A LANGUAGE DESIGN FOR VECTOR MACHINESY

V. R. Basili

University of Maryland
College Park, Mb 20T7h2

J. C. Knight

Dept. of Computer Science ICASE

M/S 132C, NASA Langley Research Center
Hampton, VA 23665

Keywords and Phrases: Programming, vector processing, high level language, scientific processing

ABSTRACT

This paper deals with a programming language
under development at NASA's Langley Research
Center for the CDC STAR-100. The design gozls for
the language are that it be basic in desigh and
able to be extended as deemed necessary to serve
the user community, capable of the expression of
efficient algorithms by forcing the user to make
the maxinmum use of the specialized hardware de~
sign, and easy to implement so that the language
and compiler could be developed with a minimum of
effort. The key to the language was in choosing
the basic data types and data structures. Scalars,
vectors, and strings are available data types in
the language. Each basic data type has an associ-
ated set of operators which consist primarily of
the operations provided by the hardware. The
‘only data structure in the language is a restric-
‘ted form of the array. Only vector and string
data types may be stored in arrays, forecing the
user to vectorize scalar data when it is necessary
to structure it. This permits the most effective
. use of the machine for entities such as real
arrays since the high level vector machine in-~
;structions may be used to deal with them directly.

INTRODUCTION

Vector and parallel processing machines offer
new problems in the area of langusage design.
Beside the goal of designing the language which is
-best suited to the user for his particular appli-
cation, there is the added problem of making
effective use of the specialized architecture.

The relatively high level nature of the machine.
plays an important role in the level of the
languages designed for it.

In general, there are three approaches that
might be examined for these machines. First, an
existing sequentially oriented language, such as
FORTRAN , mey be expanded in an attempt to handle
the new vector or parallel capabilities. Second,
a very high level language relative to the new
hardvare nmay be designed or adapted. The third
‘choice is a language vwhich is intentionally influ-

enced by the characteristics of the hardware in
vhat amounts to a "bottom up" approach to language
design.

This paper deals with the design and motiva-
tion for a programming language, presently called
SL/1, under development at NASA's Langley Research
Center for the CDC STAR-100. The design goals for
the language are that it be:

1. basic in design. That is, language
features were included only if they were
felt to be absolutely necessary,

2, able to be extended as deemed necessary to
serve the user community,

3. capable of expressing efficiently execut~
. able algorithms by forcing the user to
" make maximum use of the specialized
hardware design,

4, easy to implement so that the language end
compiler ¢éould be developed with a minimum
of effort.

For these reasons, the level of the language
is vector architecture dependent and therefore
directed at the level of the machine; i.e., the
third choice.

DESIGN JUSTIFICATION

Some Justifications will be given on why this
approach Satisfies the design goals. At the lower
level, a sequentially oriented language cculd be
extended by incorporating some form of vector
processing capability. This is the approach being
taken by CDC in the development of "their FCRIRAN
compiler for the STAR-100. However, these
extensjons inevitably take on the appearance of
patches to - the basic language design and valuable
support censtructs, such as eppropriate data and
control structures, are usually missing. This, can
leave the language with an inconsistent and
cumbersome design.

Certainly, an implementation of FORTRAN,
perhaps with extensions, is nceded to allow
existing programs to run on the new machine.
FORTRAN has the berefit of being well known and

#*This paper is & result of work performed under NASA Grant NGR 47-102-001 while the authors were in

residence at ICASE, NASA Langley Research Cepter. .

used by
" However, tLy is &loO a ﬂraquck since

the user is ir the habit of writing algorithms in
FORTRALl wrnich are centered around the manipulation
of scalsr quar
this is not the appropriate level of algorithm
expressicn for making best use of the hardware.
Recognizing t: eqguivalence of sequentially

written thms to a single machine instruction
is imposs in the general case, and is often
inefficiznt in those special cases that are worth
detecti For example, the following piece.of

FORTRAIY evaluates. a polynomial with a set of
coefficients A and for a set of argument values X:

LIMIT = N+l
DO 10 J = 1,M
VALUE(J) = X(J)*A(1)
DO 10 I = 2,LIMIT
10 CVALUE(J) = (VALUE(J)+A{I))*X(J)

This is eguivalent to one machine instruction on
the STAR. Recognition of this fact by special’
case is guite difficult and costly.

