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of a computing system which allows reliance
to be justifiably placed on the services it deliv-
ers.” “Reliance” is contextually subjective and
depends on the particular stakeholders’ needs.
Depending on the circumstances, different
stakeholders will focus on different systems at-
tributes, such as availability, performance,
real-time response, and ability to avoid cata-
strophic failures and resist adverse conditions,
as well as different levels of adherence to such
attributes. Additionally, an attribute can mean

different things to different people; you often
see different definitions given for the same at-
tributes.1–3 Put another way, dependability as-
sumes a precise meaning only when applied to
a specific context: the system and the stake-
holders’ goals it must support. So, achieving
and maintaining dependability in a quickly
changing context requires you to firmly un-
derstand its meaning.

From this perspective, we introduce our
Unified Model of Dependability, a modeling
language for discussing and reasoning about
dependability. By providing a structured
framework for eliciting and organizing de-
pendability needs, UMD helps stakeholders
build dependability models that clearly iden-
tify the measurable, implementable properties
individual systems need to be dependable for
their users.

A Unified Model of
Dependability: Capturing
Dependability in Context

I
n contemporary societies, individuals and organizations increasingly
depend on services delivered by sophisticated software-intensive sys-
tems to achieve personal and business goals. So, a system must have
engineered and guaranteed dependability, regardless of continuous,

rapid, and unpredictable technological and context changes. 
The International Federation for Information Processing Working Group

10.4 (www.dependability.org) defines dependability as “the trustworthiness 
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UMD
Traditional dependability modeling usually

develops in a top-down fashion. For example,
let’s focus on a specific dependability attribute,
performance, and assume we want to define
what performance means for a specific service
of a given system (for example, an online ap-
plication’s query service). First, we need to de-
fine performance—for example, “performance
is a static or dynamic system’s capability (re-
sponse time, throughput) defined in terms of
an acceptable range.”4 Then, on the basis of
this definition, we can specify the desired be-
havior. So, our online application’s query serv-
ice could have this performance requirement:
“The response time must be no greater than 10
seconds.” In this way, we’ve obtained a model
of the system’s performance starting from a
generic attribute definition. This simple model
defines what we expect from the system: When
the query service responds in more than 10 sec-
onds, we can say there’s a performance failure,
or a lack of performance. However, the same
failure could also represent a lack of other—
perhaps even more relevant for the stakehold-
ers—system properties. For example,

■ If the online application supports an emer-
gency response operator, a delayed re-
sponse could result in a dangerous situa-
tion, so failure would be also a hazard,
representing a lack of safety.

■ If the online application is an e-commerce
system, a delayed response could discour-
age potential customers from buying (the
service is unavailable), so this misbehavior
represents a lack of availability.

■ The response delay could occur because of
an internal fault but also because of an ex-
ternal event—for example, an unintentional
external event, such as a hardware fault, or
an intentional one, such as a denial-of-serv-
ice attack. In this case, the performance fail-
ure becomes a lack of survivability (unin-
tentional) or of security (intentional).

These simple examples show how you could
interpret the same failure differently. Given this
one-to-many relationship between failures and
attributes, you can more efficiently and intu-
itively model dependability by assuming failure
as a starting point (that is, think bottom-up
and not only top-down). As Brian Randall
points out, there’s a clear need to go beyond
terminology (that is, attributes definitions) and
focus on relevant concepts (such as failure).5

UMD builds on this need. We designed it to
focus on a dependability issue (that is, an un-
dependable behavior, such as a failure) to help
stakeholders build dependability models of in-
dividual systems. UMD (see Figure 1) lets
stakeholders model dependability by defining
an actual issue that shouldn’t affect the system
or a service (scope) along with a possible re-
sponsible external event that might cause it. 

Supporting elicitation
We provide stakeholder guidance by incor-

porating into UMD the models, definitions,
and classifications adopted in the literature to
discuss these concepts. For example (see Figure
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Imagine for a moment that you have a complex system
with numerous properties that must all be maintained within
certain limits during the system’s operation. When a spe-
cific negative event such as a denial-of-service attack oc-
curs, what will its impact be on various properties such as
system safety, availability, security, and other “-ilities”?

For most systems, such questions can be surprisingly
difficult to analyze due to the diverse ways in which a sin-
gle event can affect different system properties. In this ar-

ticle, Victor Basili, Paolo Donzelli, and Sima Asgari de-
scribe their Unified Model of Dependability approach to
capturing and analyzing the impacts of diverse events 
on critical system properties. Their UMD method demon-
strates the recurring theme that you can make -ilities more
enduring and survivable over time by capturing and sup-
porting a wider range of context information about those
properties. —Terry Bollinger, Jeffrey Voas, and

Maarten Boasson, guest editors

Event ScopeIssue

Denial-of-service
attack Query service

Response time
> 10 seconds

Cause Concern

Figure 1. Unified Model
of Dependability 
concepts and their
relationships with an
online application 
system example.
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2), we could categorize issues into the (not ex-
clusive) concepts of failures and hazards to
help stakeholders identify potential system
misbehaviors.

