f_- — fA

SOFTWARE MAINTENANCE: RESEARCH AND PRACTICE
J. Softw. Maint: Res. Pract. 10, 249278 (1998)

Research

Q-MOPP: Qualitative Evaluation of
Maintenance Organizations, Processes
and Products

LIONEL BRIAND'®, YONG-MI KIM?, WALCELIO MELO?, CAROLYN SEAMAN* and VICTOR R.
BASILK*

'Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany

2Q-Labs, Inc., 4511 Knox Road #305, College Park MD 20740-3380, U.S.A.

3Oracle Consulting Services, Oracle do Brasil Sistemas Lida., SCN Q.2 Bl. A S. 604, Brasflia D.F.,
70712-900, Brazil

*Experimental Software Engineering Group, University of Maryland, College Park MD 20742, U.S.A.

SUMMARY

In this paper, we propose a qualitative, inductive method for characterizing and evaluating
software maintenance processes, thereby identifying their specific problems and needs. This
method encompasses a set of procedures which attempt to determine causal links between
maintenance problems and flaws in the maintenance organization and process. This allows for
a set of concrete steps to be taken for maintenance quality and productivity improvement,
based on a tangible understanding of the relevant maintenance issues in a particular mainte-
nance environment. Moreover, this understanding provides a solid basis on which to define
relevant software maintenance models and measures. A case study of the application of this
method, called Q-MOPP, is presented to further illustrate its feasibility and benefits. © 1998
John Wiley & Sons, Ltd.

KEY WORDS: maintenance processes; defect causality; actor-dependency modelling; maintenance management;
process modelling; product modelling

1. INTRODUCTION

In recent years the definition and improvement of software processes has played an
increasingly prominent role in software development and maintenance. The improvement
of software maintenance processes is of particular interest because of the length of time
spent in maintenance during the software life cycle, and the ensuing lifetime costs, as well
as the large number of legacy systems still being maintained. Maintenance improvement, in
a given organization, requires building an understanding of what is actually happening in
its maintenance projects (the term ‘project’ in this paper refers to the continuous mainte-

* Correspondence to: Lionel Briand, Fraunhofer IESE, Kaiserslautern, Germany. Email: briand@iese.fhg.de

Contract/grant sponsor: NASA; Contract/grant number: NSG-5123

CCC 1040-550X/98/040249-30$17.50 Received 14 October 1997
© 1998 John Wiley & Sons, Ltd. Revised 8 January 1998

250 L. BRIAND ET AL.

nance of a given system), in conjunction with building a measurement program to monitor
and assess improvement initiatives. '

Building this understanding is especially important in improving existing maintenance
processes. Accumulated project knowledge and expertise might be lost if a prescriptive
software maintenance process is put in place without regard to existing processes and
practices. In addition, a prescriptive process that is not adequately tailored for its
environment may encounter organizational and personnel roadblocks. If the prescriptive
process is seen as a distillation of ‘best practices’, then the characterization and evaluation
of current processes is a necessary first step. Such a descriptive model baseline is also
necessary to evolve an effective process (Curtis, Kellner and Over, 1992).

Establishing a measurement program integrated into the maintenance process is likely
to help any organization achieve an in-depth understanding of its specific maintenance
issues and thereby lay a solid foundation for maintenance process improvement (Rombach,
Ulery and Valett, 1992). However, defining and enacting a measurement program takes
time. A short term, quickly operational substitute is needed in order to obtain a first quick
insight, at low cost, into the issues to be addressed. Furthermore, defining efficient and
useful measurement procedures first requires a characterization of the maintenance environ-
ment in which measurement takes place, such as organization structures, processes, issues
and risks (Basili and Rombach, 1988).

Part of this characterization is the identification and evaluation of issues that must be
addressed in order to improve the quality and productivity of maintenance projects,
Because of the complexity of the phenomena studied, this is a difficult task for the
maintenance organization (Hariza et al,, 1992). Each project may encounter specific
difficulties and situations that are not necessarily alike across all the organization’s
maintenance projects. This may be due in part to variations in design and code decay,
application domain, size, change frequency, and/or schedule and budget constraints. As a
consequence, a representative sample of projects must first be analysed as separate
entities even if, later on, commonalities across projects may require similar solutions for
improvement. In addition, much of the data collected for characterization will be of a
qualitative nature, unless historical quantitative maintenance data are available. Given these
conditions, it is only natural to make use of qualitative research methods, which aim to
provide understanding and explanations by studying selected issues based on information
of a qualitative nature (Patton, 1990).

In this paper, we propose a qualitative, inductive method for characterizing and
evaluating software maintenance processes, thereby identifying their specific problems and
needs. This method encompasses a set of procedures which attempt to determine causal
links between maintenance problems and flaws in the maintenance organization and
process. This allows for a set of concrete steps to be taken for maintenance quality and
productivity improvement, based on a tangible understanding of the relevant maintenance
issues in a particular maintenance environment. Moreover, this understanding provides a
solid basis on which to define relevant software maintenance models and measures. A
case study of the application of this method, called Q-MOPP, is presented to further
illustrate its feasibility and benefits. Currently Q-MOPP focuses on the project level,
although future work is planned to enable project-level results to be scaled up. This is a

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

Q-MOPP: QUALITATIVE EVALUATION PROCESS 251

similar approach to that taken in the SEI’'s CMM, for example, where improvement issues
are first addressed at the project level, then at the organization level.

Section 2 briefly presents the background techniques we use. Section 3 presents our
method, the modelling techniques it uses, and its data acquisition procedures. It is then
further detailed and illustrated in Section 4 through a selected case study. Section 5
summarizes our experience and lessons learned with using this method on several case
studies and Section 6 provides the main conclusions of the paper.

2. BACKGROUND

2.1. Descriptive process modelling

In the process modelling literature, process models are often classified as prescriptive,
descriptive or proscriptive (Curtis, Kellner and Over, 1992). Much of the research in
process modelling has been from the prescriptive modelling perspective, usually presenting
modelling formalisms, e.g., STATEMATE, or software engineering environments that
allow enactment of process programs, e.g., Marvel. However, it is not always clear how
the prescriptive model was arrived at, or how it was judged that a prescriptive model
was appropriate for a particular situation. A number of process improvement studies do
exist that synthesize a recommended development process from existing processes
(Bandinelli er al, 1995). A necessary activity in such studies is the description and
understanding of the processes in place as well as related aspects such as organization
and product. This activity is referred to as descriptive process modelling. Recently there
has been research focusing on descriptive modelling, and more precisely the systematic
and unbiased elicitation of process models (Madhaviji et al., 1994).

The construction of descriptive models is especially important for evolutionary improve-
ment, by providing baselines, and more importantly, supplying a rich data source for in-
depth understanding of the process in place. Previous research, whether in software
maintenance or the software process, that has focused on understanding, has had a strong
descriptive component to it, and has employed qualitative research methods (Bendifallah
and Scacchi, 1987; Swanson and Beath, 1988; Curtis, Krasner and Iscoe, 1988; Dart,
Christie and Brown, 1993). Developing a good descriptive model should combine both
qualitative and quantitative research methods, since both types of data must be collected
and analysed.

2.2. Qualitative evaluation

Qualitative research consists of qualitative data collection and qualitative analysis.
Qualitative data are data in the form of words and pictures, not numbers (Gilgun,
1992). There are three major modes of collecting qualitative data: participant observation,
interviewing and studying materials prepared by others (Wolcott, 1994). In participant
observation, the researcher is not actively participating, but is an observer whose presence
is apparent to those being studied. The researcher takes field notes of what is observed.
Interviewing can range from unstructured to structured, depending on the instrumentation

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

252 L. BRIAND ET AL.

used. Structured interviews make use of questionnaires, while unstructured interviews do
not, and using interview guides falls somewhere in between. Manuals, handbooks and
code are some of the material from which data may also be collected.

