A panel

SESSION CHAIRMAN—VICTOR R. BASILI
University of Maryland

Panel Members

Donald J. Reifer—TRW

Donn Combelic—ITT

J. A. Rader—Hughes Aircraft Company

C. M. Bernstein—Exxon Corporation

F. T. Baker—IBM Federal Systems Division
Susan Voigt—NASA

PANEL OVERVIEW—Victor R. Basili

The development of correct, reliable, less expensive soft-
ware continues to be a major problem. A great deal has been
written and said about various techniques and methodolo-
gies for software development and how they are meant to
aid in the development process. Unfortunately, most of the
available material is by the author of the technique, be it
individual or company. This does not always allow the out-
side user of the technique a fair appraisal or full understand-
ing of how good the technique is, how to use it, and how to
adjust it to his environment. This is true for several reasons.
First, the author’s experience is often limited to a specific
application or set of applications and specific environments.
There are some genuine questions that arise when taking a
technique and moving it to a new application or environment
that the developer of the technique had not anticipated.
Second, the author does not always tell the prospective user
everything he needs to know. Often this is Jjust due to a lack
of documentation, or a set of basic assumptions and back-
ground that the author did not realize was even necessary.
Lastly, one cannot normally expect the author to emphasize
the weak points or problems in the methodology. That is
just human nature.

The purpose of this panel and the following set of papers
is to discuss a set of techniques available in the open liter-
ature, some very new, some that have been around for
awhile, and ask for an analysis and evaluation by current

 users. Each of the panelists is not the author of the meth-
odology but a member of a company that is using the meth-
dology or overseeing a contract on the use of the method-
ology. Some of the users are old hands at the technique;
Some are novices. I have asked each of the panelists to
Prepare a short paper covering a brief description of the
technique and an evaluation of the technique in a real en-

629

session—User experience with new software methods

vironment. Suggested ideas to be included in the paper and
the oral presentation are given below.

I. THE TECHNIQUE
The techniques you have been using.
A description of the project you are using it on.
The phase of the project in which it is used.
The phases of the project it affects.
An overview of the technique.
Why you chose it.
The extent to which you are using it.

II. EVALUATION OF THE TECHNIQUE IN A
REAL ENVIRONMENT

What have you felt are its good points and how
they have shown to be good.

What have you felt are the weak points and why.

How you have adapted it to your environment.

Would you use it again and if so how would you
change or have you already changed the way it
should be applied.

What would you recommend to someone else ap-

plying it.

Certainly lots of techniques could have been covered but
there was limited tirhe and space available. The techniques
chosen were based partially on my own interest and partially
on the availability of people willing to discuss specific tech-
niques. Discussants and topics include:

PSL/PSA—Donald J. Reifer,

SADT—Donn Combelic, ITT Telecommunications
Structured Design—Dr. J. A. Rader, Hughes Aircraft
Jackson's Methodology—Clifford M. Bernstein, EXXON
Corporation .

Boeing’s IPAD Methodology—Susan Voigt, NASA Lan-
gley Research Center

Correct Program Design—F. Terry Baker, IBM Corpo-
ration

The methodologies deal with various phases of the soft-
ware development process, from requirements to program
development, some emphasizing one specific phase and
some covering several phases. PSL/PSA and SADT deal
predominantly with the requirements phase. Structured De-

630 National Computer Conference, 1978

sign, Jackson’s Methodology, and Correct Program Design
deal with various aspects of design and development. The
Boeing IPAD Methodology covers the gamut from require-
ments to completed product.

What follows is a position paper for each of the panelists.
Each is meant to be self contained, complete with references
to the appropriate material. b

i

H

EXPERIENCE WITH PSL/PSA—Donald J. Reifer

INTRODUCTION

This paper briefly describes the experience we have had in
using the University of Michigan developed Problem State-
ment Language (PSL)/Problem Statement Analyzer (PSA).!
We are using these computer assisted requirements tools to
document and analyze operational flight software require-
ments developed for the Titan 34D segment of the Space
Transportation System. The Titan 34D segment is providing
real-time guidance, checkout and control requirements for
implementation on the Interim Upper Stage. These boost
phase requirements are highly time-critical and computation-
bound. In addition, they must be documented in accordance
to the Software Part 1 Specification format of MIL-STD-
483.2

