
May 2002 www.stsc.hill.af.mil 9

Recent events in Afghanistan have con-
vincingly demonstrated the value of

software and information technology in
achieving military superiority. Each of the
Department of Defense (DoD) services has
major initiatives to pursue even more
advanced software-intensive systems con-
cepts involving network-centric warfare
with self-adaptive networks and cooperating
human and autonomous agents.

However, there are tremendous chal-
lenges in providing the software product
and process capabilities necessary to realize
these concepts. These challenges include
security, scalability, interoperability, legacy
systems transition, uncontrollable commer-
cial off-the-shelf (COTS) products, and syn-
chronizing dozens if not hundreds of inde-
pendently evolving systems in a world of
increasingly rapid change.

In particular, the processes for managing
these complex systems of systems will
require both highly disciplined methods to
ensure dependable operations and highly
flexible methods to adapt to change.

Fortunately, DoD’s new 5000-series
policies on evolutionary acquisition and spi-
ral development provide the acquisition and
program management framework to achieve
this balance of discipline and flexibility.
Also, the recent Capability Maturity Model®

(CMM®) IntegrationSM (CMMISM) provides a
development framework for integrating
software and systems consideration with
degrees of freedom for tailoring develop-
ment processes to achieve appropriate bal-
ances of discipline and flexibility. However,
these initiatives fall short of providing spe-

cific techniques for achieving and maintain-
ing the right balance of discipline and flexi-
bility for a particular program’s evolving sit-
uation.

In our previous three CrossTalk arti-
cles, we provided some specific methods
that programs can use to achieve this bal-
ance. In “Understanding the Spiral Model as
a Tool For Evolutionary Acquisition [1],” we

showed how appropriate use of the spiral
model enables programs to achieve the flex-
ibility needed for evolutionary acquisition,
while applying risk-management principles
to retain an appropriate level of program
discipline.

In “Balancing Discipline and Flexibility
with the Spiral Model and MBASE [2],” we
showed how risk considerations could be
used to realize appropriate but different
process models for different program situa-
tions. We also elaborated on some of the
specific practices in Model-Based (system)
Architecting and Software Engineering
(MBASE) such as the use of life-cycle
anchor-point milestones to keep the pro-
gram on track during its evolution.

In “Using the Spiral Model and MBASE
to Generate New Acquisition Process
Models: SAIV, CAIV and SCQAIV [3],” we
showed how programs could use MBASE
risk management techniques to avoid many
overruns of fixed schedules and budgets.
This is done by prioritizing desired features
and inverting the development process to
deliver the most important features within
the available schedule or budget.

MBASE and the CeBASE
Method
However, the spiral, MBASE, and Schedule
as Independent Variable (SAIV) approaches
all operate at the individual project level.
This still leaves open the coverage of the
counterpart CMMI organization-level pro-
cess areas, particularly those of achieving
continuous improvement of the organiza-
tion’s processes.

In this article, we show how MBASE has
been integrated with the University of
Maryland’s (UMD) organization-level Qual-
ity Improvement Paradigm (QIP), Exper-
ience Factory (EF), and Goal-Question-
Metric (GQM) approaches into a Center for
Empirically Based Software Engineering
(CeBASE) method, which successfully
addresses these challenges. CeBASE is
sponsored by the National Science Foun-
dation, NASA, and the DoD, and jointly led
by the UMD and the University of
Southern California (USC).

As we explored the details of
Maryland’s QIP, EF, and GQM approaches
and USC’s MBASE approach, we found that
they were expressing very similar principles
and practices. The Spiral Model’s initial
focus on system objectives was consistent
with the QIP’s initial focus on organization-
al and project-specific goals expressed in

Achieving CMMI Level 5 Improvements with
MBASE and the CeBASE Method

Dr. Barry Boehm, Dr. Daniel Port, and Apurva Jain
University of Southern California

Each branch of service in the Department of Defense has major initiatives to pursue more
advanced software-intensive systems concepts involving network-centric warfare with self-
adaptive networks and cooperating human and autonomous agents. The ability to balance
discipline and flexibility is critically important to developing such highly dependable soft-
ware-intensive systems in an environment of rapid change. Risk-management orientation
enables users of Capability Maturity Model® IntegrationSM (CMMISM) to apply risk con-
siderations to determine how much discipline and how much flexibility is enough in a given
situation. The risk-driven nature of the spiral model and MBASE enables them to achieve
a similar balance of discipline and flexibility. When these project-level approaches are com-
bined with the organization-level approaches in the Experience Factory, the result is the
unified Center for Empirically Based Software Engineering (CeBASE) method described
in this article.

Dr. Victor Basili
University of Maryland

Tuesday, 30 April 2002
Track 1: 1:00 - 1:40

Ballroom A

® Capability Maturity Model, CMM, Software Capability
Maturity Model, and SW-CMM are registered in the U.S.
Patent and Trademark Office.

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

“... the opportunity is
here for other

organizations to use
the Experience Factory
approach to achieve

CMMI Level 5 benefits
well before reaching

Level 4.”

Best Practices

10 CROSSTALK The Journal of Defense Software Engineering May 2002

context using the GQM approach. The EF’s
focus on organizational learning to under-
stand a system’s operational stakeholders
and their goals corresponds strongly with
MBASE’s stakeholder win-win approach to
mutual stakeholder understanding and
development of a shared system vision.