A good overview of qualitative analysis methods is given by Miles and Huberman
(1994) which presents qualitative analysis as three concurrent flows of activity: data
reduction, data display, and conclusion drawing and verification. Abstracting the data,
displaying the data in pictorial form and constructing hypotheses based on the data are
all descriptive and exploratory analysis activities. Analysis may also be evaluatory when
its purpose is to see how a process might be improved, or why it is not producing the
expected results (Wolcott, 1994),

Much of the data used to build process and organizational models are of a qualitative
nature, such as those collected from interviews with process participants, or examination
of development or maintenance artefacts, e.g., error report forms, process documents,
project deliverables. It is also the case that qualitative data must be collected when no
measurement plan exists, or when it is not clear what should be measured. In these
circumstances it is only natural to employ qualitative methods for evaluation. Such
qualitative evaluation is routinely used in fields such as education or health care, where
the impact or effectiveness of interventions on individuals must be judged. The aim
of such evaluations is to provide practical suggestions for improvement and change
(Patton, 1990).

3. MAINTENANCE EVALUATION METHOD

3.1. Overview

The following subsections present the details of the evaluation method we propose,
Q-MOPP. Subsection 3.2 first presents an overview of the main components of the
method. Subsection 3.3 describes its steps and subsection 3.4 their supporting techniques.
Subsection 3.5 provides guidelines for the collection of data within each step.

3.2. Main components

Q-MOPP has two phases: descriptive modelling and analysis. Conceptually, we include
three components for descriptive modelling: organization, process and product. Explicit
modelling techniques are used to model the organization and process, while the product
is represented implicitly as process artefacts or organizational information flows. In
addition, the content and structure of products must be described explicitly to a suitable
level of detail, although they are not presented in our case study for the sake of brevity.
The result of descriptive modelling is a comprehensive description of what is actually
happening during the creation of a new maintenance release of the system. The analysis
phase uses this comprehensive descriptive model to identify areas in need of improvement
and to provide improvement suggestions. Analysis is focused on the software defects that
were generated during the maintenance process, because we consider these defects to be
related to the maintenance process itself. The complete application of the maintenance

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

*

. Q-MOPP: QUALITATIVE EVALUATION PROCESS 253
’ evaluation method will provide specific information regarding its problems and improve-
ment needs, an understanding of the measures that are relevant to the maintenance
organization, and insights into what could be adequate data collection procedures. Table 1
» presents the conceptual model of our method.
3.3. Steps of the method
‘ 3.3.1. Six-step method
: Based on the conceptual model in Table 1, we break down the maintenance evaluation
» process into six steps. The steps are organized so that each step builds on the previous
ones, and so some steps collect a combination of organization, process or product data.
However, the application of these steps is likely to require several iterations and a stepwise
j refinement of previous steps’ outputs at the completion of each step.
L]
' 3.3.2. Step 1: organizational modelling
Identify the organizational entities with which the maintenance team interacts and the
M organizational structure in which maintainers operate. In this step the distinct teams,
f working groups and their roles in the change process are identified. Information flows
| between actors are also determined.
1 ,
f 3.3.3. Step 2: Identify phases
f Identify the phases involved in the creation of a new system release. The notion of
® phase has, in our context, a very different definition than that of activities (Step 3).
Phases produce one or several intermediate or final release products that are reviewed
according to quality assurance procedures, when they exist, and are officially approved.
. In addition, the phases of a release are ordered in time, although they may be somewhat
Table 1. Conceptual model of Q-MOPP
A Phase Focus Activities
Descriptive Organization Identify organizational entities, structures.
) modelling Identify actors in organization. ’
o Determine information flows between actors.
Process Identify phases in creation of new system release.
| (release generation) Identify activities in each phase.
‘ Map actors to phases and activities.
» Product Identify software artefacts produced and consumed by each phase.
Map software artefacts to informaton flow between actors.
Analysis Defect Select representative past release(s) to be analysed.
Analyse maintenance problems.
)
Relate problems to organization and process flaws.
L J © 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)
2]

254 L. BRIAND ET AL.

overlapping, and are clearly separated by milestones. Software artefacts produced and
consumed by each phase must be identified. Actors responsible for producing and validating
the output artefacts of each phase must be identified and located in the organizational
structure defined in Step 1.

3.3.4. Step 3: Identify activities

Identify the generic activities involved in each phase, i.e., decompose the phases
identified in Step 2 to a lower level of granularity. Identify, for each low-level activity,
its inputs and outputs and the actors responsible for them. Activities are tasks which
cannot be a priori ordered within a phase and do not produce deliverables going through
a formal approval process, although they can be reviewed (e.g., peer reviews). Phases
contain activities but activities may belong to several phases, e.g., coding may take place
during requirements analysis (e.g., prototyping) as well as during implementation.

3.3.5. Step 4: Select release(s)

Select one or several representative past releases for analysis (preferably from different
systems to allow for better generalization of the results). Acquire available documentation
about each selected release.

3.3.6. Step 5: Analyze defects

Based in part on release documents and error report forms, analyse the defects that
occurred while performing the software changes in the selected releases in order to
produce a causal analysis document. The knowledge and understanding acquired through
Steps 1-3 are necessary in order to understand, interpret and formalize the information in
the causal analysis document.

3.3.7. Step 6: Analyze defect distributions

Establish the frequency and consequences of problems due to flaws in the organizational
structure and the maintenance process by further analysing the information gathered in
Step 5.

3.3.8. A learning paradigm

The process described above focuses on a set of releases for a given maintained system.
In order to draw conclusions not only at the system level but also at an organizational
level, this analysis needs to be repeated on a number of systems which are representative
of the organization’s maintenance activities. It should be noted that different conclusions
may be drawn for different systems since they may vary in age, application domain,
documentation level and quality, and so on.

Our maintenance evaluation process is essentially an instantiation of the generic qualitat-
ive analysis process defined in Shelly and Sibert (1992). Figure 1 illustrates at a high
level our maintenance-specific qualitative analysis process. It is a combination of both

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

v

g -

R b —

i

o ——

¢ e e e — --¢

¢ -

e

Q-MOPP: QUALITATIVE EVALUATION PROCESS 255

L Inductive Inference |

/\

Observational Data Base (ODB): Interpretati ve Knowledge Base (IKB)

- Interviews with maintainers/users - Definitions (e.g., activities)

- System and release documents - Taxonomies (e.g., tools)

- Fidd data - Working hypotheses (e.g., emor

- Change request forms mechanisms, process flaws)
LDeductive Inference]

Figure 1. The paradigm for our qualitative analysis for software maintenance has two inference processes
utilizing two stores, one of data and one of models (Briand et al,, 1994)

inductive and deductive inferences. The collected information, such as field notes or
interviews, comprise the observational database (ODB). Inductive inferences are made
from the collected information, resulting in models, which are then stored in the interpret-
ative knowledge base (IKB). Deductive inferences occur when, based on our IKB, we
derive expectations about the real world. An example of such an expectation might be
that all errors can be exhaustively classified according to defined taxonomies. When
comparing these expectations with new field information feeding the ODB, we can
experimentally validate and refine the knowledge in the IKB (e.g., a defect taxonomy).
Then the data collection process is refined in order to resolve ambiguities and answer
new questions, which leads to refined and revised inductive inferences. The process
continues in an iterative fashion. This iterative pattern not only applies to the overall
evaluation process, but also to several of the individual steps. For example, in our case
study, - performing Step 1 revealed additional issues to be addressed in building an
organizational model, and led to the selection and use of a more sophisticated model-
ling approach.