PSL/PSA DESCRIPTION

PSL is a machine processable language for expressing
functional and performance requirements for a data system
in a rigorous and uniform manner. PSL contains a set of
simple declarative statements that allow you to name con-
ceptual objects in a proposed system, describe properties of
these objects and display relationships between them.® PSA
is a software package that accepts PSL statements, analyzes
each statically for correct syntax, generates a requirements
data base from the input statements, performs consistency
and completeness analyses on the data base and generates
various kinds of reports and the requirements document.
The command language with which users invoke the PSA
services is also simple and user oriented.*

SELECTION CRITERIA

We selected PSL/PSA from several alternatives for sev-
eral reasons. First, it is commercially available and sup-
ported. There is a commitment to keep the system current
and fix errors. Second, it is well documented and good
training is available. Third, it is operational on many large
computing environments including the IBM 370, CDC 6000/
7000 and Honeywell series. Lastly, it is currently being used
by several diverse commercial and military users. The multi-
user feedback has made the system mature faster than the
alternatives. Readers are directed to Davis and Vick’s paper®

for an excellent comparison of PSL/PSA with other tech-
niques.

We elected to use the tool on the Titan 34D application
because we felt there was relative low risk inherent in their
requirements. Titan 34D requirements are based on flight- -
proven equations and logic. We felt that the potential ben-
efits justified the risk associated with using a new tool to
document known and mature requirements.

EXPERIENCE

The ISDOS staff of the University of Michigan was re-
tained by the Martin Marietta Corporation to install the PSL/
PSA system on their CDC 6500 computer and conduct train-
ing classes. Installation began in April 1977. Several prob-
lems occurred as the package was adapted to the machine.
First, the number of pages that resided in core had to be
adjusted in order to make the system more efficient in terms
of internal charging algorithms. Second, a machine-depend-
ent executive routine that generated control instructions to
do routine calling had to be developed. Training was held in
the April/May timeframe with general orientation classes,
user classes and maintenance classes being held.

The PSL/PSA system was then used to generate opera-
tional requirements for the Titan 34D segment of the Space
Transportation System. The positive results of its use can
be summarized as follows:

1. It forced the user to understand his problem and ad-
dress it in a disciplined manner.

2. It documented requirements in a uniform manner and
eased the task of document maintenance.

3. It assisted in the identification of errors primarily in
the areas of incompleteness and inconsistencies.

The negative features of the system are as follows:

1. The system was too general to be used for a specific
application. An internal groundrules document had to
be developed to tell the user what to do and what not
to do (e.g., limited number of attributes, naming con-
ventions for decimal numbers, keyword conventions,
etc.)

2. The PSL/PSA systems used large amounts of computer
time that were not planned for.

3. The system is oriented towards a business environment
and makes assumptions that make it difficult to de-
scribe requirements for realtime systems (e.g., concept
of counters and interfaces hard to describe, notation is
not compatible with scientific symbols, etc.).

4. The system was hard to sell to the users who were
engineers. Therefore, changes had to be made to over-
come user criticism (e.g., illegal characters like / in ft/
sec had to be made legal).

5. The system had to be extended in order to provide I/0Q
tables required by the BS5 specification” format. A
FORTRAN program was developed to search existing
files and generate the tables.

User Experience With New Software Methods 631

The positive benefits resulting from use of PSL/PSA com-
pensated for the negative experiences. Plans have been
made to utilize the system to describe software requirements
for other military systems.

N

ACKNOWLEDGMENT :
The work reported in this paper was accomplished by the
Martin Marietta Corporation under contract to the Air Force
System Command’s Space and Missile Systems Organiza-
tion (SAMSO). I would like to thank them for their assist-
ance in the preparation of this report.

REFERENCES

1. Teichroew, D. and E. A, Hershey, HI, “PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing,"” IEEE Transactions on Software Engineering, Volume SE-3,
Number 1, January 1977, pp. 41-48,

2. MIL-STD-483, Configuration Management Practices for Systems, Equip-
ment, Muinitions and Computer Programs, 3] December 1970.

3. Hershey, E. A, et al., *‘Problem Stat L age-| age Refer-
ence Manual,” ISDOS Working Paper No. 68, University of Michigan,
1975.

5. Davis, C. G. and C. R. Vick, *“‘The Software Development System,"" IEEE
Transactions on Software Engineering, Volume SE-3, Number 1, January
1977, p. 74.