In the next section of this article, we
summarize the key principles and practices
of the QIP, the EF, and the GQM
approaches; provide evidence of their suc-
cessful application over 25 years of practice
in the NASA Goddard-University of
Maryland-Computer Science Corp. (CSC)
Software Engineering Laboratory (SEL);
and provide an example of their application
at a systems as well as software level. In the
section “The CeBASE method and CMMI,”
we present the CeBASE method and show
how its process elements cover the process
areas of the CMMI. In “Using the CeBASE
Method,” we show a version of the
CeBASE method that has been successfully
applied to more than 100 electronic services
applications over six years’ practice at USC.

Our conclusions include a diagram sum-
marizing the process model distinctions
among traditional approaches such as the
Waterfall Model and Software Capability
Maturity Model® (SW-CMM®); project-ori-
ented approaches such as the spiral model,
MBASE, and the Rational Unified Process
(RUP); and integrated project/organization
approaches such as the CMMI and CeBASE
Method.

The QIP, GQM, and EF
Approach
Framework and Methods
Since 1976, the UMD has been collaborat-
ing with NASA-Goddard and CSC on the
SEL. The UMD and the SEL have devel-
oped and refined a series of closed-loop

feedback processes that have resulted in
significant improvements in software quali-
ty across more than 100 large software
applications in the last 25 years.

The formulation of these feedback
processes is called the QIP [4]. It uses six
steps to provide an organized approach to
continuous software quality improvement:
1) characterizing the organization, 2) setting
goals, 3) choosing and instrumenting an
appropriate process, 4) executing and moni-
toring the process, 5) analyzing the data to
identify improvements, and 6) packaging the
experience and improvements for future
use.

The QIP makes use of the GQM
approach, which is a mechanism for defin-
ing and evaluating a set of operational goals
using measurement [5]. It ensures that your
general goals are elaborated into specific
questions and metrics for tracking progress
and evaluating success, and that your people
do not waste effort collecting and analyzing
data weakly related to your goals.

The GQM approach can be applied at
both the project level and the organization
level. The EF [6] provides a consistent way
of operating at both levels, as shown in
Figure 1. Organization and project goals are
determined by involving the relevant suc-
cess-critical stakeholders in negotiating
mutually satisfactory (win-win) and achiev-
able goals.

For example, the organization may set a
goal to reduce its projects’ software cycle
time by 50 percent. The initial implementing
project may set goals and plans to have each
project activity reduce its calendar time by
50 percent. As the project proceeds, its
progress is monitored for progress/plan/
goal mismatches, as shown at the bottom of
Figure 1. While design, code, and test plan-
ning may finish in 50 percent less time, inte-

gration and test may start showing a 50 per-
cent increase rather than decrease in dura-
tion. Analyzing this progress/plan/goal
mismatch would determine the root cause
to be delays due to inadequate test planning
and preparation of test tools, test drivers,
and test data. Further, shortening the test
plan activity had produced no cycle timesav-
ing, as test planning was not on the project’s
critical path.

The results of this analysis would be fed
into the organization’s experience base:
Future cycle-time reduction strategies
should focus on reducing the duration of
critical path activities, and options for doing
this include increasing the thoroughness and
duration of noncritical-path activities.
Overall then, as shown in the center of
Figure 1, the EF analyzes and synthesizes
such kinds of experience, acts as a reposito-
ry for the experiences, and supplies relevant
experience to the organization on demand.
The EF packages experience by building
informal and formal models and measures
of various processes, products, and other
forms of knowledge via people, documents,
and automated support.

QIP, GQM, and EF in Practice
The application of the integrated set of
these methods is referred to as the
Experience Factory Organization, which
resulted in a continuous improvement in
software quality and cost reduction during
the quarter-century life span of the SEL.
When measured during three baseline peri-
ods in 1987, 1991, and 1995 (each repre-
senting about three years of development
efforts), the demonstrated improvements
included a 75 percent decrease in develop-
ment defect rates from 1987 to 1991, and a
37 percent decrease from 1991 to 1995. We
also observed a reduced development cost
of 55 percent from 1987 to 1991 and of 42
percent from 1991 to 1995 [7, 8].

A more detailed example of improve-
ment over time, in Figure 2, shows the
defect rates in defects per thousand deliv-
ered lines of code (K-DLOC) for similar
classes of projects at CSC during the appli-
cation of the EF concepts. Over time, the
defect models became well established and
the range of variation (indicated by the
upper and lower lines) narrowed, allowing
managers to better manage quality [9]. Thus,
the EF approach enabled the SEL portion
of CSC to achieve SW-CMM Level 5
improvements well before CSC became a
Level 5 organization in 1998. With the
CMMI’s emphasis on measurement and
analysis as early as Level 2, the opportunity
is here for other organizations to use the EF
approach to achieve CMMI Level 5 benefits
well before reaching Level 4.

Initiatives

Planning Context

Progress/Plan/Goal
Mismatches

Experience Base

Analyzed
Experience,
Updated Models

Achievables,
Opportunities

• Org. Improvement Goals
– Goal-related questions, metrics

• Org. Improvement Strategies
– Goal achievement models

• Initiative Plans
– Initiative -related questions,

metrics

• Initiative Monitoring and
Control

– Experience-base analysis

Org. Shared Vision &
Improvement Strategy

Project Shared
Vision and Strategy

Planning Context

Models and Data

Project
Experience

Org.
Goals

Project Planning
and Control

Models and
Data

Progress/Plan/Goal/Mismatches

Org. Improvement Initiative
Planning & Control

Figure 1: Experience Factory Framework

Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method

May 2002 www.stsc.hill.af.mil 11

Various EF concepts have been success-
fully applied in other organizations, includ-
ing Daimler Chrysler, Robert Bosch, TRW,
and Allianz.