3.4. Techniques

3.4.1. Organizational modelling

In the preceding description of our maintenance evaluation method we did not mention
specific techniques, such as modelling approaches or tools, to be used to support modelling
and analysis activities. In this subsection we present the techniques, including taxonomies,
we use in our application of the method.

The first step of the evaluation method requires a technique that helps us capture and
build organization models. After examining the process literature, Yu’s actor—dependency
(A-D) modelling technique (Yu and Mylopoulos, 1994) was selected. This technique

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

256 L. BRIAND ET AL.

specifies well, is based on a clearly defined framework, and can model how different
types of people and roles interact. A~D models are based on process participants and the
many types of relationships between them, including information flow relationships. A-D
models also provide a mechanism for representing members of the organization in a
variety of ways that we believe is based on a clear and convenient paradigm. In Briand
et al. (1995) we provided a detailed list of enhancements we proposed to this technique,
based on our experience.

A basic actor-dependency model represents an organizational structure as a network of
dependencies among organizational entities, or actors. We have also used the agent—
role—position (ARP) model, an extension of the A-D model, to further decompose
actors themselves.

A node in an A-D network represents an organizational actor, and a link indicates a
dependency between two actors. Examples of actors are: someone who inspects units, a
project manager or the person who gives authorization for final shipment. Documents to
be produced, goals to be achieved and tasks to be performed are examples of dependencies
between actors. When an actor, Al, depends on A2, through a dependency D1, it means
that Al cannot achieve, or cannot efficiently achieve, its goals if A2 is not able or willing
to fulfil its commitment to D1. The A-D model provides four types of dependencies
between actors:

(1) In a goal dependency, an actor (the depender) depends on another actor (the
dependee) to achieve a certain goal or state, or fulfil a certain condition (the
dependum). The depender does not specify how the dependee should do this. A
fully built configuration, a completed quality assessment or 90% test coverage of
a software component might be examples of goal dependencies if no specific
procedures are provided to the dependee(s).

(2) In a task dependency, the depender relies on the dependee to perform some task.
This is very similar to a goal dependency, except that the depender specifies how
the task is to be performed by the dependee, without making the goal to be
achieved by the task explicit. Unit inspections are examples of task dependencies
if specific standard procedures are to be followed.

(3) In a resource dependency, the depender relies on the dependee for the availability
of an entity (physical or informational). Software artefacts (e.g., designs, source
code, binary code), software tools, documents and any kind of computational
resources are examples of resource dependencies.

(4) A soft-goal dependency is similar to a goal dependency, except that the goal to be
achieved is not sharply defined, but requires clarification between depender and
dependee. The criteria used to judge whether or not the goal has been achieved is
uncertain. Soft goals are used to capture informal concepts which cannot be
expressed as precisely defined conditions, as are goal dependencies. High product
quality, user friendliness and user satisfaction are common examples of soft goals
because, in most environments, they are not precisely defined.

Dependencies are usually modelled from the depender’s perspective since the depender

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

— —

W o e e

Q-MOPP: QUALITATIVE EVALUATION PROCESS 257

is a priori in a better position to state their needs. However, if time allows, the dependee’s
perspective on the same dependencies may also be captured and compared for consistency.

Figure 2 shows a simple, fictitious, example of an A—-D model. A manager oversees a
tester and a developer. The manager depends on the tester to test. This is a task
dependency because there is a defined set of procedures that the tester must follow. In
contrast, the manager also depends on the developer to develop, but the developer has
complete freedom to follow whatever process she or he wishes, so this is expressed as a
goal dependency. Both the tester and the developer depend on the manager for positive
evaluations, where there are specific criteria to define ‘positive’, thus these are goal
dependencies. The tester depends on the developer to provide the code to be tested (a
resource), while the developer depends on the tester to test the code well (good coverage).

~ Assuming that there are no defined criteria for ‘good’ coverage, this is a soft-goal depen-

dency.

In the previous paragraphs, what we referred to as an actor is in fact a composite
notion that can be refined in several ways to provide different views of the organization.
Agents, roles and positions are three possible specializations of the notion of actor which
are related as follows:

(5) an agent occupies one or more positions,
(6) an agent plays one or more roles, and
(7) a position can cover different roles in different contexts.

A more detailed description of the A-D model may be found in Yu and Mylopoulos
(1994). It is important to note that, in practice and in the context of Q-MOPP, some
types of dependencies may not appear in a given organization. For example, if the
maintenance process is largely unspecified or undocumented, then there are not likely to
be very many task dependencies between agents.

@000 |0

Figure 2. This simple example of an A-D model shows the actors and their dependencies

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

258 L. BRIAND ET AL.

34.2. Process modelling

We did not use any particular modelling formalism to construct a descriptive model of
the maintenance (release generation) process. We did, however, develop taxonomies to
aid us in organizing process information. As part of process modelling we distinguished
phases and activities in the process. In our experience this was adequate, but our method
does not preclude the use of process modelling formalisms. The case study in Section 4
illustrates how we used the taxonomies and the data collected to model the process.

The taxonomy of generic maintenance activities is shown in Figure 3. Figure 4 shows
a taxonomy to help characterize the maintenance tools and techniques under study. The
taxonomy shows only the first level of abstraction, so that it can be specialized for a
particular maintenance environment.

The process model based on these taxonomies consists of phases in the process, with
the associated inputs to and outputs from, and activities in the phase. In our case study
in Section 4, such a process model is represented in tabular form.

3.4.3. Product modelling

By ‘product’, we mean all artefacts created during the maintenance process, such as
code, test plans and other release documentation. Product modelling is not, in the current

Acroaym Activiey

DET Denmnilmimoftheneedfondnnge

SUB Submission of change request

UND Mw«w:mmmw

1A Impact analysis

CBA Cost/benefit analysis

sC Scheduling/planning of task

CD Change design

cC Code changes

uT Unhtuﬁngofmodiﬁedm.i.e.,huthedmgebeenimpkmad?

IC Umwmi.e.,mmmmwmmm
to standards?

IT Integration testing, i.e.,&ud:chmpdmmmymﬁcmﬁmm?

RT Regression testing, i.c., does the change have any unwanted side effects?

AT Amm,i.e.,mhmmmhmw

UsD Update system and user documentation

SA Mmfmmm;mﬂhymm

Is Installation

PIR Post—installation review of changes

EDU Education/training regarding the application domain/system

Figure 3. Our taxonomy of generic maintenance activities is adapted from Bennert et al. (1991) and Harjani
and Queille (1992)

© 1998 John Wiley & Sons, Lid. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

- ,v..‘, -

e

Q-MOPP: QUALITATIVE EVALUATION PROCESS 259

Maintenance tools:

® impact analysis and planning too

® tools for automated extraction and representation of control and data flows
@ debugger

® generator of cross-references

@ regression testing environment (data gencration, execution, and analysis of]|
results)

® information system linking documentation and code
Maintenance techniques:

® rigorous impact analysis, planning, and scheduling procedures

@ systematic and disciplined update procedures for user and system
documentation

@ user communication channels and procedures

Figure 4. This first-level abstraction of taxonomies is adapted from Bennett et al. (1991)

state of our miethod, defined in a stepwise manner as are the organization and process
modelling tasks. It basically consists of identifying the life cycle products’ structure,
content and interdependencies. In addition, for each product, its various states and the
transitions between them should be identified and associated with the completion of
process activities or phases. Using the organization model, responsibilities and roles
regarding the product should be specified. A generic taxonomy for non-code artefacts is
shown in Figure 5. In addition to the artefacts considered in the generic taxonomy,
there might be artefacts that are specific to a process, such as materials prepared for
inspection meetings.

