
0018-9162/00/$10.00 © 2000 IEEE May 2000 27

P E R S P E C T I V E S

Gaining
Intellectual
Control of
Software
Development

R
ecent disruptions caused by several events have shown how thor-
oughly the world has come to depend on software. The rapid pro-
liferation of the Melissa virus hinted at a dark side to the ubiq-
uitous connectivity that supports the information-rich Internet
and lets e-commerce thrive. Although the oft-predicted Y2K apoc-

alypse failed to materialize, many software experts insist that disaster was
averted only because countries around the globe spent billions to ensure their
critical software would be Y2K-compliant. When denial-of-service attacks shut
down some of the largest sites on the Web last February, the concerns caused
by the disruptions spread far beyond the complaints of frustrated customers,
affecting even the stock prices of the targeted sites.

Indeed, as software plays an ever-greater role in managing the daily functions
of modern life, its economic importance becomes proportionately greater. It’s
no coincidence that technology stocks have led the upsurge of stock market
indices, that the US government’s antitrust case against Microsoft has become
headline news around the world, or that some companies’ aggressive pursuit of
software patents has caused widespread controversy.

Yet despite its critical importance, software remains surprisingly fragile. Prone
to unpredictable performance, dangerously open to malicious attack, and vul-
nerable to failure at implementation despite the most rigorous development
processes, in many cases software has been assigned tasks beyond its maturity
and reliability.

TAKING THE LONG VIEW
Fortunately, the groundwork for finding solutions to many of these short-

comings has already been laid. In 1997, recognizing the US economy’s increas-
ing dependence on information technology, the Clinton administration
established the President’s Information Technology Advisory Committee.
PITAC’s primary responsibility was to determine whether government-supported
R&D “is helping to maintain United States’ leadership in advanced computing
and communications technologies and their applications.” After many meetings
with the research community, funding agencies, industry, and the public at large,
PITAC issued a hard-hitting report that recommended increasing government-

The results from two
workshops on software
engineering research
strategies, commissioned
by the National Science
Foundation last year,
hint at new directions
that software develop-
ment might take.

Barry Boehm
USC Center for Software Engineering

Victor R. Basili
University of Maryland

28 Computer

sponsored IT research by $1.37 billion annu-
ally within five years.

To support their findings, the committee
found that the “Federal information technology
R&D investment is inadequate ... [and] too
heavily focused on near-term problems” and
recommended “a strategic initiative in long-term
information technology R&D,” which should
sponsor “research that is visionary and high-
risk.” The committee focused on software
because the nation has “become dangerously
dependent on large software systems whose

behavior is not well understood and which often fail in
unpredicted ways.” Improving software development
methods is so important that, the committee argued,
we should “make software research a substantive com-
ponent of every major IT research initiative.”

In response to these recommendations, the com-
puting directorate at the National Science Foundation
commissioned two major software workshops last
year.

NSF WORKSHOP FINDINGS
The first workshop, the NSF Workshop on a

Software Research Program for the 21st Century, con-
cluded that software research must expand the scien-
tific and engineering basis for constructing no-surprise
software of all types.1 To do so, workshop participants
found that software developers need to

• “Develop the empirical science underlying soft-
ware as rapidly as possible. One important activ-
ity will be to analyze how some commercial and
government organizations have learned to build
no-surprise systems in stable environments. By
extracting principles from these analyses, empir-
ical research can help enlarge the no-surprise
envelope. By validating principles derived from
theoretical research, where many excellent but
unused ideas originate, it can enlarge the toolkit
of software developers.

• “Advance our understanding of the basic elements
of the computer science discipline, which is the
foundation for all software construction. Progress
in formal methods, algorithms, operating systems,
database management systems, programming lan-
guages, and many other areas is essential.
Otherwise, we risk running out of ideas and meth-
ods for creating the ‘unprecedented’ software of
the future that will maintain our global competi-
tiveness and national security. To help in the con-
struction of real-world no-surprise systems,
theoretical research should be sensitive to the
issues raised by empirical analyses and to the scal-
ability problem.

• “Address human needs significantly better as we

engineer the large, unprecedented systems of the
next century subject to concurrent safety, evolv-
ability, and resource constraints.

• “Form teams to build important advanced appli-
cations that will both serve as testbeds for the
new ideas and address a serious problem identi-
fied by the PITAC: ‘desperately needed software
is not being developed.’”

After the workshop, questions arose about whether
this report recommends a “software engineering” or
a “software research” agenda, and how software
research should address such areas as operating sys-
tems, networking, artificial intelligence, and database
software.