Applying EF Concepts at the Systems
Level
Systems-Level Goals and Questions
Many software organizations interpret the
EF concepts at just the software level. They
miss many opportunities to reap much
more significant returns on investment at
the systems level. For example, suppose
that your software intensive project has a
proposed goal for an improvement initia-
tive to reduce the project’s software defect
rates. What should be your next step?
Usually it would be to look down from the
software goal into the software details. How
will we define defect? What are the count-
ing rules for overlapping defects? What are
our current defect rates?

With EF at the systems level, your next
step is to look upward and sideways from
the software and ask system-level questions:
Why do we want to reduce software defect
rates? What system goals are being frustrat-
ed by software defects? Where are the frus-
trations the greatest?

For example, in an operational order-
processing system, the answers may be that
the software defects are causing 1) too
much downtime in the operation’s critical
path, 2) too many defects in the system’s
operational plans, and 3) too many new-
release operational problems.

These insights enable you to reformu-
late your improvement initiative goal to
decrease the organization’s software defect-
related losses in operational cost effective-
ness. Items one through three become ini-
tial high-payoff target sub-goals for the ini-
tiative. Given this new goal and context,
what should be your next step?

Sub-Goal Level Questions, Models, and
Metrics
Again, a good next step is to ask why the
software defects are causing operational
problems, often with the help of models.
For example, Figure 3 shows a critical-path
model for analyzing the order-processing
downtime and delays caused by software
defects. Analyzing this model may lead to
several valuable insights, improvement
strategies, and system payoffs:
1. Often, major sources of delay are addi-

tional manual processing delays caused
by software or non-software problems,
as with the Scientific American order
processing system discussed in Boehm
[10].

2. The logic for packaging and delivery
scheduling can become quite complex

when only part of an order is in stock.
(It is generally okay to send a partial
shipment at Amazon.com, however, not
for jet engine repair spare parts.)
Software defects can again cause consid-
erable operational delays.

3. “Produce status reports” defects should
not be on the operational critical path.
This module was probably put on the
critical path by a programmer’s detailed
design coupling and cohesion decision
without considering its potential system
effect, resulting in status-report defects
causing order-delivery delays.

4. The overall legacy order-processing sys-
tem may just be too slow and difficult to
modify and should be replaced down-
stream by a new Web-based order-pro-
cessing system. It is generally good to be
asking why not as well and why questions.

Putting It All Together
Each of these sub-goal-related initiatives
needs to be monitored and controlled with
respect to improvement-related metrics
such as order-processing cycle time and
user satisfaction. The results need to be
integrated with other ongoing improve-
ment initiatives to ensure synergy and inte-
gration with the overall organizational
experience base discussed earlier in the
“framework and methods” section. The
sidebar on page 12 shows the resulting sys-
tems-level EF-GQM initiative steps.

These system-level EF-GQM ap-
proaches are already being practiced by
leading-edge software organizations. Two

of the recent Institute of Electrical and
Electronics Engineers’ Software Process
Achievement Award winners, Advanced
Information Services, Inc. (AIS) and Tinker
Air Force Base, are good examples [11, 12].

AIS uses Balanced Scorecard tech-
niques to integrate its software, systems,
project, and organizational goals in such
areas as customer satisfaction, financial per-
formance, employee growth, process
improvement, and organizational learning
capability. Specifically, AIS periodically
assesses its performance and rate of
progress in these areas on a Balanced
Scorecard form and uses the results to
adjust its improvement efforts in each area.
Tinker has used its software insights to
stimulate systems-level initiatives with its
counterpart hardware and test organiza-
tions to improve system-level cycle time
and to deliver quality in such areas as B-2
Test Program Sets.

This kind of approach is what transi-
tioning from the software CMM to the
CMMI is all about. It requires software
organizations to be more pro-active than
reactive in interacting with the operational
system stakeholders. It gets software peo-
ple applying their necessary expertise to
system issues. It results in much larger bot-
tom-line payoffs for the operational system
stakeholders. The next two sections discuss
how the CeBASE method integrates soft-
ware and system-level activities as well as
project- and organizational-level activities
and how its practices map to the process
areas and practices in the CMMI.

14

12

10

8

6

4

2

0

1986 1988 1990 1992 1994 1996 2000

Project Midpoint

E
rr

o
rs

 P
er

 K
-D

L
O

C
Lower Data Points

All Data Points

Upper Data Points

FORTRAN

Non-FORTRAN

Validate
order

Validate
items in
stock

Order
items

Schedule
packaging,

delivery

Produce
status
reports

Prepare
delivery

packages

Deliver
order

Figure 2: Defect Rate Improvements in Software Engineering Laboratory/Computer Science
Corporation Projects

Figure 3: Order-Processing System Critical Path Model

Best Practices

12 CROSSTALK The Journal of Defense Software Engineering May 2002

The CeBASE Method and the
CMMI
The CeBASE Method Framework
Overall, we found that both EF-GQM and
MBASE could be integrated into a com-
mon CeBASE method. Its framework is
organized around a trio of common strate-
gic themes, shown by the vertical pairs in
Figure 4. These three themes are the stake-
holders’ shared vision for the organization or
project; risk-driven plans for process, prod-
uct, and people; and continuous monitoring
and control. As seen in Figure 4, these
themes express both the operation of EF-
GQM at the organizational level and the
operation of MBASE-GQM at the project
level. Within a large diverse organization,
we may wish to consider a particular set of
projects within a portfolio or product line of
related products or services.

To start at the upper left of Figure 4,
the organization’s value propositions are
often contained in an organizational mis-

sion statement. This will cover the organi-
zational stakeholders’ agreed-upon win
conditions and will be expressed in terms
of such Balanced Scorecard elements as
customer satisfaction, financial perform-
ance, employee growth, process improve-
ment, and organizational learning capa-
bility.