Thus, the implementation of a compiler for
the langusge is a major effort since it requires
the translation of all of FORTRAN, the new special
features, along with any number of special recog-
nition czses that are to be included.

The choice of a language which is much higher
than the level of the machine is theoretically a
better choice. An existing language like SETL [1]
could be chosen, or a nev language could be
designed. Relative to the design goals, the very
high level nature of the language would most
likely eiiminate the need for extensions. It
would certainly permit the easy expression of high
level algorithms theoretically suitable for
efficiens exscution on the machine. The practical
~implementation cof the optimization techniques is
another cuestion.

The primzry drawback to this high level of
language, however, would be the major design and
implementsticn effort involved. Unless an exist-
ing language ilke SETL is chosen, the language.
design ort sione is an extensive research
undertaking. In either case, the implementation
of such & langusge is beyond the resources
available to the project. In addition, compile
time for vrogrars written in the language would
be 1norg¢xauev" nigh, and there are some strong
feelings in 2 user community against program-
ning at sc hign a level because of the lack of
user control over run time efficiency.

I

SL/1 is designed at a level that capitalizes
on vector architecture, and corresponds closely .
to the level of the machine. In designing a
-language at the machine level, care must be given
to specifying a consistent; easy to use, reliable
language waich makes use of the power of the hard-
ware withcut €xposing the user to hardware
idiosyncresies. Tne purpose of this design effort
is not a high level assembly language, but a high
level alzcritnmic language that would provide the
-user with the appropriate set of data and control
structures for
‘and efficiently executable form.

i e S T T SRR R

ities. For a machine like the STAR,

expressing algorithms in a readable

The language design in relatively simple,
vhich makes it easy Lo extend. The busic conser-
vative language design was motivated partially by
the design for the base language SINMPL T {2] of
the SIMPL family of programming iangusges [3].
SL/1 is meant to be a base language for a possible
family of languages, each of which would serve a
special application areaz of the user community.
Each language could be designed as an extension to
the base language and the compiler built as an
extension to the base compiler.

It is difficult to specify a consistent
design level for a bi-level (both scalar and
vector instructions) machine like the STAR.
However, the specification of basic data types and
data structures in SL/1 solve both the consistent
level problem and the problem of forcing the user
into making meximum use of the machine hardware.
Scalars {(real, short real, integer, character,
...), vectors {real vector, short real vector,
integer vector, ..:!), and strings (character
string, bit string, ...) are available data types

-in the language. The only data structure in the

language is the array, and only vector and string
data types may be stored in arrays. Thus, the
user is forced to vectorize scalar data when it is
necessary to structure it. This permits the most
effective use of the machine for entities such as
real arrays since the high level vector machine
instructions may be used to deal with them
directly.

BASIC DESIGN

Data Types and Operators

The STAR hardware is capable of operating on
scalars, vectors, and strings. Scalars include -
32~ and 6L-bit quantities (ostensibly floating
point numbers) with arithmetic, logical, and
relational operations. Vectors are of two types:
normal and sparse. Normal vectors consist of a
sequence of 32- or 6L-bit quantities occupying
contiguous storage locations. Sparse vectors are
described by a sequence of nonzero elements and an
associated characteristic vector (bit pattern).
There are sets of high level hardware operations

‘for both of these vector types. OStrings on the

STAR are similar to vectors except that they
consist of sequences of bits or bytes of informa-
tion for which there is no scalar equivalent.
They also have a set of high level hardware
operators associated with them.

In SL/1, an attempt was made to define data
types into a more organized and complete classifi~ -
cation scheme, and to provide the user with a more
unified and specified set of data elements. Each
data type may not have an exact counterpart in the
STAR hardware, but it is usually easily simulated.
The scalar gquantities are divided into six types
They are:

{(a) Resal - 6h-vit floating point
(b) Short Real - 32-bit floating point
(¢) Integer - 48-bit integer

{d) Short Integer - 2h-bit integer

(e)

Logical - single bit

|
. {f) Character - 8-bit byte
The integer quantities are just fleating point
nurbers with zero exponents.