3.4.4. Causal analysis

The analysis phase of our maintenance evaluation method begins with product defects.
More specifically, we examine reported defects in a system release, paying particular
attention to those defects the maintainers themselves considered to be significant in some
way. Using the descriptive models already constructed, the defects are mapped to human
errors, which are in turn mapped to flaws in the overall maintenance process (organization,
release generation process, product). Figure 6 presents the conceptual model for the
analysis: flaws in the overall maintenance process lead to human errors, which in tumn
lead to product defects.

To aid us in this mapping, we defined taxonomies for categorizing errors and flaws.
These taxonomies are based on widely accepted definitions as well as our own observations.
Figure 7 shows a taxonomy of human errors. Determining the origin and cause of errors
helps to determine their possible causal relationships to overall maintenance process flaws.

© 1998 John Wiley & Sons, Ltd. J. Softw. Mains: Res. Pract. 10, 249-278 (1998)

260 L. BRIAND ET AL.

Eoduet-nhted:
® softwarc requirements specifications =~ |

® software design specifications
® software product specifications

IP_neu-relmd:

@ test plans

® configuration management plan
® quality assurance plan

® software development plan
Epm
@ software wers mazaal |

® computer systems operator’s manual
@ software maintenance manual

|

® firmware support manual

Figure 5. This generic taxonomy of maintenance documentation is adapted from Bennett et al. (1991)

Flaws in ovenall

maintenance process

* organization Human errors Product defects
* release gencration

process

* product

Figure 6. Product defects are traced 10 process flaws via human errors

This taxonomy is shown in Figure 8. In ‘S‘db‘section 43, we present details of how the
causal analysis was performed for the case study, illustrating how this part of Q-MOPP
can be extended for particular applications of this method. .

3.5. Data acquisition procedures

3.5.1. Organizational and product data

Below, we describe in more detail the collection of various types of data needed to
support the execution of Q-MOPP. First, we describe the procedure adopted to collect

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

L o ——

-

-

O G —

Q-MOPP: QUALITATIVE EVALUATION PROCESS 261

® Change requirements analysis

OChangevlocalizaﬁonanalysis
® Change design analysis
® Coding

=== TTE—S—S—_S_
® Lack of application domain knowledge: operational constraints (user interface, performance),

mathematical model

OMofmm@mmmmw:mmwmdmda,mm
or memory constraints, module interface inconsistency

® Ambiguous or incomplete requirements

® Language misunderstanding < semantic, syntax >
® Schedule pressure

© Existing uncovered fault

.Omight'

Figure 7. The taxonomy of human errors has two parts

organizational and process information as well as a brief discussion on product information.
We use the techniques described in the previous section to structure and model that
information. Second, the procedure to collect information regarding release changes
is presented.

Any modelling effort requires that a great deal of information be collected from the
environment being modelled. Building an A-D model requires collecting information
about many people in the environment, the details of their jobs and assignments, whom
they depend on to complete their tasks and reach their goals, etc. Product information
also has to be captured, to the extent that it describes the content of information
dependencies between actors. The process we followed, with modifications motivated by
our experience, is briefly presented below:

1.1 First, we determine the official, (usually) hierarchical structure of the organization.
Normally this information can be found in official organization charts. This gives
us the set of positions and the basic reporting hierarchy.

1.2 We determine the roles covered by the positions by interviewing the people in
each position, and then, to check for consistency, their supervisors and subordinates.
Process descriptions, if available, often contain some of this information. However,

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

262 L. BRIAND ET AL.

Maintenance methodological flaws
ohadequa:echangeselecuonmdmnymmmm
Olnaoan:temedlod_ologyforphmingofeﬁon,schednle,pasmnd
Olmectmmethodologyfminwmly:is
Olmomplae,ambigmpmowhforuqu.mvaﬁmndmhmnnmofsymm

Olneomplete.ambaguomdeﬁnmomofdmgemqmm

© Poor quality system documentation

@ Poor quality user documentation
Ihnonnel-rehtedisuu
OIackofexperieneemd/orminingwithrupeutoﬂnappl‘waﬁondomain

Olackofexperhmeanwmmhhgwimwbdnqmmmm(hndm,pufmm)md
design :

® Lack of experience and/or training with re totheusen crati needs and constraints

Figure 8. The taxonomy of maintenance flaws includes resource shortages, low quality products and personnel-
related issues

when using process descriptions, the modeller must check carefully for process con-
formance.

1.3 In this step, we focus on the goal, resource and task dependencies that exist along
the vertical links in the reporting hierarchy. To do this, we interview members of
different departments or teams, as well as the supervisors of those teams. Also,
direct observation of supervisors, called ‘shadowing’, can be useful in determining

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

Q-MOPP: QUALITATIVE EVALUATION PROCESS 263

exactly what is requested of, and provided by supervisors for their subordinates. If
any resource dependencies are identified in which the dependum is a product, it
must be characterized using the document taxonomy in Section 3.4.3.

1.4 Next we focus on dependencies between members of the same team. Direct
observation (through shadowing or observation of meetings) is also useful here.
Interviews and process documents can also be used to identify dependencies. Again,
any products involved must be characterized.

L5 Finally, we determine the dependencies between different teams. These are often
harder to identify, as they are not always explicit. Direct observation is especially
important here, as often actors do not recognize their own subtle dependencies on
other teams. It is also very important in this step to carefully check for mutual
dependencies between actors who work in different parts of the management
hierarchy. Any products that flow between different teams must also be
characterized.

3.5.2. Product and process data

Product modelling is even more interrelated with process modelling than with organiza-
tion modelling. Information about products is embedded in the process model in the
descriptions of phase inputs and outputs. Product information is collected by examining
release documentation (e.g., user’s guide, the system description and material prepared
for release meetings) in order to obtain information regarding, for example, the size of
the products, their structure and their interdependencies. As above, in the description of
~ organization data collection, here we describe the gathering of product information as it
is related to the building of the process model.

Below are the steps we followed to identify the process phases involved in the creation
of a new system release (Step 2):

2.6 Identify the phases as defined in the environment studied. At this stage, it is
important not to map an a priori external/generic maintenance process model
and vocabulary.

2.7 Each product (e.g., document, source code) which is input or output of each phase
has to be determined and its content carefully described (see document taxonomy
in Section 3.4.3).

2.8 The personnel in charge of producing and validating the output artefacts of each
phase have to be identified and located in the organizational structure defined in
Step 1.

These are thé steps we followed to identify the generic activities involved in each phase
(Step 3):

3.1 Select from the literature (Chapin, 1987; Bennett et al., 1991; Harjani and Queille,
1992) or define and tailor a taxonomy of generic activities based on widely accepted
definitions and used in the maintenance process. As a guideline, such a taxonomy
was proposed in Section 3.4.2.

© 1998 John Wiley & Sons, Ltd. J. Sofiw. Maint: Res. Pract. 10, 249-278 (1998)

264 L. BRIAND ET AL.

3.2 Map these activities into each phase by reading the technical documents produced

3.5.3. Change data Jor causal analysis

Ideally, it is most useful to analyse problems as they are occurring and thereby better
understand process and organization flaws. However, because of time constraints, it js
often more practical to analyse past releases. We present below a set of guidelines for
selecting them:

® Recent releases are preferable since maintenance processes and organizational structure
might have changed and this would make analyses based on old releases somewhat
irrelevant.

* Some releases may contain more complete documentation than others. Documentation
has a very important role in detecting problems and cross checking the information
provided by the maintainers.

® The technical leader(s) of a release may have left the company whereas another
release’s technical leader may still be contacted. This is a crucial element since, as
we will see, the change analysis process will involve project technical leader(s) and,
depending on their level of control and knowledge, possibly the maintainers them-
selves. .