We can further refine these concepts by in-
troducing subclassifications for both failures
and hazards—for example, by classifying them
by type or other characteristics (such as failure
availability impact in Figure 2). Depending on
the specific needs, you could adopt different
standards and classifications, for example,
MIL-STD-8826 for hazards and ISO/IEC 132367

for failures. Similarly, you could introduce ad
hoc definitions and classifications for event
and scope. 

In this way, UMD guides stakeholders dur-
ing the elicitation process. Specifically, stake-
holders can use items already available or tai-
lor, expand, and modify them according to
their specific needs. For example, stakehold-
ers can
■ Use the definitions of failure types already

present
■ Use the same failure types but provide dif-

ferent definitions
■ Introduce more specific failure types—for

example, response time rather than 
performance

UMD’s bottom-up nature lets stakeholders
take advantage of existing dependability
knowledge (models and classifications). So,
the UMD framework consists of

■ Invariant concepts: These are stable for
every UMD application (issue, scope, and
event).

■ Semi-invariant concepts: These are the
structure of the concepts’ characterization
(for example, mapping issue to failure,
hazard, or both). 

■ Customizable concepts: These are the
characterizations (for example, classes of
failures, hazards, events, and so on). They
depend on the specific context (project
and stakeholders) and can be customized
while applying UMD. 

The somewhat arbitrary distinction be-
tween concepts represents the status of our de-
pendability knowledge. We can hypothesize
that as our knowledge increases and as classi-
fications and models become recognized as
standards, concepts will move from the frame-

work’s lower to upper levels.
As Figure 3 shows, you can view UMD as an

experience base that supports stakeholders in
building a specific system’s dependability model.
The knowledge embedded in the UMD experi-
ence base can be customized and provides guid-
ance while eliciting specific context needs. 

The new knowledge acquired while build-
ing the system dependability model can be an-
alyzed and packaged for reuse in UMD.

Measuring dependability
UMD lets stakeholders specify the issues

they don’t want to occur. However, this doesn’t
suffice; we need an operational definition of
dependability. For example, Jean-Claude La-
prie says, “The extent to which a system pos-
sesses the attributes of dependability should be
interpreted in a relative, probabilistic sense, due
to the unavoidable occurrence of failures.”8

UMD provides measurement models via the
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Issue

Characterization:
Type
   • User hazard
   • Environment hazard
   • And so on ...

Characterization:
Type
   • Accuracy
   • Response time
   • And so on ...

Availability impact 
   • Stopping
   • Nonstopping

FAILURE

HAZARD

Figure 2. Stakeholder
guidance for specifying
issues.

System
context

Customize  
framework to the  
specific context

Specific-system
dependability

model

Analyze and
package
for reuse 

UMD
Experience base of issues, failures, hazards,

Extract new  
knowledge

to enrich UMD

events, scope, and so on

Figure 3. The updating
process from version
11.23 to version 11.25,
showing how to add a
new column in the
Bank table.



invariant concept measure (see Figure 4). In
this way, stakeholders can choose the meas-
urement style most appropriate for describing
an underlying issue’s acceptable manifestation
levels. For example, Figure 4 shows the fol-
lowing measurement classes: 

■ Ordinal and probabilistic—for example,
an ordinal scale such as “very rarely,”
“rarely,” and “sometimes” 

■ Ratio and probabilistic, such as MTBF
(mean time between failure) and probabil-
ity of occurrence (in the next time unit or
transaction)

■ Ratio and deterministic, such as number
of occurrences (in a given time frame)

Improving dependability
UMD lets stakeholders provide ideas for im-

proving dependability through the invariant
concept of reaction. In this way, stakeholders
can suggest reactive and proactive services the
system should provide to become more depend-
able. The stakeholder adds reactive services trig-
gered by an issue to be warned of the situation
or to try to reduce an issue’s consequences. The
stakeholder adds proactive services to the sys-
tem to further reduce the probability of an is-
sue’s occurrence, provide alternative ways of

performing the same tasks, or allow a quicker
recovery (for example, automatic data backup).
We propose the following classification for reac-
tion (see Figure 4):

■ Warning services warn users about what
happened or is happening (for example,
“if response time exceeds 10 seconds,
warn the user about the delay”).