Vector data types in SL/1 are dzafined as fix-
ed length one-dimensional arrays consisting of
elements of a specified scalar type. Present
vector types include:

Real vector

Short real vector

Integer vector .
Short integer vector

Logical vector

e b IR
i

Although the hardware is also able to deal with
sparse vectors, they are not included in the first
version of SL/1. In the interest of simplicity,
sparse vectors will not be considered until the
first language extension.

In contrast to vectors, strings in SL/1l are
defined to be execution time variable sequences of
a specified scalar type. Present string data
types include only:

(/) Character string

Vectors and strings may be declared with the
CORTROLLED attribute in which.case storage can be
allocated and freed at run time.

The set of operators available in the
language is considerable. It essentially includes
most of those which the hardware can deal with
directly plus whatever minimal extensions were
necessary to handle the new data types. One
approach to the syntax is to define a single
syurbol for each operator &s has been done in APL
[k]}. However, the restriction imposed by
available character sets makes this impractical.
Where no obvious symbol exists, dyadic SL/1
operators consist of a meaningful sequence of
letters with a period as prefix and suffix, as in
FORTRAN, and monadic and triadic operators are
written as function calls. For example, the
polynomial evaluation written in FORTRAN zbove is
written in SL/1 as: .

VALUE :=A .EVL. X 3
where, as before, VALUE is the vector of results,
4 is the vector of coefficients, and X is the
vector of argument values. An extensive list of

the vector operators is included in Appendix 2.

A11 declarations in SL/1 are explicit and are
similar to the standard Algol~like format; e.g.,

REAL VECTOR A [1::10];
/¥ Declaration of a vector with ten real
elements with subscript range from.1l to
10 ¥/

CHARACTER STRING B [100];

/* Declaration of a character string Wwith
& maximum length of one hundred

.

characters ¥/

CONTROLLED REAL VECTOR € {1001::11000];

/* Declaration of a vector with 10,000
real elements for vhich no storage is
reserved ¥/

Two aspects of the language of particular
interest are the referencing of vectors and
strings, and the syntax of vector eand string
constants. A single element of a vector or string
is referenced merely by specifying the required
index in the normal way; e.g., A[5] i= 1;

B{2] := 'C';. The STAR-100 hardware has the use-
ful facility of permitting a reference to a vector
or string to be offset, so that a given instruc-
tion may begin processing a vector or string at

" some point other than its beginning. In addition,

the number of elements to be processed may be set
as a length. This tapability is used in SL/1 to
allow subvectors and substrings to be specified as
a first element, last element pair, or a first
element, length pair. For example, to reference
elements 12 through 16 inclusive of .a vector V,
the syntax is V[12::16] or V[12|5]. Both nota-
tions are provided because of their freguent
occurrence in the mathematical statement of
algorithms. A similar substring notation is used

~ for strings.

Vector constants in SL/1 are element
sequences which can be written out in full. For
example, <1,2,3,4> is a four element vector
constant. String constants are treated exactly as
they are in SNOBOL. More complex constant vectors
and strings can be created using the normal
operaters of the language, such as replication and
concatenation.

Data Structures

The only data structure provided by SL/1 is
the array with the restriction that each element
can only be a vector or string. The purpose of
this restriction is to ensure that the user
structures information as vectors rather than

~ declaring arrays of scalars and attempt to use

them as one would in a traditional programming
language. This requirement forces the handling of
linear sequences of data in a more efficient
manner.

A one-dimensional array of vectors or
"vector array" is similar in nature to a matrix.
The problem of providing a matrix or any multi-
dimensional data structure is the inherent
symmetry of the indices. For example, the user
tends to regard referencing rows and columns of a
matrix as equivalent. - If a matrix is stored
rowwise on the STAR-100, then any operations on
the rows can use the machine's vector processing

- capability directly. However, column operatlicns

are faced with tremendous overhead since the
elements of a column do not occupy sequential
storage locations. Any programming language

which provides a multidimensicnal array capability

 with scalar elements must also provide facilities

for user control over how the array is stored, and
varn the user winen his references to the array are
inefficient.