4. CASE STUDY

4.1. Objective

4.2. Maintenance project

Our method was applied to three projects in the Flight Dynamics Division (FDD) of
NASA Goddard Space Flight Center (Condon et al., 1995), one of which is the subject

© 1998 John Wiley & Sons, Ld. J. Softw. Maint: Res. Pract, 10, 249-278 (1998)

Q-MOPP: QUALITATIVE EVALUATION PROCESS

265

1 Description of the change

1.1 Localization

® subsystem(s) affected
® module(s) affected

® inputs/outputs affected

1.2 Size
©® LOCs deleted, changed, added
® Modules examined, deleted, changed, added

1.3 Type of change

® Preventive changes: improvement of clarity, maintainability or documentation.
® Enhancement changes: add new functions, optimization of space/time/accuracy
® Adaptive changes: adaptsyﬂemnodnngeofhatdmandlorphtform

® Corrective changes: corrections of development errors.

2 Description of the change process

2.1 effort, elapsed time

2.2 maintainer’s expertise and experience

® How long has the person been working on the system?

©® How long has the person been working in this application domain?

2.3 Did the change generate a change in any document? Which document(s)?
3 Description of the problem

3.1 Were some errors committed?

® Description of the errors (see taxonomies in Figure 7)

® Perceived cause of the errors: maintenance process flaw(s) (see Figure 8)
3.2 Difficulty

© What made the change difficult?

® What was the most difficult activity associated with the change?

3.3 How much effort was wasted (if any) as a result of maintenance process flaws?

3.4 What could have been done t0 avoid some of the difficulty or errors Gf any)?

Figure 9. The data collected covers three main areas

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

266 L. BRIAND ET AL.

of the case study presented in this paper. Our case study takes place in the framework
of the NASA Software Engineering Laboratory (NASA-SEL), an organization aimed at
improving FDD software development processes based on measurement and empirical
analysis.

Measurement of maintenance in the SEL began in late 1987; there was little docu-
mentation of maintenance procedures and lack of explicitly documented experience in the
maintenance environment at that time (Rombach and Ulery 1989; Rombach, Ulery and
Valett, 1992). Our study of maintenance processes, focusing on qualitative analysis
methods, was begun in late 1993. Partial research results were reported by Briand et al.
(1994), Briand et al. (1995) and Basili et al. (1996).

GTDS, a 28 year old, 250 KLOC, FORTRAN orbit determination system, was selected
for our case study. GTDS was selected mainly because it was representative of the type
of systems developed and maintained in the environment under study (i.e., application
domain, programming language) and was furthermore a critical organizational asset. GTDS
is public domain software, with a large group of users all over the world, Usually one
or two releases are produced each year, in addition to mission-specific versions not
immediately subject to configuration management but which are later integrated into a
new version by going through the standard release process. Compared with other projects
in the maintenance organization, turnover in the GTDS maintenance team was low.

In this case study, the GTDS release selected for causal analysis was quite recent, most
of the documentation identified in Step 2 was available, and most importantly, the technical
leader of the release was available for additional insights and information.

4.3. Descriptive models

4.3.1. The organization model

The descriptive models presented are the results of carrying out Steps 1 to 3 of our
method. The organization model is represented as an A-D model. The process model is
represented as a sequence of phases along with the activities in each phase. These two
models present complementary information. Products are present in these models in the
form of resources in the A-D model, and of inputs and outputs of phases in the process.

The organizational model in Figure 10 is very complex despite important simplifications
(e.g., agents and roles are not included). This shows how intricate the network of
dependencies in a large software maintenance organization can be.

The model is by necessity incomplete. We have focused on those positions and activities
that contribute to the maintenance process only. So there are many other actors in the
NASA-FDD organization which do not appear in the A-D graph. As well, we have
aggregated some of the positions where appropriate. For example, maintenance management
actor includes a large number of Separate actors, but for the purposes of our analysis,
they can be treated as an aggregate. Below are listed the positions shown in the figure,
and a short explanation of their specific roles:

® Testers present acceptance test plans, perform acceptance test and provide change
requests to the maintainers when necessary.

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

! Q-MOPP: QUALITATIVE EVALUATION PROCESS 267

QA
Noloase
pro-approvel
nepecion |
rosults & Resoures,
— ’
Bwiiget Cont
© Cost Exlimates
Estimates
Rolsase Roquests
Fesshis
Reloase
NASA
[Prioeity List +
Tosk P Change
Syslom
Task nformation, T
fonenge Ca | By e, Release
Unit tested, on tme User
\intogration
Release
Roviews
Relvase
togeity
Maintelner Relsase
Support
Emor
requirements
Modiled sowros Release
Date, Forms Cemponents code
Rollable
Sofware
Process
Toster
Figure 10. The complexity of the A~D model is not exceptional
© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

268 L. BRIAND ET AL,

® Users suggest, control and approve performed changes.

® QA engineer controls maintainers’ work (e.g., conformance to standards), attends
release meetings and audits delivery packages.

* Configuration manager integrates updates into the system, co-ordinates the production
and release of versions of the system and provides tracking of change requests.

® Maintenance management grants preliminary approvals of maintenance change
requests and release definitions.

® Maintainers analyse changes, make recommendations, perform changes, perform unit
and change validation testing after linking the modified units to the existing system,
perform validation and regression testing after the system is recompiled by the
configuration manager.

® Process analyst collects and analyses data from all projects and packages data to
be reused.

® NASA management is officially responsible for selecting software changes, gives
official authorizations and provides the budget.

The resulting organization model was validated through use, within the context of the
maintenance evaluation method. The modelling of the maintenance process, the release

4.3.2. The process model

The process shown in Figure 11 represents our partial understanding of the working
process for a release of GTDS and the mapping into standard generic activities (using
the taxonomy in Figure 3). This combines the information gained from Steps 2 and 3 of
the assessment process. Activity acronyms are used as defined in Figure 3.

In this case, each phase milestone in a release is represented by the discussion, approval
and distribution of a specific release document (which are defined in the taxonomy shown
in Figure 5). The resulting process model was validated through consulting with the
GTDS task leader and another maintainer. Validation questions include:

¢ Are all the people in the process model a part of the organization model?

® Do the documents and artefacts included in the process model match those of the
information flow of the organization model?

® Is the mapping between activities and phases complete, i.., an exhaustive set of
activities, a complete mapping?

® Are a priori relevant types of activities (e.g., defined in Figure 3) missing from the
process model? '

4.4. Change causal analysis

4.4.1. Step 5 subtasks

Step 5 involved the identification and Causal analysis of the problems observed during
the maintenance and acceptance test of the release studied. These problems were linked

© 1998 John Wiley & Sons, Lid. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

Q-MOPP: QUALITATIVE EVALUATION PROCESS

269

Input:
Output:

Phase 1. Change analysis

chmgemmﬁomnﬁwmwmuﬁprhﬁyﬁn
Mwmmcn)mmmmmmm,m
mm&mmmmmmmummmmuwm
the software owner/user.

UND, IA, CBA, CD, some CC, UT and IT for prototyping

Phase 2. RCR meeting

Input:

Output:

Activities:

m«mmmmmwmnwu.,m
priority, content of release.

Updated Release Content Review document
A&SA(QAWMM&MWMM&WV

3. Solution analysis

updated Release Content Review document
MWMMMWMMWEMLM

SC, CD, CC, UT (prototyping), (preparation of test straegy for) IT (based mainly on functional
e ouieal g

4. RDR meeting

Activities:

RDR documentation
approved (and possibly modified) RDR documentation
review and discuss CC, UT, (plan for) IT, SA

5. Change implementation and test

Output:

RDR and prototype solutions (phases 1, 3) -

wmwmmw;wmukwwmﬂ
m;mm(mpmu);mwmmm(mmofm
Mdedpnﬂomh)mmwaemﬁvdymﬁﬁedem;m(nﬂyw
wmhmmmmmnmwmmu;am
MMWMMMMMEMMATkW:WTQ
Readincss Review document (ATRR)

CC, UT, IC, IT, RT, USD, SA

© 1998 John Wiley & Sons, Ltd.