■ Alternative services help users perform
their tasks regardless of the issue.

■ Mitigation services reduce the issue’s im-
pact on users (for example, “if response
time exceeds 10 seconds, suggest a better
time to try again”).

■ Recovery behavior is the time required to
recover from the issue (for example, ex-
pressed as MTTR (Mean Time to Re-
cover) and the kind of required interven-
tion (for example, user or technician). 

■ Occurrence reduction guards against the
issue—that is, to reduce the probability of
occurrence (for example, preventing satu-
ration or trashing by rejecting incoming
requests). Stakeholders can extend this
idea to capture any suggestion they might
have to prevent the issue from happening
(such as modifying existing services, de-
sign changes, and so on). 
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Event Scope

Issue

Characterization:
Type

   • Adverse condition
   • Attack
   • Upgrades
   • And so on ...

FAILURE

Characterization:
Type

   • Accuracy
   • Response time
   • And so on ...

Availability impact 
   • Stopping
   • Nonstopping

HAZARD
Characterization:

   • User hazard
   • Environment hazard
   • And so on ...

Characterization:
Type

Type

   • Whole system
   • Service

Operational profile description
   • Distribution of transaction
   • Workload volumes

Reaction

Characterization:
Impact mitigation
    • Warning services

   • Alternative services
   • Mitigation services

Recovery
   • Recovery time
   • Recovery actions

Occurrence reduction

Measure
Characterization:

• MTBF (mean time between failure)
• Probability of occurrence

• Very rarely/Sometimes

• % of cases
• Maximum # of cases

Nominal

Ordinal

Interval

Ratio

Probabilistic Deterministic

   • Guard services

   • And so on ...

Cause Concern

ManifestTrigger

Figure 4. UMD’s 
structure.



The UMD Tool
We developed a Web-based tool that imple-

ments UMD, organized around two tables:

■ The Scope frame (see Figure 5a) lets the
stakeholder identify all system services for
which dependability could be a concern.
For the system and each identified service,
a stakeholder must provide an identifier
(name) and a brief description.

■ The Issue frame (see Figure 5b) lets users
specify their dependability needs by select-
ing and defining potential issues, their toler-
able manifestations and scope, possible trig-
gering events, and desired system reactions.

Applying UMD
Within the NASA High Dependability Com-

puting Program, we performed a feasibility
analysis of the UMD concept. As part of a
larger technology evaluation program, we
aimed to develop a dependability model of the
Tactical Separation Assisted Flight Environ-
ment testbed.9 TSAFE is a software system de-
signed to aid air traffic controllers in detecting
and resolving short-term conflicts between air-
craft. We derived the adopted testbed from the
TSAFE version that Gregory Dennis developed.10

TSAFE provides air traffic controllers with a
graphical representation of the conditions (po-
sition, planned route, and forecasted synthe-
sized route) and status (conformance or non-
conformance to a planned route) of selected
flights in a defined geographical area. It aims
to detect conflicts between three and seven
minutes in the future and issue avoidance ma-
neuvers accordingly. 

TSAFE already had available a set of func-
tional requirements defining the system.
However, it lacked precisely stated depend-
ability requirements, although dependability
is a main concern given the application do-
main (Dennis’s work focused on other as-
pects). So, we used UMD to produce a de-
pendability model.

Data gathering
For the case study, a small group of com-

puter science researchers and students acted as
stakeholders (air traffic controllers) after a
short introduction to TSAFE. This initial case
study aimed to evaluate the suggested ap-
proach’s feasibility rather than to identify
TSAFE’s correct dependability requirements. All

acting stakeholders interacted with the UMD
tool through an analyst. This helped to better
evaluate the tool’s capabilities and represent
real-life situations in which stakeholders
might be unfamiliar with automatic tools.

We applied UMD in two main steps:

■ Scope definition. By analyzing the already
available functional requirements, all stake-
holders, working together and supported
by the analyst, selected the TSAFE main serv-
ices that they believed to be relevant for de-
pendability. The scope table shows the re-
sulting four services (see Figure 5a).

■ Model building. Each stakeholder, sup-
ported by the analyst and guided by the
structure tool provided, filled as many ta-
bles as necessary to define her or his de-
pendability needs (see Figure 5b). 

While applying UMD, stakeholders used
the available characterizations and, when-
ever necessary, extended them with their
own definitions. Figure 6 provides some de-
tails about the failure characterization ob-
tained for TSAFE (reconciled among the dif-
ferent stakeholders).
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Figure 5. UMD tool 
tables: (a) Scope and
(b) Issue (not related to
an external event).