The vector array avoids these problems. It
is the user's responsibility to interpret the
vectors in the array as he wishes. For example,
if each element of a one-dirensional array has
been used to store a row of a matrix, then row
operations are easily programmed and efficiently
implemented. However, to access a column, the
user must explicitly program the element by
element reference pattern and the associated
inefficiency is clear.

A common occurrence in scientific programming
is the trianguler system, and it is usually left
to the programmer's ingenuity to ensure that it is
efficiently stored. Since the STAR-100 will be
used primerily for scientific computing, SL/1
‘allows vector arrays to be declared such that the’
lengths of the element vectors form an arithmetic
progression. By making both the length of. the
first vector and the increment one, a triangular
system can be stored.

Thej declaration of a vector array in which
all the element vectors are of the same iength
consists of the array name followed by the
subscript ranges for the array contained in
parentheses, followed by the subscript range for
the element vectors contained in brackets; e.g.,

REAL VECTOR ARRAY X (2::10)[101::300];

/¥ X consists of ten vectoré, each of
which is two hundred elements long. ¥/

REAL VECTOR ARRAY Y (1::20,1::10){51::1001;

" /% Y consists of a 20x10 array, each
element of which is a vector with 50
elements. */

The entire vector which is the i'® element of
"X may be referenced using the notation X(i).
The jth element of that particular vector may be
referenced by writing X(i)[3]. Similarly, the
vector which is the 1i,j element of Y may be
referenced as Y(i,3).

A triangular system is declared similarly,
but the first two parameters within the brackets
define only the first element vector. A third
parameter is used to specify the length
difference between adjacent element vectors; e.g.,

REAL VECTOR ARRAY Y {1::10)[1::1 BY 1];

/¥ Y is a triangular system consisting
of ten vectors, the first of length one,
and the i+15% vector one element longer
than the ith. Thus, for Y, the it ‘
element vector is of length i. ¥/

If the first vector length is greater than
one, a negative difference may be speecified
indicating decreasing vector lengths.

§§atements S

In an 8L/1 assigmnment statement, the right
hand side mey produce a scalar, string, or vector
value. If a scaler or string is the result,
assignment takes place in the normal way.

However, when the right hand side yields a vector,
the semantics of the operator are more complex
because of unique features of the STAR~100 vector
hardware.

Many of the STAR vector instructions allow
storage of the result vector to be controlled by a
bit vector. If a bit vector is used, then the ith
result element is stored if the iR bit is one;
otherwise, it is discarded. The hardware also
allows the opposite operation; i.e., store on
zero, discard on ones.

This feature of vector assignment essentially
makes the assignment operator triadic. In SL/1,
the result variable and bit vector are both
vritten on the left hand side of the assignment
operator. They are separated by a comma and
surrounded by parentheses; e.g.,

(c,2) := A+B;

In this example, C is the result field and Z
is the bit vector used to control the store

operation.

Most of the commonly occurring control
statements are available in SL/1. For example,
the WHILE, REPEAT UNTIL, CASE, FOR, and IF state-
ments are provided. Compound statements are
bracketed by language keywords wherever possible
rather than BEGIN and END. The recent practice of
using a keyword spelt backwards (FI ESAC, ete.)
to delimit the end of a statement has not been
followed since the authors feel that this can be
confusing. Instead, the word END is used with a
single letter suffix added to indicate the type
of statement. For example, the full form of the
IF statement is:

IF <Boolean Expresu10n> THEN. <Statement List>
ELSE <Statement List> ENDI

CONCLUSION

At this writing, the design of SL/1 is in
the final stages of refinement. Potential STAR
users have been actively involved in the design
process by programming aslgorithms in the language,
and by giving feedback on language constructs.

Three typical SL/1 program seguments are
included in Appendix 1 as examples.