Figure 11. The process model consists of seven phases

J. Softw. Mains: Res. Pract. 10, 249-278 (1998)

270 L. BRIAND ET AL.

Phase 6. ATRR meeting

Input: Acceptance Test Readiness Review document

Output: mwmmmmwmmmmwuwm
mutﬂmmmmmﬁngplm.

Activities: review the current output of IT, SA

7. Acceptance test
the new GTDS release and all release documentation

Outputs: AﬁnofSoﬂmebmgeReqm(SCRs)hplwﬁedmlhemmm:.Thuechmp
Wmmmmemmﬁmmmﬂnmm

requirements.
Activities: RT, AT -

Figure 11. Continued

back to a precise set of issues belonging to taxonomies presented in Figures 6 and 7.
Figure 12 summarizes Step 5 as instantiated for this case study. This step required
extensive collaboration from the GTDS maintenance task leader, as well as examination
of the documents generated during the release process. Changes that generated error
correction requests from the acceptance testing team were analysed in particular detail.

Step 5 can be broken down into a sequence of subtasks. These subtasks should be
performed for each software change examined:

5.1 Determine the difficulty or error-proneness of the change.

5.2 Determine whether and how the change difficulty could have been alleviated, or
the error(s) resulting from the change avoided.

5.3 Estimate the size of the change (e.g., number of components, lines of code changed,
added, removed). .

5.4 Assess discrepancies between initial and intermediate planning and actual effort

and time.
Inputs Outputs
» Organization Release:
. Mai clcase:
Process process « RCR, RDR, ATRR
* Resources : Acceptance
execution *S/W .
[Products i » User’s Guide sting
* Personnel
Problems
Reported
errors
Causal
: link Analysis

Figure 12. The change analysis process provides for Jeedback and iteration (Briand et al,, 1994)

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

Q-MOPP: QUALITATIVE EVALUATION PROCESS 271

5.5 Determine the human flaw(s) (if any) that originated the error(s) or increased the
difficulty related to the change (using the taxonomy shown in Figure 7).

5.6 Determine the maintenance process flaws that led to the identified human errors (if
any), using the taxonomy of maintenance process flaws proposed in Figure 8.

5.7 Try to quantify the wasted effort and/or delay generated by the maintenance process
flaws (if any).

In order to illustrate Step 5, we provide below an example of change analysis for one
of the changes in the selected release (change 642). Implementation of this change resulted
in 11 errors that were found by the acceptance test team, eight of which had to be
corrected before final delivery could be made. In addition, a substantial amount of rework
was necessary. Typically, changes do not generate so many subsequent errors, but the
flaws that were present in this change are representative of maintenance problems in
GTDS. In the following paragraphs as in Briand et al. (1994), we discuss only two of
the errors generated by the change studied (errors A1044 and A1062).

4.4.2. Change 642

Description Initially, users requested an enhancement to existing GTDS capabilities. The
enhancement involved vector computations performed over a given time span. This
enhancement was considered quite significant by the maintainers, but users failed to supply
adequate requirements and did not attend the release content review (RCR) meeting. Users
did not report their dissatisfaction with the design until the acceptance test readiness
review (ATRR) meeting time, at which time requirements were rewritten and maintainers
had to perform rework on their implementation. This change took a total of three months
to implement, of which at least one month was attributed to rework.

Maintenance process flaw(s) Organizational. A lack of clear definitions of the

prerogatives/duties of users with respect to release document reviews and meetings (roles),

and a lack of enforcement of the release procedure (process conformance).
Methodological. Incomplete, ambiguous definitions of change requirements.

Errors caused by change 642 The implementation of the change itself resulted in an error
(A1044) found at the acceptance test phase. When the correction to A1044 was tested,
an error (A1062) was found that could be traced back to both 642 and A1044.

Error A1044 Description. Vector computations at the endpoints of the time span were
not handled correctly. But in the requirements it was not clear whether the endpoints
should be considered when implementing the solution.

Error origin. Change requirement analysis.

Error domain. Ambiguous and incompiete requirements.

Maintenance process flaw(s).

® Organizational: communication between users and maintainers, due in part to a lack
of defined standards for writing change requirements;
* Methodological: incomplete, ambiguous definitions of change requirements.

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

272 L. BRIAND ET AL.

Error A1062 Description. One of the system modules in which the enhancement change
was implemented has two processing modes for data. These two modes are listed in the
user manual. When run in one of the two possible processing modes, the enhancement
generated a set of errors, which were put under the heading A1062. At the phase these
errors were found, the enhancement had already successfully passed the tests for the
other processing mode. The maintainer should have designed a solution to handle both
modes correctly.

Error origin. Change design analysis.

Error domain. Lack of application domain knowledge.

Maintenance process flaw(s).

¢ Personnel-related: lack of experience and/or training with respect to the application
domain,
e Other: none noted.

4.5. Recommendations

4.5.1. Lessons learned

Based on the results from Step 5, further complementary investigations (e.g., measure-
ment-based), related to specific issues that have not been fully resolved by the qualitative
analysis process, should be identified. Moreover, a first set of suggestions for maintenance
process improvement should be devised. :

The lessons learned are classified according to the taxonomy of maintenance flaws
defined in Figure 8. By performing an overall analysis of the change causal analysis
results (Step 6), we abstracted a set of issues detailed in the following subsections.

4.5.2. Organization
Two lessons were learned in the organizational area:

(1) There is a large communication cost overhead between maintainers and users, e.g.,
release standard documentation, meetings and management forms. In an effort to
improve the communication between all the participants of the maintenance process,
non-technical, communication-orientated activities have been emphasized. At first
glance, this seems to represent about 40% (rough approximation) of the rnaintenance
effort. This figure seems excessive, especially when considering the apparent
communication problems (next paragraph).

(2) Despite the number of release meetings and documents, disagreements and misunder-
standings seem to disturb the maintenance process until late in the release cycle.
For example, design issues that should be settled at the end of the release design
review (RDR) meeting keep emerging until acceptance testing is completed.

As a result, it seems that the administrative process and organization scheme should
be investigated in order to optimize communication and sign-off procedures, especially
between users and maintainers. :

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

—

SR

Q-MOPP: QUALITATIVE EVALUATION PROCESS 273

4.5.3. Process

Four lessons were learned in the process area:

(3) The tools and techniques used have been developed by maintainers themselves and
do not belong to a standard package provided by the organization. Some ad hoc
technology transfer seems to take place in order to compensate for the lack of a
global, commonly agreed upon strategy.

(4) The task leader has been involved in the maintenance of GTDS for a number of
years. His expertise seems to compensate for the lack of system documentation.
He is also in charge of the training of new personnel (some of the easy changes
are used as an opportunity for training). Thus, the process relies heavily on the
expertise of one or two persons.

(5) The fact that no historical database of changes exists makes some changes very
difficult. Maintainers very often do not understand the semantics of a piece of code
added in a previous correction. This seems to be partly due to emergency patching
for a mission which was not controlled and cleaned up afterwards (this has recently
been addressed), personnel turnover, and a lack of written requirements with respect
to performance, precision and platform configuration constraints.

(6) For many of the complex changes, requirements are often ambiguous and incom-
plete, from a maintainer’s perspective. As a consequence, requirements are often
unstable until very late in the release process. While prototyping might be necessary
for some of them, the users and maintainers do not recognize it as such. Moreover,
there is no well-defined standard for expressing change requirements in a style
suitable for both maintainers and users.

4.5.4. Product
Three lessons were learned in the product area:

(7) System documentation other than the user’s guide is not fully maintained and not
trusted by maintainers. Source code is currently the only reliable source of infor-
mation used by maintainers.