USC WORKSHOP FINDINGS
To clarify the nature and role of software engi-

neering in IT research and to identify software engi-
neering research strategies, a second meeting—the
NSF Software Engineering Research Strategies
Workshop—took place at the University of Southern
California in August 1999. Participants presented
their findings to the NSF a month later.

The USC meeting participants felt that under-
standing the proper place of software engineering
research meant beginning with a discussion of the
future. They saw an enormous increase in complexity
over the horizon as every conceivable device becomes
connected to everything else—not only computers and
trains, planes, and automobiles, but also appliances
of all types, from refrigerators to information gener-
ators and receivers. Also, with increasing dependence
on independently evolving commercial components,
control over content diminishes rapidly, raising impor-
tant technical and legal issues.

The fast new global delivery mechanism also means
that time-to-market considerations are becoming
paramount. Product cycles that only recently spanned
an already high-pressured 18 months have dropped
to six months or less. Yet, as a consequence, fantastic
opportunities have emerged at all levels.

Synergizing IT and software engineering
Participants noted that if an organization wants a

good information-technology-based system, there
must be a synergetic relationship between the IT com-
ponents that comprise the delivered system and the
software engineering elements that guide its definition,
development, component selection, integration, and
validation. You cannot go from good to great IT sys-
tems if you improve only the SE elements and neglect
the IT components. As Figure 1 shows, it is equally
true that focusing only on great IT components with-
out attention to complementary SE practices generally
leads to failure as well.2

You cannot go
from good to great
IT systems if you
improve only the
SE elements and

neglect the
IT components.

May 2000 29

A good example of the latter approach is the
AESOP project experience.3 This project assumed that
a small number of advanced IT components—a user-
interface generator, an object-oriented DBMS, and
two middleware components—could be integrated
quickly and cheaply: in six months, by only two very
bright software engineering researchers. It was a “sim-
ple matter of programming.” The result: a schedule
overrun by a factor of four, an effort overrun by a fac-
tor of five, and slow, unresponsive system perfor-
mance. Similar approaches on large-scale systems
generally experience even worse results,4 but often
remain undocumented.

Fortunately, the AESOP experience was well ana-
lyzed by the SE researchers, who identified architec-
tural mismatch as the key success inhibitor. This
analysis led to a rich experience-based SE research
program that addresses and copes with the sources of
architectural mismatch.5

Creating stronger and better-integrated IT compo-

nents and SE capabilities to achieve great, no-surprise
IT systems would be a tremendous challenge even if
software and IT remained static. But given the con-
stantly increasing pace of change, the challenge
becomes overwhelming. The Web and the Internet
connect everything with everything else. Autonomous
agents that make deals in cyberspace create many
opportunities for chaos, and systems of systems, net-
works of networks, and agents of agents create huge
intellectual-control problems.

Further, the economics of software componentry
leave system developers with no choice but to incor-
porate large commercial-off-the-shelf components
into their systems. Unfortunately, developers have no
way of knowing what is inside these COTS compo-
nents, and they have no control over the direction of
their evolution. Software architecture and COTS deci-
sions are made hastily, and the time pressures forcing
this “marriage in haste” leave no opportunity for
repenting even at leisure.

Human-computer Interface
and collaboration

Operational stakeholdersDevelopment stakeholdersUser interfaces

Great IT components + =Great SW engineering Great systems

User applications

AI, agents

OS, DBMS, middleware

User applications

Information distribution
and management

Connectivity and
information access

Definition, development,
test, verification, and

usage evaluation tools

Modeling and analysis

System definition,
composition,

verification, and
evolution processes

Architectures,
composition
frameworks,

and principles

Quality-of-
service

technologies

Networks

Figure 1. An organization that wants a good IT-based system needs a synergetic relationship between the IT components (blue), which comprise the
delivered system, and the software engineering elements (red), which guide the system’s definition, development, component selection, integration,
and verification.

30 Computer

Having explored the nature and contributions of
software engineering research, the workshop turned to
the problem of characterizing software engineering
elements and their individual roles in realizing vari-
ous classes of future IT systems.

Focus on two challenge areas
Participants began their characterization of SE

research elements by reviewing and discussing two
excellent sources of overall software Grand Challenge
problems.6 With the aid of these sources, we defined
two SE-intensive challenge areas for achieving the
quality-of-life improvements envisioned in the PITAC
report. These areas involved harnessing future IT in
“empowering people and groups” and in “weaving a

new information fabric” that is much more reliable,
supple, and adaptable than current technology.