6. Johnson, L. JSS Software Systems Engineering: Preliminary Evaluation
of CARA, Logicon Corporation, 1975,

7. MIL-STD-490, Specification Practices, 30 November 1968,

EXPERIENCE WITH SADT—Donn Combelic

BACKGROUND

SADT, Structured Analysis and Design Technique, is a
registered trademark of SofT. ech Inc., Waltham, Mass. ITT
has used the ‘Structured Analysis™ part of SoftTech’s
SADT since early 1974. In mid-1975 we began to develop
for real-time switching software our own structured design
technique, called FP?2 for Functions-Processes-Flowgrams-
Programs, based upon precepts and syntax of Structured
Analysis. Thus the technique we are now using for analysis
and design is called SA/FP?.

GENERALITIES

The principal basic ideas of the technique are: determine
the “‘what’’ before the “‘how"’, docomposition from the top
down to reveal successive levels of detail, output in the form
of diagrams each of which gives a limited amount of detail,
each diagram is critiqued in writing by one or more persons
other than the author of the diagram, needed information

unknown to an author is obtained by interviews with outside
experts. Each diagram is comprised of boxes that represent
“‘activities”” interconnected by arrows that represent *‘data’’
used by an activity for input, output and control. A box plus
its arrows constitutes the “context’’ of that activity—it is
that (bounded) context which is decomposed to understand
and show more detail in a diagram at the next level.

OVERVIEW OF SA/FP2.

SA/FP2 is carried out in five phases, one of which is
concurrent with two of the others. The first phase is that of
Structured Analysis (SA); the remainder are those of design,
that is, FP2. A brief summary of each of the five phases is
given in the following paragraphs.

Structured analvsis phase

SA is ideally applied to the total system. However, in
most applications we have applied it only to real-time
switching software. In such a case, the primary inputs are
a list of customer requirements plus functional specifications
of the telephone hardware of the system. The output is a
Functional Requirements Model (FRM) in the form of a set
of activity diagrams many of which are accompanied by a
Page or two of explanatory text and definitions of terms.
The FRM shows what functions the software must contrib-
ute in addition to those of the telephone hardware in order
to fulfill the customer functional requirements. To the great-
est extent possible, software design considerations, such as
data layouts, scheduling, priorities, handling of queues, buff-
ers and computer peripherals, are kept out of the FRM.
Thus the FRM emphasizes the *‘what,”” not the ‘*how’’.

Transfer phase

This is the first phase of design. Its principal inputs are
the FRM and the software design constraints. Typical con-
straints are: choice and arrangement of computers, com-
puter peripherals, programming language, requirements for
traffic handling, engineerability, extensions, maintainability,
etc. The outputs of the transfer phase are a high level data
layout model and a single level *‘action group’’ model. (A
software action is defined as a sequence of instructions
which, once started, can run to completion without waiting
because all needed inputs were available at its start.) For
each action group, a convenient set of one or more contig-
uous activities, along with the data arrows at the boundaries,
is selected at an appropriate level of detail from the FRM
and transferred (as a single box) to the action group model.
The action groups are interconnected as the corresponding
sets of activities were interconnected in the FRM. The high
level data layout model is developed before and during the
transfer procedure. The transfer phase is complete when all
activities of the FRM have been accounted for in the action
group model.

632 National Computer Conference, 1978

7

Action group decomposition phase

All action groups are decomposed to the level of individual
actions. The output is a set of activity diagrams where each
box at the lowest level of detail represents an individual
action. An additional output is further detail of the data
layout. During this and the preceding phase the decompo-
sition rules are the same as for the SA phase, but the SA
syntax is augmented to handle action starts and completions.

Flowgram phase

Each action is decomposed, according to its implicit con-
trol flow sequence, down to the level of individual routines,
each of which appears as a separate box on the lowest level
diagrams. The control flow is shown on each diagram in a
special syntax, hence the name *‘flowgram.’’ The output of
this phase is a ‘“‘flowgram model” for each action. The
previous syntax is augmented to handle control flow. It turns
out that when the control flow sequence and the individual
routines are coded the resulting set is a structured program.
Thus there is a structured program for each action.