(8) GTDS has a large number of users. As a consequence, the requirements of this
system are varied with respect to the hardware configurations on which the system
must be able to run, the performance and precision needs, etc. However, no
requirement analysis document is available and maintained in order to help the
maintainers devise optimal change solutions.

(9) Because of budget constraints, there is no document reliably defining the hardware
and precision requirements of the system. Considering the large number of users
and platforms on which the system runs, and the rapid evolution of users’ needs,
this would appear necessary in order to avoid confusion while implementing changes.

4.5.5. People

Two lessons were learned in the people area:

(10) There is a lack of understanding of operational needs and constraints by maintai-

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

274 L. BRIAND ET AL.

ners. Release meetings were supposed to address such issues but they seem to be
inadequate in their current form.

(11) Users are mainly driven by short-term objectives that are aimed at satisfying
particular mission requirements. As a consequence, there is a very limited long-
term strategy and budget for preventive maintenance. Moreover, the long-term
evolution of the system is not driven by a well-defined strategy and maintenance
priorities are not clearly identified.

4.5.6. General recommendations

As a general set of recommendations and based on the analysis presented in this paper,
we suggested the following set of actions to the GTDS maintenance project as three
additional lessons learned:

(12) A standard (that may simply contain guidelines and checklists) should be set up
for defining and documenting change requirements. Both users and maintainers
should give their input with respect to the content of this standard since it is
intended to help them communicate with each other.

(13) The conformance to the defined release process should be improved, e.g., through
team building and training. In other words, the release documents and meetings
should more effectively play their specified role in the process, e.g., the RDR
meeting should settle all design disagreements and inconsistencies.

(14) Those parts of the system that are highly convoluted as a result of numerous
modifications should be redesigned and documented for more productive and
reliable maintenance. Technical task leaders should be able to point out the
sensitive system units.

5. REFLECTIONS ON Q-MOPP AND RELATED WORK

In this section we analyse our method, which applies qualitative analysis methods for
the characterization and evaluation of software maintenance. We discuss our method in
relation to other related work, and begin by discussing the benefits and drawbacks of our
method, Q-MOPP: ‘

* Benefits: it provides us with context specific and rich information, which in tum
enables tailored evaluation. As a consequence, results are easy to use as a basis for
taking improvement action. In addition, each project contributes to the refinement of
existing taxonomies, checklists and guidelines to ease future analyses and evaluations.

* Drawbacks: it is labour-intensive, and needs the co-operation of experts, especially
for change analysis. In addition, evaluation results are sometimes difficult to generalize
even when they point to changes that may be applicable to other projects in the
organization. But by providing certain kinds of information, such as how the evaluation
was performed, a meta-analysis of different evaluations may be performed (Cook
etal., 1992).

It can also be seen that two levels of improvement exist in our method: improving a

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

Q-MOPP: QUALITATIVE EVALUATION PROCESS 275

specific project (specific recommendations, such as improving communication), and
improving the existing improvement practices (such as redesigning data collection forms).
Our evaluation method evolved while performing the case study described in this paper.
The initial organizational modelling approach was much simpler, identifying organizational
entities and the information flows between them. During the change analysis phase, when
we were identifying areas of improvement, we realized we needed a more sophisticated
organization model that would capture dependency relationships. In addition, we leamned
from the case study that the existing weekly maintenance effort data collection form
would have to be revised to reflect more accurately the existing maintenance process. The
revised forms in turn allowed us to develop a quantitative effort prediction model (Basili
et al., 1996).

Our method considers three aspects when developing a descriptive model: organization,
product and process. Dart, Christie and Brown (1993) use different groupings: tools,
people and process. In our method we consider people to be part of the organization, and
tools are considered to be part of the process. McGowan and Bohner (1993) present a
process assessment method that makes use of process modelling, but it lacks a clear focus
for assessment. When analysing the process, we chose to focus on defects generated
during the system release generation process, because these would be defects that would
be related to the maintenance process itself. Nakajo and Kume (1991) did another study
that relates product defects to process faults. The work by Stark and Oman (1995) focuses
on assessing the risks related to a given release by estimating its ‘complexity’. Thus,
Mmanagers may. attempt to alleviate or prevent these risks. Q-MOPP focuses on identifying
the problems associated with one or several releases after their completion. In relation to
ISO 15504 (SPICE) and the SEI CMM, Q-MOPP is not a competing approach, but rather
a specific method that can be used within the context of a more general model. For
example, Q-MOPP could be used by a project as part of an organization’s efforts to
implement SEI CMM Level 2 practices.

However, qualitative analysis is a priori limited since it does not allow us to quantify
precisely the impact of various organizational, technical and process related factors on
maintenance cost and quality. Thus, the planning of the release is sometimes arbitrary,
monitoring its progress is extremely difficult and its evaluation remains subjective.

Hence, there is a need for a data collection program for GTDS and across all the
maintenance projects of the organization. In order to reach such an objective, we have to
base the design of such a measurement program on the results provided by this and
similar studies. In addition, we need to model more rigorously the maintenance organization
and processes so that precise evaluation criteria can be defined. Preliminary results from
the current maintenance measurement program can be found in Basili et al, (1996).

6. CONCLUSION

Characterizing and understanding software maintenance processes and organizations are
necessary, if effective management decisions are to be made and if adequate resource
allocation is to be provided. Also, in order to plan and efficiently organize a measurement
program—a necessary step towards process improvement (Basili and Rombach, 1988)—
we need to characterize better the maintenance environment and its specific problems.

© 1998 John Wiley & Sons, Ltd. J. Softw. Maini: Res. Pract. 10, 249-278 (1998)

276 L. BRIAND ET AL.

The difficulty of performing such a characterization stems from the fact that the people
involved in the maintenance process, who have the necessary information and knowledge,
cannot perform it because of their inherently partial perspective on the issues and the
tight time constraints of their projects. Therefore, a well-defined characterization and
bottom—up assessment process, which is cost-effective, generic but tailorable, reasonably
objective and applicable by outsiders, needs to be devised.

In this paper, we have presented such an empirically refined process (referred to as Q-
MOPP) which allows an organization to gain an in-depth understanding of the issues
involved in its maintenance projects. Q-MOPP is intended to provide, to the extent
possible, a well-defined, repeatable and traceable process. However, as for many qualitative
analysis approaches, some degree of subjectivity is to be expected.

In our experiences with Q-MOPP, we have been able to gather useful information upon
which management and technical decisions could be based regarding the studied mainte-
nance process and organization. Besides the case study presented in this paper, this method
was also used to analyse several other maintenance projects in the NASA-SEL in order
to better understand project similarities and differences in this environment.

Although this method was applied so far in only one environment, there is no reason
to believe that it could not be applicable to other maintenance environments. It is general
enough to be tailored and followed in most maintenance organizations. The case study
presented in this paper represents an analysis effort of approximately two person-months.
Considering that the application of Q-MOPP should become easier over time, we do not
expect the cost of such an analysis to exceed a few person-months for any given
organization. -

Acknowledgements

We are grateful to everyone at Computer Sciences Corporation who was involved in the various
case studies on which this paper is based. This work would not have been possible without their
collaboration. In particular, we would like to thank Don Squier and Steve Condon.

References

Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M. and Picco, G. P. (1995) ‘Modelling and improving
an industrial software process’, IEEE Transactions on Software Engineering, 21(5), 440—454.

Basili, V. R, Briand, L., Condon, S., Melo, W. L., Seaman, C. and Valett, J. (1996) ‘Understanding
and predicting the process of software maintenance releases’, in Proceedings of the 18th Inter-
national Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos CA,
pp. 464-474.

Basili, V. R. and Rombach, H. D. (1988) ‘The TAME project: towards improvement-oriented
software environments’, IEEE Transactions on Software Engineering, 14(6), 758-773.