Within each of these two challenge areas, we iden-
tified four specific sample applications, and charac-
terized their potential future IT- and SE-enabled
capabilities and the relative importance of individual
SE research areas in achieving those capabilities. We
then aggregated these parameters into a cross-impact
matrix that clarified the relationships and led to a
number of conclusions about the nature of SE research
strategies, as Figure 2 shows.7

As one example, consider user programming. To
achieve safe and effective user programming in the
future, we face an essential dependence on achieving
significant progress in

Empowering
people

and groups

Software
engineering
technologies

Weaving
the new

information
fabric

Underlying
science

Process technologies

System definition

Architecture

Composition

Test and verification

Usage evaluation and evolution

Process modeling and management

Product technologies

HCI and collaboration

User domain componentry

Connectivity and info. access

Info. distribution and management

Quality-of-service technologies

High assurance

Massive scalability

Change resilience

Modeling and analysis technologies

Domain modeling

Software economics modeling

Quality-of-service modeling

Integration of technology elements

Em
b

ed
d

ed
m

ed
ic

al
 s

ys
te

m
s

U
se

r
p

ro
g

ra
m

m
in

g

Em
p

o
w

er
ed

 t
ea

m
s

Li
fe

lo
n

g
 le

ar
n

in
g

C
o

m
p

u
te

r
sc

ie
n

ce

C
ri

si
s

m
an

ag
em

en
t

A
ir

 t
ra

ff
ic

 c
o

n
tr

o
l

N
et

-c
en

tr
ic

 b
u

si
n

es
s

M
ed

ic
al

 in
fo

rm
at

ic
s

D
o

m
ai

n
 s

ci
en

ce
s

B
eh

av
io

ra
l s

ci
en

ce
s

Ec
o

n
o

m
ic

s

Degree of dependence

Essential

Strong

Moderate

None

Figure 2. Software engineering technologies, mission challenges, and underlying science. Each column in the chart addresses
a functional area, with each row listing a specific SE technology. A given functional area’s degree of dependence on a specific
technology ranges from essential (blue) to none (yellow).

May 2000 31

• safe and effective composition of components
and applications;

• test and verification that the users’ programs have
no serious faults or adverse side effects;

• supportive human-computer interface technol-
ogy;

• user domain componentry for composing user
applications;

• high-assurance technologies for ensuring that
user programs do not compromise reliability, pri-
vacy, availability, safety, mission performance, or
organizational viability;

• change resilience to ensure that user modifica-
tions can be done quickly and with high assur-
ance; and

• ensuring that each technology integrates well
with the others (for example, that user domain
componentry evolves in ways consistent with the
change resilience assumptions).

Other software engineering technologies are less
essential to successful user programming, primarily
because the programs and projects are relatively small.
We do not need massive scalability at all, and process
and economics modeling contribute only moderately.
The strong dependencies for the other technologies pri-
marily address their need to establish sound support
frameworks and environments for user program-
ming—system definition, architecture, connectivity
and information access, and information distribution
and management.

We also considered each software engineering tech-
nology’s relative degree of dependence on four pri-
mary underlying science areas: computer science,
domain sciences, behavioral sciences, and economics.
Suppose that a set of stakeholders sought to negoti-
ate the definition of the best air-traffic-control system
that can be built within a given budget and schedule.
The system definition support capabilities would
depend in an essential way on a knowledge of com-
puter science (the performance of algorithms); domain
sciences (the computations needed to predict clear air
turbulence); behavioral sciences (for both stakeholder
requirements negotiations and air-traffic-controller
group performance); and economics (for performing
cost-benefit analyses of various alternatives).

Determining the most appropriate logical and
physical IT architecture for the air-traffic-control sys-
tem would involve a strong dependence on all four
underlying sciences, but the dependence on getting
the best information structures would be consider-
ably more essential for computer sciences than for the
other sciences.

Primary concerns
We can draw many conclusions about software

engineering research strategies from the pre-
ceding analysis.

• The field’s needs are significant. Each of
the eight sample challenge applications
exhibited essential or strong dependen-
cies on improved capabilities in most soft-
ware engineering technology areas.
Having integrated, mutually reinforcing
technology elements was essential for all
the challenge applications. Having a good
product or a good process technology
alone makes producing a good system
unlikely; you must have both.

• The field’s needs are interdisciplinary.
System definition technology, architecture tech-
nology, and the other SE technologies require more
than traditional computer science to ensure suc-
cessful IT applications. This truth does not imply
that single-discipline research is unimportant. But
it does mean that the body of knowledge required
for successful software engineering includes con-
siderably more than computer science.

