replication should help us 
achieve the following objectives: 

and provide guidance to improve 
the allocation of resources with respect to test 
and verification efforts. 

of the impact of 
00 design strategies (e.g., single versus multi- 
ple inheritance) on different types of defects and 
rework. In this study, because the data collet- 
tion process was not fully adequate, we were 
unable to analyze the relationships of 00 de- 
sign metrics with rework and different defect 
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