ACKNOWLEDGMENT

Several people have contributed to the re-

* finements of the design of SL/l. The authors

would like to express their appreciation in

" particular to Edmond H. Senn and Rudeen S. Smith

of NASA's Langley Research Center, and to

. Michael Donegan and Stuart Katzke of the College
of Williem and Mary.

REFERENCES

1. Schwartz, J.: "On Programming: An Interim
Report On The SETL Project," Computer
Science Department, Courant Institute of
Mathematical Sciences, New York University,
1973.

2. Basili, V. R. and Turner, A. J,: "SIMPL T:
A Structured Programming Language," Computer
Note - CN1k, Computer Science Center,
University of Maryland, 197h.

3. Basili, V. R.: "The SIMPL Family of
Programming Languages and Compilers,"
Technical Report - TR305, Computer Science -
Center, University of Maryland, 19Th.

k., Iverson, K. E.: "A Programming Language,"
John Wiley and Sons, Inc., 1962.

APPENDIX 1

(a) /* This program segment forms the product of
two matrices by repeated column multipli-
cations rather than using inner products.
The vector array A is used to store the
columns of a 5 x 3 matrix, B holds the
columns of a 3 x 4 matrix and C will be
used to hold columns of the product. ¥/

REAL VECTOR ARRAY A (1::3)[1::5) 3
REAL, VECTOR ARRAY B (1::4)[1::3]
REAL VECTOR ARRAY € (1::L4)}[1::5] ;
/% Assume A and B are initialized. ¥/
FOR J FROM 1 TO 4 DO
c(J) =0 ;
FOR I FROM 1 0 3 DO
c(3) = c(a) + A(T)*8(I)[1] ;
ENDF; .
ENDF; L DR

(b) /* This program segment solves the system
AX = B where A is lower triangular. The
vector array A holds the rows of a lower
triangular matrix, while the vectors X
and B are column vectors. ¥/

REAL VECTOR ARRAY A (1::100)[1::1 BY 1] ;
REAL VECTOR X,B [1::100] ;
/¥ Assume A and B are initialized. %/
x[2} = B{1l/al1]
FOR I FROM 2 TO 100 DO

x[1) := (B[1] - (x[1]1-2] .DOT.

a(n){afz-21))/a(1)1]

ENDF;

(C) B Tl . Pl =
—~ ! ~ g 3 ' ~
X3 = Ty
§ ZEROS X2 by
BETA
ZEROS b
N i}
. - \ ~ N -

/¥ This piece of code solves a unit lower
triangular system LX = B as shown in the
diagram. The' vector array L contains the
N column vectors of the matrix and each
vector is of length BETA. The solution is
formed in the vector B. */

REAL VECTOR ARRAY L (N)[BETA] ;
REAL VECTOR B [N} ;
REAL VECTOR T [BETA] ;
FOR J FROM 1 TO N-BETA DO
T := B[J] * L(J)[2::BETA+1] ;
B[J+1::J+BETA] := B{J+1::J+BETA] - T ;
ENDF;
FOR J FROM N-BETA+1l TO N-1 DO
' p[1::iN-d) := BLI] % L(J)[2::m-d41)
B[J+1::N] := B[J+1::N] - T[1::N-0] ;
- ENDF; ‘ ;

APPENDIX 2

Partial list of SL/1 vector operators:

FLOOR() Element by element floor of a vector.

CEIL() Element by element ceiling of a vector.
8QRT() Element by element square root.

REV() Reverse a vector.

suM() Sum of a vector's elements.

PRD() Product of a vector's elements.

MAX() Maximum element of a vector.

MIN() " Minimum element of a vector.

<

<= Element by element relational

= operators. - The result is a bit vector.

Se -

>

+ Element by element addition.

- ~* 7 Element by element subtraction.

* Element by element multiplication.

/ Element by element division.

*% Element by element exponentiation.

DIV, Element by element integer division.

LMOD. Element by element modulus.

.CON. Concatenate two vectors.

.REP. Repeat a vector.

.DOT. Vector dot product.

EVL. Evaluate a polynomial.

LAVG. Element by element average.

.CMP. Compress a vector according to a bit

vector.

.