Coordinator phase

The coordinator is that software which, among other
things, starts all actions and to which all actions return upon
completion. It thus includes the functions of scheduling,
handling of queues and management of memory. It is con-
venient to include within the coordinator the treatment of
interrupts and the handling of telephone and computer pe-
ripherals. It is interesting to note that none of these functions
relate directly to the customer’s basic functional require-
ments, rather they all depend on the nature of the system.
The functional requirements for the coordinator begin to
emerge as early as the SA phase, become more clear by the
end of the transfer phase, but cannot be known completely
until the action group decomposition phase is finished. By
that time the coordinator can be completely specified and
designed. Note that the techniques described for the pre-
ceding phases can be applied to the analysis and design of
the coordinator.

EARLY EXPERIENCE—1974-1976

Development of the FP2 design methodology reached the
point where it could be used in practice only at the beginning
of 1977. Thus all our prior experience was limited to Struc-
tured Analysis as taught by SofTech and refined by ITT and
SofTech together. We adopted SA in early 1974 for two
main reasons. First, it provided a disciplined way of under-
standing requirements in detail before starting design. Sec-
ond, it offered a method which promoted teamwork. The
latter was a particularly difficult problem on some of our
projects in Europe where a team would consists of members
with widely varying experience from up to eight different

ITT companies speaking six different languages. Of the ap-
proximately twenty ITT projects where SA has been used,
all but one are in Europe.

Strong and weak points

A partial list, derived from our early experience with SA,
is as follows:

® SA estimated to decrease overall software development
cost by at least 20 percent and significantly improve
software quality—estimated 2 to 10 times less bugs
found during integration testing, varies with project.

e Very definitely promoted teamwork.

Hard to think all the time in purely functional terms.

o The written comments (by other than the author) re-
quired for each diagram resuited in continual review, in
effect ‘‘walkthroughs.’’ (Note : Commentators should
normally be other authors in the same team.)

® Interviews of outside experts proved efficient method
of obtaining specialized information.

e Forced making high level decisions early, thus provid-
ing a sound basis for later lower level decisions.

¢ Encouraged agreement on requirements before start of
design.

e Lack of follow-through on design methodology (later
overcome by FP2) was bothersome.

® Permitted non-software people to understand the con-
tributions of software functions to system operation.

¢ Much more useful information per sheet (diagram) than
with documents in prose.

e Provided easy way of measuring progress during anal-
ysis.

o SA excellent for many applications other than real-time
switching software, but space does not permit elabo-
ration.

Some mistakes made and lessons learned

A partial list follows:

e Method was oversold in the beginning as a panacea.

e Proper use of SA requires a fundamental change in
mental outlook—difficuities of achieving such a change
were underestimated.

e Mere ‘‘training’’ is inadequate—‘‘education’ is re-
quired.

e Potential authors must be selected on the basis of in-
telligence and willingness to try a new way rather than
purely on experience.

® Constructive critics of the method are to be cherished,
but destructive critics must be eliminated from the SA
group as soon as they surface.

e Method takes much more time before design starts than
previous methods. Inevitable if requirements to be thor-

User Experience With New Software Methods 633

oughly understood and agreed before design, but causes
impatience in some participants and management.

¢ Need one “‘friendly’’ group to try method first. After-
wards it’s better to ‘‘offer’’ the method to other groups
than to try to “*sell’” it—hard sell doesn’t work.

¢ ““Discipline’’ in use of method is very important: syn-
tax, conventions, rules, author-commentator cycle,
completion of a level of decomposition before going to
next, each diagram must increase understanding, etc.

¢ Large amounts of paper generated. Project librarian
must be assigned, as recommended by SofTech.

® Formal training is lengthy—two to three weeks full
time—but necessary.

¢ Potential authors must have a project in mind during
training and be assigned full-time to it immediately
thereafter.

® Follow on assistance by a trained ‘‘monitor’ is oblig-
atory during initial application of method.

® Monitor must confine his attention to proper use of the
method rather than become involved in the substance
of the analysis.

¢ Training plus monitoring by SofTech is costly: 20 to 40
thousand dollars per course for up to ten authors, but
worth it.

o Ideal team during SA phase for our type of large switch-
ing projects seems to be two or four persons each from
systems, hardware and software.

Recent experience—1977

It is our estimate that about two-thirds of the value of SA/
FP2 is in the SA part. Nevertheless, the availability of a
follow on design method, in our case FP2, makes the appli-
cation of SA easier because the SA authors are more ready
to defer design considerations to the FP2 phases.