• There is no silver bullet for success. Our discus-
sions corroborated Fred Brooks’s thesis8 that no
silver-bullet solution exists. We concluded that a
balanced portfolio of research investments and
an emphasis on integration of software engi-
neering and information technology solutions via
experimental application are most likely to show
progress toward addressing the challenges.

• Developers must “skate to where the puck is
going.” Workshop participants felt that too much
research focuses on past problems. Examples of
future trends where we need more research into
problems of intellectual control include hetero-
geneous distributed systems, dynamically chang-
ing software structures, and interactions among
autonomous agents.

• Developers need to explore new metaphors for
software composition and evolution. One ap-
proach to future problems looks for new per-
spectives or metaphors for intellectual control.
Examples include biologically self-testing or
self-adaptive software systems and the socio-
economic employment of software goal and
reward structures.

Participants expressed serious concern about soft-
ware engineering technology transition, which has
always been exceptionally difficult. Adopting new
practice or technology involves behavioral change and
deferred gratification. You can plug in a faster chip or
algorithm without changing your project practices,
and you can see the effect on performance immedi-
ately. Changing development processes or adopting a

Changing
development

processes or adopting
a software product
line requires that

people change their
behavior on projects,
often for payoffs only

seen much later.

32 Computer

software product line requires that people
change their behavior on projects, often for pay-
offs only seen much later and that are hard to
trace definitively. Collaborative university-
industry research and experimentation can
expedite transition. Several good suggested
mechanisms for pursuing this approach can be
found elsewhere.1

Relating software research results to key chal-
lenge applications will provide greater under-
standing about which processes, architectural
styles, and IT components best fit such applica-
tions. This work provides the foundation for no-
surprise projects in other application domains

and the ability to reason about what level of capabil-
ity can be achieved within a given time or budget.

Keeping track of progress toward this objective will
help clarify which challenge problems lie outside the
no-surprise boundary, providing stakeholders with
more realistic expectations about encountering prob-
lems. Tracking progress will also enable stakeholders
to consider alternative strategies for bounding risk, such
as using delivery time or cost as their independent vari-
able and desired features as the dependent variable.

Applying metrics to software development
Finally, workshop participants also discussed the

formulation of appropriate metrics for software devel-
opment progress and their use in evaluating the effects
of advances in software engineering research. The par-
ticipants concluded that this task’s difficulty should
not be a barrier to doing it better.

The primary difficulty in determining such metrics
is that software projects are effectively unrepeatable in
practice. We find differences among team skills and
dynamics or among learning-curve effects on similar
products developed by the same team. Increasingly,
rapid changes in the IT marketplace and infrastruc-
ture continually change the rules of software devel-
opment from one project to the next.

This changing nature means that most traditional
measures of software productivity are increasingly
irrelevant. A good example is the metric of new source
lines of code produced per person-day on a large pro-
ject. The value of this metric continues to hover
around 10, giving the impression of no progress.
However, analyzing several decades of experience at
Bell Laboratories9 demonstrates that the number of
executing lines of machine code generated by a line of
source code has increased by roughly an order of mag-
nitude every 20 years.

Even stronger progress indicators can be generated
by combining productivity per IT platform with the
number of platforms in use. Effective examples in the
computer hardware and communications field include
plots showing high exponential growth in number of

transistors in use, in petaflops of computing power
available, or in numbers of Internet packets handled
per year. A software counterpart to these examples,
using similar counting rules, is lines of code in service
(LOCS), obtained by multiplying executable lines of
machine code per computing platform by the number
of platforms in use. As observed elsewhere,10 over sev-
eral decades the US Department of Defense’s LOCS
have increased by an order of magnitude roughly
every seven years, with cost per LOCS currently
decreasing at about the same rate.

Metrics such as LOCS, transistors, petaflops, and
packets at least pass a market test for value because
they are items that people and organizations have paid
market prices to obtain. Beyond this, however, we
would prefer metrics that more closely reflect value
added to people and organizations. Such metrics are
emerging for software, but face challenges in applying
them across different application areas and across
stakeholders having different values and priorities.

The automated collection and analysis of usage-
experience data from human and computer sources
presents a significant challenge in “weaving the new
information fabric.” Soon, we will be able to sample
and analyze billions of concurrent transactions. This
capability can be harnessed not only for better per-
sonal, business, and government decisions, but also
for analyzing and improving the various dimensions
of effectiveness in the software and IT systems we pro-
duce in the future.