Improvement goals and priorities will
come from Balanced Scorecard assess-
ments. These might include such goals as
reducing software development cycle time
or reducing average order-delivery time.
The specific quantitative goals, e.g., reduce
software development cycle time by 50 per-
cent, would be based on initial cost/value
analyses. These are developed using such
techniques as the DMR Consulting
Group’s Results Chains linking improve-
ment initiatives to contributions and ben-
efits-realized outcomes [13] and associated
business-case models linking the value of
benefits realized to the costs invested in
the initiatives.

The CeBASE Method at the
Organizational Level
The resulting organization (or portfolio)
shared vision (OSV) (Figure 4) drives two
sets of initiatives. Horizontally in Figure 4,
it drives initiatives to improve software
cycle time or to reduce order-delivery time
across the organization. These initiatives
will have strategy elements and their asso-
ciated organization-level improvement
plans (OP) such as reducing delays in
order-delivery time due to software
defects.

Following the GQM paradigm, the goal
of reducing order-delivery time is related
to organization plan questions such as,
“What is our current record on delivery
times?” “What distinguishes orders with
significantly better or worse delivery
times?” “What are the costs and benefits
resulting from an improvement initiative?”

These questions are related to metrics
such as overall order-delivery time, critical-
path task times, costs and benefits of elim-
inating related software defects, and cus-
tomer order-delivery satisfaction ratings.
These are used to monitor and control
organization-level progress (OMC), and to
adjust the strategies and goals based on
the organizational feedback of progress/
plan/goal achievements and mismatches.

The CeBASE Method at the Project
Level
Vertically in Figure 4, the OSV drives the
nature of each project’s shared vision (PSV)
and its associated goals and priorities. Thus,
for example, an organizational improve-
ment goal to reduce software development
cycle time by 50 percent will be reflected in
the project’s value propositions and
improvement goals or the organization
project shared vision (O-PSV) (see arrow in
Figure 4). This will lead to project-level
goals, models, questions, and metrics such
as reducing the duration of each project
task by 50 percent.

This in turn leads horizontally across the
bottom of Figure 4 to project-level plans
(PP), project monitoring and control activi-
ties (PMC), and to the determination and
feedback of project-level progress/plan/
goal mismatches. This mismatch feedback
could be negative such as increased integra-
tion and test task durations or it could be
positive. For example, the project might
incorporate a new in-transit-visibility COTS
package for order delivery tracking that
both helps in delay diagnosis and improves
customer satisfaction by answering ques-
tions about delivery delays.

This project feedback propagates up-
ward to the organizational level along all
three lines of traceability. The shortfalls or

1. Org. value propositions
(VP's)

a - Stakeholder values

2. Current situation w.r.t. VP's

3. Improvement goals, priorities
4. Global scope, results chain
5. Value/business case models

Org-Portfolio Shared Vision (OSV)

1. Strategy elements

2. Evaluation criteria/questions

3. Improvement plans

a. Progress metrics
b. Experience base

Org. Plans (OP)
Organization/

portfolio:
Experience

Factory,
GQM

1. Monitor environment
a - Update models

2. Implement plans
3. Evaluate progress

-w.r.t. goals, models
4. Determine, apply

corrective actions
5. Update experience base

Org. Monitoring & Control (OMC)

Monitoring

& control

contex t

1.

Project value propositions

a -Stakeholder values

2.

Current situation w.r.t. VP's

3.

Improvement goals, priorities

4.

Project scope, results chain

5.

Value/business case models

Project Shared Vision (PSV)

Pro ject:
MBASE

Planning
context

Plan/goal mismatches

1. LCO/LCA package
-Ops concept, prototypes,

rqts, architecture,

LC plan, rationale
2. IOC/transition/support package

-Design, increment plans,
quality plans, T/S plans

3. Evaluation criteria/questions

4. Progress metrics

Project Plans (PP)

Planning
context

Initiatives

OFB:
 -shortfalls, opportunities, risks

Pro ject

vision,

 goals:

O-PSV

Short falls,
opportunities,
risks; P-OSV

Scoping

context

Short falls,
opportunities,

risks: P-OP

Planning
context:

O-PP

1. Monitor environment

a - Update models

2. Implement plans

3. Evaluate progress

-w.r.t. goals, models, plans

4. Determine, apply

corrective actions

5. Update experience base

Proj. Monitoring & Control (PMC)

Monitoring
& control
context

PFB:
-shortfalls, opportunities, risks

Plan/goal

mismatches

Monitor ing
& control
context

Project
experience,

progress w.r.t.

plans, goals

LCA: Life-Cycle Architecture
IOC: Initial Operational Capability
GQM: Goal-Question- Metric Paradigm
MBASE: Model-Based (System) Architecting and Software Engineering

Applies to organizations and projects people, processes, and products

w.r.t.: with respect to
T/S: Transition/Support

LCO: Life-Cycle Objectives

Progress/plan/goal mismatches

Progress/plan/goal mismatches

Figure 4: The CeBASE Method Framework

Systems-Level Experience Factory
Goal-Question-Metric Initiative Steps

1. Identify a software-related improvement initiative goal.
2. Relate this to system-level goals: Ask questions about why the initiative is

needed.
3. Use the results to identify the related system-level improvement initiative goal

and high-payoff sub-goal initiatives.
4. Perform a systems-level root-cause analysis: Construct relevant models, ask

questions about why the current-system shortfalls cause problems and whether
or not to try alternative system approaches.