The development and acceptance of FP2 has proved ex-
tremely difficult and its success has not yet been fully dem-
onstrated. We wanted to use the same basic precepts and
syntax as in SA so that the designers, some of whom will
have also participated in the analysis by SA, would not have
to learn a new syntax and set of principles—we wanted a
sort of ‘‘continuous’’ method, starting with a list of require-
ments and constraints and ending up with detailed coding
specifications. This ‘‘continuity’’ and similarity of syntax is
important to software maintenance personnel and will assist
comprehension by interested customers.

This section concentrates on our 1977 experience with
FP2; subsequent experience will be covered during the pre-
sentation at NCC 78.

¢ Underestimated importance of providing detailed guide-
lines for carrying out the Transfer phase.

¢ Initially called the output of the Transfer phase, the
‘““process model.”” *‘Process’’ has many meanings and
caused great confusion. The neutral phrase ‘“‘action
group’’ conveys the intent without confusion.

¢ Software design still requires great skill, but FP2 per-

mits easy comprehension after key design decisions
have been made.

¢ FP2 criticized for not rendering high level software de-
sign ‘‘semi-automatic’’ or at least ‘‘semi-algorithmic.”

¢ Direct coding from flowgrams is in most cases straight-
forward and can be done by programmers other than
the designers.

o The fallout of a *‘structured program’ for each action
has proved very appealing.

® Test plans can be developed throughout FP2 in increas-
ing detail and related directly to diagrams.

® Much debugging is done by reference to flowgrams
instead of listings.

REFERENCES

1. An Introduction 1o SADT, SofTech, Inc., Waitham, MA, document 9022-
78, Feb. 1976.

2. Ross, D. T. and K. E. Schoman, Jr. **Structured Analysis for Require-
ments Definition,”” IEEE Transactions on Software Engineering, Vol. SE-
3, No. 1, January 1977, pp. 6-15.

EXPERIENCE WITH AN APPLICATION OF
STRUCTURED DESIGN—I. A. Rader

INTRODUCTION

The application of structured design to a 20 man year project
which generated 100,000 lines of code is described. Included
are a description of the project, productivity figures, and a
discussion of strengths and weaknesses of the technique as
practiced on the project.

THE APPLICATION
Introduction

The Computer Aided Design (CAD) Department in the
Hughes Aerospace Groups contains about sixty employees.
The department provides Computer-Aided Design/Test/
Manufacturing software and services; it operates and sup-
ports a DEC, system 10 computing facility; and it operates
and maintains a Gerber photoplotter and several digitizers.

Most of the software is data manipulative in nature—files
are read; fields are extracted from records and massaged;
arrays are built, operated on and sorted; reports are gener-
ated; and data bases are accessed and updated. The primary
language has been and continues to be FORTRAN. In ad-
dition, there is an extensive library of FORTRAN-callable
assembly language routines to perform bit and character
manipulations as well as other special functions. Where very
heavy CPU utilization is expected, assembly language is
also sometimes employed.

634 National Computer Conference, 1978 -

Conversion decision

Several years ago, a corporate decision was made to phase
out the Honeywell G635, the computer on which the CAD
System at that time ran. Among the many alternatives con-
sidered for rehosting the CAD System, ;l}e one finally cho-
sen was to purchase a DEC system-10 arid convert the CAD
system to run on that computer. Thé primary reason for
selecting the DEC-10 was a proven time-sharing capability.

The conversion from the G635 to the DEC-10 was a con-
version only from the standpoint of function.

Existing programs were inventoried and for each it was
decided which would be converted essentially as is, which
would be modified, and which would be discarded.

Goals and advanced plan

As we started to plan, we recognized that it was very
important to firmly establish our goals, and to determine
very specific milestones. Thus we would be able to measure
our progress and to report on it to our management, who
was picking up the tab.

Succinctly stated, the major goals were: (1) to create a
unified system tied together by a central data base; (2) to
create software that was reliable and maintainable; (3) to
provide a user interface that was easy to use and that was
consistent across all software; and (4) to proceed in a manner
that allowed us to measure how well we were meeting sched-
ules.

In late 1973, an advanced planning and development ac-
tivity was formed. The advanced planning group was to
define the overall structure of the system, and to specify the
procedures to be followed in specifying and implementing
the system.