POTENTIAL ROADBLOCKS
Although the two workshops held in 1999 helped

establish a firm foundation for the NSF’s research
efforts, challenges remain. For example, any company
that hopes to succeed in today’s fiercely competitive
market cannot spend too much time building quality
in. Doing so will cost it so much market share that its
product will fail when it finally reaches the market-
place, even if the software is more robust than its com-
petitors. Thus, a major NSF goal is to devise a
technology that lets developers accelerate the software
development process without compromising quality.

On the other hand, some analysts believe that the
race-to-market model may evolve toward a slower,
more quality-focused paradigm when a given market
matures. Some US analysts, for example, speculate
that CMM (Capability Maturity Model) Level 5 com-
panies in India could someday build more robust ver-
sions of popular software products, thereby reprising
the role Japanese automakers played in the 1970s
when their less-expensive and better-engineered cars
challenged domestic auto manufacturers’ market
dominance in the US. Opinions differ on how likely
this scenario is, however. History didn’t repeat itself,
for example, when the Japanese software factories

The primary
difficulty in
determining

appropriate metrics
is that software

projects are
effectively

unrepeatable
in practice.

May 2000 33

went head-to-head with less structured but more agile
US companies. But quality-focused developers may
yet discover an effective way to compete.

During the USC workshop, several participants
discussed how we might leverage some of the tech-
niques the open source community uses to build
robustness into software. Aside from concerns about
devising a workable economic model, participants
noted that the open source model works best when
it supports a product with broad enough appeal to
attract a critical mass of contributing programmers.
Thus, what works for Linux or Apache may not be
practical with niche applications that have much
smaller user bases.

Creating a smooth interface between government
and free enterprise also raised some concerns at the
workshop. Cultural differences, for example, may
arise between fast-paced software developers who
place a premium on speedy progress and government
officials who must work within stringent regulations.

Abstract by nature, software’s apparently lim-
itless flexibility is both its greatest strength
and greatest weakness. We can no longer

afford to let this increasingly critical component of
the Information Age’s infrastructure proliferate in the
form of ill-conceived, hastily crafted, and failure-
prone products. The NSF has taken the first steps
toward grasping the reins of software development
and regaining control not only of the development
process but also of the role software will play in our
future. ✸

References
1. Final Report, “NSF Workshop on a Research Program

for the 21st Century,” http://www.cs.umd.edu/projects/
SoftEng/tame/nsfw98/.

2. “Role of Software Engineering in IT Research and Sys-
tems,” chart 5, http://sunset.usc.edu/Activities/aug24-
25/NSFtalks/Boehm.ppt.

3. D. Garlan, R. Allen, and J. Ockerbloom, “Architectural
Mismatch: Why Reuse Is So Hard,” IEEE Software,
Nov. 1995, pp. 17-26.

4. Standish Group, “CHAOS,” http://www.standishgroup.
com/chaos.html.

5. M. Shaw and D. Garlan, Software Architecture, Pren-
tice Hall, Upper Saddle River, N.J., 1996.

6. J. Gray, What Next? A Dozen Information-Technology
Research Goals, (draft Turing lecture), tech. report MS-
TR-99-50, Microsoft, Redmond, Wash., June 1999.

7. “Software Engineering Technologies, Mission Chal-
lenges, Underlying Science,” chart 12, http://sunset.usc.
edu/Activities/aug24-25/NSFtalks/Boehm.ppt.

8. F.P. Brooks, “No Silver Bullet: Essence and Accidents of
Software Engineering,” Computer, Apr. 1987, pp. 10-19.

9. L. Bernstein, “Software Investment Strategies,” Bell Labs
Technical J., Summer 1997, pp. 233-242.

10. B. Boehm, “Managing Software Productivity and Reuse,”
Computer, Sept. 1999, pp. 111-113.

Barry Boehm is director of the USC Center for Soft-
ware Engineering. He developed the Constructive
Cost Model, the software process Spiral Model, and
the Theory W (win-win) approach to software man-
agement and requirements determination. Contact
him at boehm@sunset.usc.edu.

Victor R. Basili is a professor in the Institute for
Advanced Computer Studies and the Computer Sci-
ence Department at the University of Maryland. He
has participated in the design and development of sev-
eral software projects, including the SIMPL family of
programming languages. He is currently measuring
and evaluating software development in industrial and
government settings and has consulted with many
agencies and organizations. Contact him at basili@
cs.umd.edu.

computer.org/e-News

Available for FREE
to members.

Good news for your in-box.

Be alerted to
• articles and
special issues

• conference news
• submission and

registration
deadlines

• interactive forums

Sign Up Today for
the IEEE
Computer
Society’s
e-News

Sign Up Today for
the IEEE
Computer
Society’s
e-News