5. Identify the system improvement initiative’s key stakeholders; achieve a shared
vision of and commitment to the initiative goals and strategies.

6. Establish improvement initiative plans and progress metrics for each sub-goal
initiative and the overall initiative.

7. Execute, monitor, and control the initiative plans with key stakeholder partici-
pation. Feed the resulting experiences into the organization’s experience base
for future benefits.

Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method

May 2002 www.stsc.hill.af.mil 13

opportunities with respect to organizational
shared vision and goals are fed back along
the project OSV (P-OSV) arrow at the left.
The corresponding plan-context feedback
occurs along the project OP (P-OP) arrow
in the center, and the monitoring and con-
trol feedback at the right is used to update
the organization’s detailed experience base
on best practices for achieving goals.

As a final observation, note that the
content of the PP element consists of the
Spiral/MBASE Life-Cycle Objectives
(LCO), Life-Cycle Architecture (LCA), and
Initial Operational Capability (IOC) anchor-
point milestone content that we discussed
in our May 2001 and December 2001
CrossTalk articles [1, 2]. Thus, the
Spiral/MBASE guidelines in those articles
have become the project-level guidelines for
the CeBASE method. A detailed example of
these guidelines is shown next.

CeBASE Guidelines Example: Shared
Vision
The CeBASE project-level and organiza-
tion-level shared vision guidelines are
quite similar. Their main difference is one
of context: The project-level shared
vision has the organization-level shared
vision as context and shows traceability to
it, but not vice versa. Figure 5 shows the
table of contents and example text from
the project-level shared vision guidelines.
In the CeBASE method, it is the first item
to be drafted by the project’s Integrated
Product Team of success-critical stake-
holders or its equivalent. It sets the stage
for subsequent Inception Phase prototyp-
ing and stakeholder win-win requirements
negotiation.

The shared vision guidelines are adopt-
ed from best commercial practices in ways
that apply to public service applications as
well. The system capability “elevator”
description comes from Geoffrey Moore’s
classic Crossing the Chasm [13]. The “Benefits
Realized” and “Results Chain” sections are
adapted from the DMR Consulting Group’s
Benefits Realization Approach [14]. The
Results Chain identifies the full set of initia-
tives necessary to realize the proposed sys-
tem’s benefits; this also identifies the full set
of success-critical stakeholders who should
be involved in the system’s definition. The
current version of the guidelines is at
<http://cebase.org/cebase method>.

CeBASE Method Coverage of the
CMMI
Example Mapping: Requirements
Development
To test its coverage of critical issues, we
have done a mapping of the CeBASE

method onto the CMMI’s 24 process
areas using the CMMI summary tables in
Ahern, et al. [15]. A mapping example is
provided in a longer version of this paper
available at <http://www.cebase.org>.

Overall, the mapping indicated that
the CeBASE method covered the CMMI
goals and practices well. It provided the
CeBASE team with some action items to
address missing elements covered in the
CMMI. Most significantly, though, it iden-
tified items that we have found important
to software and systems engineering that
were missing in the CMMI. These includ-
ed a business case justifying the need for
required features, having a stakeholder
win-win prioritization of requirements
(for coping with new requirements and
fixed budgets or schedules), coverage of
project requirements (required platforms,
resource constraints), level of service
requirements (the -ilities), and evolution
requirements (to avoid point-solution
architectures).

Overall CeBASE Method Coverage of
the CMMI
Overall, we found not only a strong cor-

respondence but also an almost complete
coverage of the CMMI’s practices by the
organizational and project components
of the CeBASE method. We are extend-
ing the CeBASE method to cover the
specific CMMI processes not currently
covered. A summary of the percentage
of the CMMI process areas covered by
the CeBASE method is shown in Table 1
(see page 14). The “+” annotations in
Table 1 indicate that the CeBASE
method’s coverage goes considerably
beyond that of the CMMI. For example,
it covers not just an organizational
process focus but also an organizational
product and people focus. The “-” anno-
tations in Table 1 indicate that some
areas in the CeBASE method still remain
to be fleshed out, such as detailed guide-
lines for organizational training plans,
although they are covered in principle.

The CeBASE method also provides a
prescriptive approach for an organization to
use in tailoring the CMMI’s generic practices
to its particular culture, environment, and
value propositions. Thus, an e-commerce
organization’s value propositions (rapid time
to market, rapid adaptation to change) will

Table of Contents
2. Shared Vision

2.1. System Capability Description
2.1.1. Benefits Realized
2.1.2. Results Chain

2.2. Key Stakeholders
2.3. System Boundary and Environment
2.4. Major Project Constraints
2.5. Top-Level Business Case
2.6. Inception Phase Plan and Required Resources
2.7. Initial Spiral Objectives, Constraints, Alternatives, and Risks

2.1 System Capability Description
A concise description of the system that can pass the “elevator test” described in Geoffrey Moore’s Crossing the Chasm
[13]. This would enable you to explain why the system should be built to an executive while riding up or down an ele-
vator. It should take the following form:

• For (target customer)
• Who (statement of the need or opportunity)
• The (product name) is a (product category)
• That (statement of key benefit-that is, compelling reason to buy)
• Unlike (primary competitive alternative)
• Our product (statement of primary differentiation)

Here is an example for a corporate order-entry system: “Our sales people need a faster, more integrated order-entry
system to increase sales and customer satisfaction. Our proposed Web order system would give us an e-commerce
order-entry system similar to Amazon.com’s that will fit the special needs of ordering mobile homes and their after-
market components. Unlike the template-based system our main competitor bought, ours would be faster, more user
friendly, and better integrated with our order fulfillment system.”