Bendifallah, S. and Scacchi, W. (1987) ‘Understanding software maintenance work’, IEEE Trans-
actions on Software Engineering, 13(3), 311-323,

Bennett, K. H., Comelius, B., Munro, M. and Robson, D. (1991) ‘Software maintenance’, in
McDermid, J, (Ed), Software Engineer’s Reference Book, Butterworth—Heinemann Ltd., Boston
MA, pp. 20/1-20/18.

Briand, L. C., Basili, V. R., Kim, Y.-M. and Squier, D. R. (1994) ‘A change analysis process to
characterize software maintenance projects’, in Proceedings of the International Conference on
Software Maintenance, TEEE Computer Society Press, Los Alamitos CA, pp. 38—49.

© 1998 John Wiley & Sons, Lid. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

Q-MOPP: QUALITATIVE EVALUATION PROCESS 277

Briand, L. C., Melo, W. L., Seaman, C. and Basili, V. R. (1995) ‘Characterizing and assessing a
large—scale software maintenance organization’, in Proceedings of the 17th International Conference
on Software Engineering, IEEE Computer Society Press, Los Alamitos CA, pp. 133-143.

Chapin, N. (1987) ‘The job of software maintenance’, in Proceedings of the Conference on Software
Maintenance— 1987, IEEE Computer Society Press, Los Alamitos CA, pp. 4-12.

Condon, S., Valett, J., Briand, L., Kim, Y.-M. and Basili, V. R. (1995) ‘Maintenance process of
three FDD projects’, NASA/GSFC SEL white paper, available from authors, 19 PP-

Cook, T. D., Cooper, H., Cordray, D., Hartmann, H., Hedges, L., Light, R., Louis, T. and Mosteller,
F. (1992) Meta-analysis for Explanation: A Casebook, Russell Sage Foundation, New York NY,
378 pp.

Curtis, B., Krasner, H. and Iscoe, N. (1988) ‘A field study of the software design process for large
systems’, Communications of the ACM, 31(11), 1268-1287.

Curtis, B., Kellner, M. 1. and Over, J. (1992) ‘Process modelling’, Communications of the ACM,
35(9), 75-90.

Dart, S., Christie, A. M. and Brown, A. W. (1993) ‘A case study in software maintenance’, Technical
Report CMU/SEI-93-TR-8 or ESC-TR-93-185, Software Engineering Institute, Carnegie Melion
University, Pittsburgh PA, 50 pp.

Gilgun, J. F. (1992) ‘Definitions, methodologies, and methods in qualitative family research’, in
Gilgun, J. F,, Daly, K. and Handel, G. (Eds), Qualitative Methods in Family Research, Sage
Publications, Newbury Park CA, pp. 37-61.

Harjani, D.-R. and Queille, J.-P. (1992) ‘A process model for the maintenance of large space
systems software’, in Proceedings of the Conference on Software Maintenance, TEEE Computer
Society Press, Los Alamitos CA, pp. 127136,

Hariza, M., Voidrot, J. F., Minor, E., Pofelski, L. and Blazy, S. (1992) ‘Software maintenance: an
analysis of industrial needs and constraints’, in Proceedings of the Conference on Software
Maintenance, IEEE Computer Society Press, Los Alamitos CA, pp. 18-26.

Madhavji, N., Héltje, D., Hong, W. and Bruckhaus, T. (1994) ‘Elicit: a method for eliciting process
models’, in Proceedings of the 3rd International Conference on Software Process, IEEE Computer
Society Press, Los Alamitos CA, pp. 112-122.

McGowan, C. L. and Bohner, S. A. (1993) ‘Model based process assessments’, in Proceedings of
the 15th International Conference on Software Engineering, IEEE Computer Society Press, Los
Alamitos CA, pp. 202-211.

Miles, M. B. and Huberman, A. M. (1994) Qualitative Data Analysis: An Expanded Sourcebook,
Sage Publications, Thousand Oaks CA, 338 pp- ’

Nakajo, T. and Kume, H. (1991) ‘A case history analysis of software error cause—effect relationships’,
IEEE Transactions on Software Engineering, 17(8), 830-838.

Patton, M. Q. (1990) Qualitative Evaluation and Research Methods, 2nd edn., Sage Publications,
Newbury Park CA, 532 pp.

Rombach, H. D. and Ulery, B. T. (1989) ‘Establishing a measurement based maintenance improve-
ment program: lessons learned in the SEL’, in Proceedings of the Conference on Software
Maintenance— 1989, IEEE Computer Society Press, Los Alamitos CA, pp. 50-57.

Rombach, H. D., Ulery, B. T. and Valett, J. D. (1992) ‘Toward full cycle control: adding maintenance
measurement to the SEL’, Journal of Systems and Software, 18(2), 125-138.

Swanson, E. B. and Beath, C. M. (1988) ‘The use of case study data in software management
research’, Journal of Systems and Software, 8(1), 63-71.

Stark, G. E. and Oman, P. W. (1995) ‘A survey instrument for understanding the complexity of
software maintenance’, Journal of Software Maintenance, 7(6), 421-441.

Shelly, A. and Sibert, E. (1992) ‘Qualitative analysis: a cyclical process assisted by computer’, in
Qualitative Analysis series, Oldenbourg Verlag, Munich, pp. 71-114.

Wolcott, H. F. (1994) Transforming Qualitative Data: Description, Analysis, and Interpretation,
Sage Publications, Thousand Oaks CA, 433 PpP- .

Yu, E. and Mylopoulos, J. (1994) ‘Understanding “why” in software process modelling, analysis,
and design’, in Proceedings of the 16th International Conference on Software Engineering, IEEE
Computer Society Press, Los Alamitos CA, pp. 159-168.

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

278 L. BRIAND ET AL.

Authors’ biographies:

Lionel Briand is the head of the Quality and Process Engineering Department
at the Fraunhofer Institute for Experimental Software Engineering (FhG IESE),
in Germany. Lionel started as a software engineer at CISI Ingénierie, France.
He later joined the NASA Software Engineering Laboratory (SEL), a research
consortium of NASA Goddard Space Flight Center (GSFC), the University of
Maryland and Computer Sciences Corporation. He also served as the lead
researcher in software engineering at the Computer Research Institute of
Montreal (CRIM) in Canada. Lionel earned, with high honours, a Ph.D degree
in Computer Science from the University of Paris XI, France. email:
briand@iese.fhg.de

data already available. Yong-Mi received a B.S. degree in Computer Science from Virginia Polytech-
nic Institute and State University in Blacksburg Virginia, and an M.S. degree in Computer Science
from the University of North Carolina in Chapel Hill. email: ymk@q-labs.com

Carolyn Seaman is a faculty researcher in the Experimental Software Engineer-
ing Group at the University of Maryland in Coliege Park. Her research includes
such topics as the organization structure of development groups, commercial
off-the-shelf (COTS) software use in development and maintenance, technology
transfer and software maintenance. She has also worked as a software developer
and maintainer in a number of different environments. Carolyn earned her B.A.
from the College of Wooster (Ohio), her M.S. from Georgia Institute of
Technology and her Ph.D. from the University of Maryland in College Park.
email: cseaman@cs.umd.edu

Victor R. Basili is a Professor of Computer Science at the University of
Maryland in College Park. He is a founder and director of the Software
Engineering Laboratory at the NASA Goddard Space Flight Center. Victor has
been very active in professional associations, has received awards recognizing
his contributions, and is a Fellow of the IEEE and of the ACM. He holds a
B.S. from Fordham University in New York, an M.S. from Syracuse University
in New York and a Ph.D. from the University of Texas at Austin. email: basi-
li@cs.umd.edu

© 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 10, 249-278 (1998)