(a)

(b)



To demonstrate the kind of data col-
lected, we describe a table filled in by a sin-
gle stakeholder—specifically, for an issue not
related to an external event (see Figure 5b).
The stakeholder signals a potential failure
for the service “display flight synthesized
route,” when the response time is greater
than 500 ms. This is a response time, non-
stopping, high-severity failure, given the
high impact on the service’s utility. For the
stakeholder, this failure is also a hazard,
given that he thinks he could miss spotting a
plane on a dangerous path. To be more con-
fident in the system, the stakeholder then
asks to introduce a warning service that will
advise if the computational time becomes
greater than 500 ms. This will alert the op-
erator to the need for additional attention.
Finally, the stakeholder sees this as a mis-

sion-critical failure (transformed by the ana-
lysts into an MTBF of 10 E6) and asks for a
technician to perform the recovery within
one hour. If this failure condition lasts for
more than an hour, the stakeholder feels he
won’t be able to properly perform his duties
because of the need to maintain a higher
than usual level of attention.

Data analysis
Once the tables were completed, the analyst

presented the stakeholder with the results to
date. The analyst performed both graphical and
computational analyses. The UMD tool incor-
porates the Visual Query Interface tool,11 which
allows quick data visualization, navigation, and
assessment. Figure 7 shows the distribution of
the identified issues around the main services,
highlighting (with different colors and shapes)
the corresponding characteristics. Additionally,
the MS Access database the UMD tool produces
supports different types of computations. In
particular, the analyst could combine the meas-
ures expressing the tolerable manifestation for
each of the identified issues to provide aggre-
gated values of dependability. For instance, he
computed the aggregated probability of occur-
rence of all the accuracy failures, all the accu-
racy failures that were also stopping failures,
and accuracy failures for a specific service. Sim-
ilarly, with the tolerable manifestation of the
stopping failures defined and knowing the cor-
responding desired recovery time, he could com-
pute the desired availability (again, for the
whole system or a specific service).

Based on the analysis, the stakeholder was
able to make changes and the analyst pointed
out possible risk areas. For example, the issue
distribution (see Figure 7) showed that a serv-
ice hadn’t been taken into account, so the an-
alyst asked the stakeholder to confirm such a
choice. Also, the computational analysis
showed that some failures were dominant,
representing a bottleneck for the whole sys-
tem’s dependability; in some cases, the stake-
holder wanted to revisit his choices. The
stakeholder wasn’t satisfied with the system’s
computed availability, so he revised some of
the choices made while filling in the tables.
This assessment led to further refinement of
the tables’ entries and completion of new
ones. The iteration ended when both the ana-
lyst and the stakeholder felt confident about
the results.

2 4 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Characterization:
Type
   • Accuracy. Data (flight position, trajectory, and so on) aren’t displayed with 
   the required accuracy.

   • Response time. System or service fails to respond within the desired time.
   • Throughput. System or service fails to handle the desired number of flights.

   • And so on...

Availability impact 
   • Stopping. System or service becomes unfit for use.
   • Nonstopping. System or service is still usable.

Severity
   • High severity. Major impact on the system’s utility for the operator.
   • Low severity. Minor impact on the system’s utility for the operator.

FAILURE

Figure 6. The failure
characterization 
obtained for TSAFE.

Figure 7. Data graphical
analysis.
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Data reconciliation
At this point, the analyst had to reconcile

the different stakeholders’ emerging needs. Ex-
ample reconciliations included

■ When two or more stakeholders had filled
in tables concerning the same service but
identified different classes of failures

■ When stakeholders asked the system to
behave in incompatible ways (for exam-
ple, asking the system to simultaneously
stop and provide an alternative service)

■ When combined stakeholder requests
couldn’t be addressed with available re-
sources

T he case study results increased our
confidence in UMD’s ability to act as
a modeling language to discuss,

gather, represent, and make measurable de-
pendability needs. UMD provided valuable
support in building a precise dependability
model of TSAFE, making explicit and combin-
ing different stakeholders’ needs. Additionally,
the approach’s flexibility also lets you model
system properties that usually aren’t consid-
ered strictly related to dependability, such as
usability.

Our future work will develop in two main
directions. First, we want to perform further
empirical assessments, in particular to under-
stand how to better employ UMD. We might
combine UMD with other tools and ap-
proaches, such as the Win-Win model,12 to
support negotiation, and goal-based require-
ments engineering techniques,13 to support re-
quirements elicitation. Then, we want to ex-
tend the support that UMD provides
stakeholders by encompassing more experi-
ence-based capabilities. For example, once a
stakeholder has identified a potential issue for
a specific service, we’d like it to suggest the
most appropriate measurement models as well
as the most common system reactions and
possible external events.
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