Common Pitfalls:
• Not relating the need or opportunity to the goals in the organization’s Shared Vision.
• Being too verbose about “our product” or its key benefits.

2.2 Key Stakeholders
Identify each stakeholder by their home organization, their authorized representative for project activities, and their
relation to the Results Chain. The four classic stakeholders are the software/IT system’s users, customers, developers
and maintainers. Additional stakeholders may be system interfacers, subcontractors, suppliers, venture capitalists, inde-
pendent testers, and the general public (where safety or information protection issues may be involved).

Common Pitfalls:
• Being too pushy or not pushy enough in getting your immediate clients to involve the other success-critical stake-

holders. Often, this involves fairly delicate negotiations among operational organizations. If things are going slow-
ly and you are on a tight schedule, seek the help of your higher-level managers.

• Accepting just anybody as an authorized stakeholder representative. You don’t want the stakeholder organization to
give you somebody they feel they can live without. Some good criteria for effective stakeholder representatives are
that they be empowered, representative, knowledgeable, collaborative, and committed.

Figure 5: Example CeBASE System-Level Shared Vision Content

Best Practices

14 CROSSTALK The Journal of Defense Software Engineering May 2002

cause it to adopt more flexible processes.
However, such elements as the anchor-point
milestones will balance this flexibility with
sufficient discipline to keep the overall
process under control. The value proposi-
tions of an organization developing safety-
critical products or services will cause it to
emphasize more rigorous specifications,
processes, and practices, but in ways that
enable it to cope with rapid change.
Examples include capturing evolution
requirements, designing systems to accom-
modate future change, building in buffer
periods to synchronize and stabilize
processes [16], or to adapt to potential
schedule or budget slips by dropping lower-
priority product features [3].

Another point worth emphasizing is that
the EF component of the CeBASE method
supports a continuous vs. staged approach
to process improvement. You do not need
to be a CMM Level 4 organization to begin
realizing significant benefits from organiza-
tional innovation or causal analysis.

Using the CeBASE Method
Since 1996, we have been applying the EF
and GQM approaches to improve the proj-
ect-oriented MBASE aspects of the
CeBASE method by using them to
improve an annual series of USC electron-
ic services projects. These are developed
using annually improved MBASE guide-
lines by teams of five master’s-level stu-
dents as developers and staff members of

USC’s Information Services Division as
clients (customers, users or user represen-
tatives, and maintainers). Each year, we
have 15 to 20 teams execute the MBASE
inception and elaboration phases in the fall
semester to develop and validate life-cycle
architecture packages for USC electronic
services applications’ candidates. The top
six to 10 of these applications are then
selected for spring semester teams who
execute the MBASE construction and tran-
sition phases and deliver initial operational
capability application systems.

Our shared vision for the USC Center
for Software Engineering’s research and
education goals incorporates the win con-
ditions of not only our students and their
project clients, but also other stakeholders
such as the center’s staff and prospective
technology users, represented by our 35
industry and government affiliate organiza-
tions [17]. Our questions and metrics
include stakeholder critiques of each proj-
ect and extensive instrumentation of the
projects’ effort, schedule, quality, produc-
tivity, and behavioral characteristics [18, 19,
and 20].

Table 2 summarizes four years’ experi-
ence to date in applying and refining
CeBASE on an annual selection of real-
client projects.

A few explanatory comments on Table
2 are in order. The number of LCA teams
is larger than the number of IOC teams
because USC’s fall course is a core course
for the USC master’s of science degree in

computer science and has a much larger
enrollment than the spring course, which is
only required for a few specialization areas.
In 1996-97, the subset of projects to be
continued in the spring was primarily those
having students continuing from the fall
course. After we found that most of the
1996-97 products went unused, we per-
formed a critical success factor analysis and
determined a set of spring project selection
criteria (e.g., library commitment to prod-
uct use, empowered clients) that increased
the project adoption rate. Even then,
unforeseen circumstances such as the
inevitable changes in library infrastructure
and organizational responsibilities have
caused some applications’ usage commit-
ments to be overtaken by events. This is a
frequent phenomenon for electronic serv-
ices applications [21].

In general, the EF improvements on
MBASE have effected a uniform improve-
ment in outcome, but there are some
anomalies. For example, the 12 percent of
projects failing IOC in 1999-2000 were due
to a team who botched their product tran-
sition when their client was unexpectedly
called out of town during the transition
period. Another example was our introduc-
tion of midcourse client briefings on core
capability expectations in 1999-2000 as
part of our SAIV process [3]. SAIV only
guarantees the delivery of a highest-priori-
ty core capability set of features, with fur-
ther features added as time is available.
While this resulted in early client disap-
pointments at LCA where client success
scores dropped from 4.74 in 1998-1999 to
4.48 in 1999-2000, there was a dramatic
increase in the clients’ success score for the
delivered product (4.3 in 1998-1999 to 4.75
in 1999-2000).

The 1998-1999 improvement in the
“Failing LCO” criterion shown in Table 2
resulted primarily from our introduction
of a simplifier and complicator (S&C)
expectations management activity. This
helped the developers to have a better
understanding of the system and the stake-
holders by leveraging an experience base
of designs that help simplify the architec-
ture (the simplifiers) and apply a risk-driven
approach to the architectural areas that
may cause significant complications (the
complicators). Involving the clients in risk
management activities throughout the
process clearly contributed to their rating
virtually all delivered applications as highly
satisfactory.

Conclusions
Figure 6 summarizes the distinctions
among maturity models such as the SW-

1996-1997 1997-1998 1998-1999 1999-2000

LCA Teams 15 16 19 22

Failing LCO 27% 25% 5% 5%

Failing LCA 0% 0% 0% 0%

LCA Client Score 4.46 4.67 4.74 4.48

IOC Teams 6 5 6 8
Failing IOC 16% 0% 0% 12%

IOC Client Score n/a 4.15 4.3 4.75

IOC Regularly Used 16% 60% 50% 62%

Table 2: Annual University of Southern California E-Services Project Outcomes

Process Management
• Organizational Process Focus: 100+
• Organizational Process Definition: 100+
• Organizational Training: 100-
• Organizational Process Performance: 100-
• Organizational Innovation and Deployment: 100+

Project Management
• Project Planning: 100
• Project Monitoring and Control: 100+
• Supplier Agreement Management: 50-
• Integrated Project Management: 100-
• Risk Management: 100
• Integrated Teaming: 100
• Quantitative Project Management: 70-

Engineering
• Requirements Management: 100
• Requirements Development: 100+
• Technical Solution: 60+
• Product Integration: 70+
• Verification: 70-
• Validation: 80+

Support
• Configuration Management: 70-
• Process/Product Quality Assurance: 70-
• Measurement and Analysis: 100-
• Decision Analysis and Resolution: 100-
• Organizational Environment for Integration: 80-
• Causal Analysis and Resolution: 100

Note: All amounts are percentages.

Table 1: CeBASE Method Coverage of CMMI

Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method

May 2002 www.stsc.hill.af.mil 15

CMM and the CMMI; process models such
as the waterfall model; and process model
generators such as MBASE, RUP, and the
CeBASE method. It shows where each
model fits with respect to organizational
focus (project vs. organization), application
focus (software vs. system), and operational
focus (practice vs. assessment).

From Figure 6, we can see that the SW-
CMM covers both project and organization
considerations, but it has shortfalls in both
applications focus (software, not systems)
and operational focus (assessment, not
practice). We can also see that solutions
focused on redressing one of the two short-
fall dimensions will still have shortfalls of
their own in another dimension. Thus, the
CMMI redresses the systems shortfall in the
SW-CMM, but it still has the shortfall of
providing explicit guidelines for assessment
but not for project practices. While MBASE
and RUP provide explicit guidelines for
project practices, they do not provide coun-
terparts for an organization’s practices.
However, the combination of CMMI and
the CeBASE method covers all aspects of
operational, organizational, and application
focus.

In terms of future software-intensive
system challenges, the ability to balance dis-
cipline and flexibility is critically important
to the development of highly dependable
software-intensive systems in an environ-
ment of rapid change. The CMMI’s risk-
management orientation enables its users to
apply risk considerations to determine how
much discipline and how much flexibility is
enough in a given situation. The risk-driven
nature of the spiral model and MBASE
enables them to achieve a similar balance of
discipline and flexibility. When these proj-
ect-level approaches are combined with the
organization-level approaches in the EF, the
result is the unified CeBASE method sum-
marized in the section “The CeBASE
Method and the CMMI.” It currently imple-
ments most of the CMMI, is being extend-
ed to cover the full CMMI, and has a strong
track record of continuous process
improvement at USC’s and UMD’s
Software Engineering Laboratories and
industry adapters elsewhere.◆

Acknowledgements
We would like to acknowledge the support
of the National Science Foundation in
establishing CeBASE, the DoD Software
Intensive Systems Directorate in support-
ing its application to DoD projects and
organizations, and the affiliates of the USC
Center for Software Engineering and the
University of Maryland’s software engi-
neering program for their contributions to

MBASE and CeBASE.

References
1. Boehm, B., and W. Hansen. “Under-

standing the Spiral Model as a Tool for
Evolutionary Acquisition.” CrossTalk
May 2001.

2. Boehm, B., and D. Port. “Balanc-
ing Discipline and Flexibility with
the Spiral Model and MBASE.”
CrossTalk Dec. 2001.

3. Boehm, B., D. Port, L. Huang, and A.
W. Brown. “Using the Spiral Model and
MBASE to Generate New Acquisition
Process Models: SAIV, CAIV, and
SCQAIV.” CrossTalk Jan. 2002.

4. Basili, Victor R., and Gianluigi Caldiera.
“Improve Software Quality by Reusing
Knowledge and Experience.” Sloan
Management Review 37.1 (1995).

5. Basili, Victor R., Gianluigi Caldeira, and
H. D. Rombach. “The Goal Question
Metric Approach.” Encyclopedia of
Software Engineering. Ed. J. Marciniak.
Wiley, 1994.

6. Basili, Victor R., Gianluigi Caldeira, and
H. D. Rombach. “The Experience
Factory.” Encyclopedia of Software
Engineering. Ed. J. Marciniak. Wiley,
1994.

7. Basili, Victor R., Gianluigi Caldiera,
Frank McGarry, Rose Pajersky, Gerald
Page, and Sharon Waligora. “The
Software Engineering Laboratory – An
Operational Software Experience
Factory.” 14th International Confer-
ence on Software Engineering. May
1992.

8. Basili, Victor R., Marvin Zelkowitz,
Frank McGarry, Jerry Page, Sharon
Waligora, and Rose Pajerski. “Special
Report: SEL’s Software Process-
Improvement Program.” IEEE
Software 12.6 (1995): 83-87.

9. McGarry, F. “What Is A Level 5
Organization? Lessons from 10 Years
of Process Improvement Experiences
at CSC.” Proceedings of the Twenty-
Sixth NASA Software Engineering
Workshop. Nov. 2001.

10. Boehm, B. Software Engineering Eco-
nomics. Prentice Hall, 1981.

11. Ferguson, P., et al. “Software Process
Improvement Works!” Advanced
Information Services, Inc. CMU/SEI-
99-TR-027, Nov. 1999.

12. Butler, K., and W. Lipke, “Software
Process Achievement at Tinker Air
Force Base, Oklahoma.” CMU/SEI-
2000-TR-014, Sept. 2000.

13. Moore, Geoffrey. Crossing the Chasm:
Marketing and Selling High-Tech Pro-
ducts to Mainstream Customers. New
York: Harper Business, 1991: 161.

14. Thorp, J., and DMR Consulting Group.
The Information Paradox, McGraw
Hill, 1998.

15. Ahern, D., A. Clouse, and R. Turner.
CMMI Distilled. Addison Wesley,
2001.

16. Cusumano, Michael A., and Richard W.
Selby. Microsoft Secrets: How the
World’s Most Powerful Software
Company Creates Technology, Shapes
Markets, and Manages People. New
York: Simon & Schuster, 1996.

17. Boehm, B., A. Egyed, D. Port, A. Shah,
J. Kwan, and R. Madachy. “A
Stakeholder Win-Win Approach to
Software Engineering Education.”
Annuals of Software Engineering 6
(1998): 295-321.

18. Egyed, A., and B. Boehm. “Comparing
Software System Requirements Ne-
gotiation Patterns.” Systems Engineer-
ing 2.1 (1999): 1-14.

19. Port, D., and B. Boehm. “Introducing
Risk Management Techniques Within
Project-Based Software Engineering
Courses.” Computer Science Edu-
cation 2002 (to appear).

20. Majchrzak, A., and C. Beath. “A
Framework for Studying Learning and
Participation in Software Develop-
ment Projects.” Management Infor-
mational Systems Quarterly, under
review.

21. Boehm, B., “Project Termination
Doesn’t Equal Project Failure.” IEEE
Computer Sept. 2000: 94-96.

Operational Focus: Organizational Focus
Assessment

Practice
Project Organization

Software Software CMM
Waterfall,

Incremental

Software CMM
Early EF, GQM

Application
Focus

Systems CMMI
Spiral, MBASE,

RUP

CMMI
CeBASE Method

Figure 6: Process Model Coverage Distinctions

16 CROSSTALK The Journal of Defense Software Engineering May 2002

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General Dynam-
ics, Rand Corp., TRW, Defense
Advanced Research Projects Agency,
and the Office of the Secretary of
Defense as the director of Defense
Research and Engineering Software
and Computer Technology Office.
Dr. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder win-win approach
to software management and require-
ments negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-8163
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Daniel Port, Ph.D., is
a research assistant
professor of Com-
puter Science and an
associate of the Center
for Software Engi-

neering at the University of Southern
California (USC). Dr. Port’s previous
positions were assistant professor of
Computer Science at Columbia
University, director of Technology at
the USC Annenburg Center EC2
Technology Incubator, co-founder of
Tech Tactics, Inc., and a project lead
and technology trainer for NeXT
Computers, Inc. He received a doctor-
ate from the Massachusetts Institute
of Technology in applied mathemat-
ics with an emphasis on theoretical
computer science in 1994 and a bach-
elor’s degree in mathematics from the
University of California in Los
Angeles.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-7275
Fax: (213)740-4927
E-mail: dport@sunset.usc.edu

Apurva Jain is a doc-
toral student at the
University of Southern
California’s Center for
Software Engineering.
Previously he was a

project manager at SpruceSoft Inc.
His research interests are software
process management and pervasive
computing. He received a bachelor’s
degree from Curtin University of
Technology, Perth, Australia and a
professional honors diploma from
Informatics, Singapore.

University of Southern California
Center for Software Engineering
941 W. 37th Place, SAL 329
Los Angeles, CA 90089-0781
Phone: (213) 740-6505
Fax: (213) 740-4927
E-mail: apurvaj@sunset.usc.edu

Victor R. Basili,
Ph.D., is a professor
of Computer Science
at the University of
Maryland, the Execu-
tive Director of the

Fraunhofer Center, Maryland, and
one of the founders and principals in
the Software Engineering Laboratory.
He works on measuring, evaluating,
and improving the software develop-
ment process and product and has
consulted for many organizations. Dr.
Basili is a recipient of a 1989 NASA
Group Achievement Award, a 1990
NASA/GSFC Productivity Improve-
ment and Quality Enhancement
Award, the 1997 Award for Out-
standing Achievement in Mathematics
and Computer Science by the
Washington Academy of Sciences,
and the 2000 Outstanding Research
Award from ACM Special Interest
Group on Software Engineering.

Computer Science Department
4111 AV Williams Building
University of Maryland
College Park, MD 20742
Phone: (301) 405-2668
Fax: (301) 405-2691
E-mail: basili@cs.umd.edu

Best Practices

May 13-17
Software Testing Analysis and Review

(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 3-6
Combat Identification Systems

Conference

Colorado Springs, CO
www.usasymposium.com

July 18-20
Shareware Industry Conference

St. Louis, MO
www.sic.org

July 22-25
Joint Advanced Weapons Systems Sensors,

Simulation, and Support Symposium
(JAWS S3)

Colorado Springs, CO
www.jawswg.hill.af.mil

August 19-22
The Second Software Product

Line Conference
San Diego, CA

www.sei.cmu.edu/SPLC2/

September 9-13
International Conference on Practical

Software Quality Techniques and
International Conference on Practical

Software Testing Techniques 2002 North
St. Paul, MN

www.softdim.cim/psqt/

April 28-May 1, 2003
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