In November of 1973, the author attended a 6-day in-plant
seminar on structured design. This seminar was taught by
Larry Constantine and proved to be of immeasurable value.
The value arose not from revolutionary concepts but rather
from a well reasoned and coherent discussion of the relevant
concepts. The ultimate result of attendance was the gener-
ation and documentation of a methodology for practicing
structured design in our organization. This methodology is
described in the next section.

Outputs of advance group

In the approximately 18 months of its existence, the ad-
vance group produced 4 basic outputs. First, it produced a
system concept. Second, it defined the standards and pro-
cedures to be followed in rewriting the system. These were
documented in a Standards and Procedures Manual issued
to all programmers. Third, it defined most of the applications
support software. Fourth, it provided a test vehicle for the
standards and procedures defined, and provided the first
productivity figures for the methodology. These figures were
used in estimating the effort required to implement the main
body of CAD software.

CAD SYSTEM
Subsystem (RXXXXX)
Process (RVWXXX)
USER SEES
INTERNAL

Activity (RVWO00A)
Module (RVW128)

Figure 1—Software hierarchy

STRUCTURED DESIGN

The following hierarchy, illustrated in Figure 1, is used to
identify levels of CAD software: system, subsystem, proc-
ess, activity, and module. System means the whole CAD
System. A subsystem is a major functional area. Examples
of subsystems are routing, digital test and simulation, design
capture, etc. A process performs an identifiable user func-
tion which may be simple or complex. The process level is
the lowest level visible to the user.

A process consists of one or more activities, where an
activity is an executable core image or job step. A module,
which is the lowest level, is a single FORTRAN or assembly
language subroutine. Qur FORTRAN modules contain an
average of 35-45 statements. Assembly language modules
have an average length of 50-60 statements.

Each activity and module is uniquely identified by a six
character code. Examples are shown in parentheses in Fig-
ure 1. Thus module RVW128 would be module 128 in the
View (VW) Process of the Routing (R) Subsystem.

Structured design, a la Constantine, is applied either at
the process or activity level, depending on the complexity
of the process and constituent activities. Design documen-
tation always includes a structure chart (hand drawn, as
generated in the design process) and a compieted module
description form (MDF) for each and every module. A mod-
ule description completely defines the function of a module
so that it can be coded from this documentation alone, with
perhaps reference to appropriate data structure documen-
tation.

For an easily grasped function, e.g., the binary search of
a single precision array, a description of the calling sequence
may be adequate documentation. However, it has been our
experience that many modules require either flow charts or
pseudocode for unambiguous documentation. This is true
even though the emphasis is on the function not the detailed
coding of the module. Typically, this situation obtains for
the higher level modules in a structure chart. At that level
it is frequently the case that the function of the module and
the flow of control within the module are not really sepa-
rable.

RESULTS OF APPLYING STRUCTURED DESIGN
Productivity figures

The advanced planning activity implemented 336 modules
of applications support software. These modules contained

User Experience With New Software Methods 635

Advance Main Develop-
Group ment Effort
(336 Modules) (2200 Modules)
Man Hours !
Per Module
Specification 33 5
Structured 3.0 5.4
Design
Coding and 8.8 9.8
Integration
Total 15 20

Figure 2—Manpower statistics

11,104 lines of code, an average of 33 lines/module. There
were 180 FORTRAN modules (average length 25 lines), and
156 assembly language modules (average length 42 lines).

The manpower figures were specification and analysis, 28
MW (man weeks); structured/implementation design, 25
MW:; and code and integration, 74 MW. Figure 2 displays
the corresponding figures per module.

The largest activity in this collection of software contained
117 modules (3551 lines), of which 105 (2936 lines) were
FORTRAN. The distribution of calendar time for this pro-
gram was: specification and analysis, 26 weeks; structured
design, 6 weeks; and coding and integration, 20 weeks.
Thus, although specification and analysis only accounted for
22 percent of the manpower it consumed 50 percent of the
calendar time.

Column 3 of Figure 2 summarizes the figures for the bulk
of the CAD software. This data represents approximately 18
man years of effort including supervision time. Accounted
for are 27 processes, 53 activities, and over 2200 modules.

Problems encountered

Although our experience with structured programming has
been strongly positive, we did encounter some problems.
Moreover, looking back, we see areas where improvement
is needed.

The biggest need for improvement has to be in the area
of specification. Once a good specification has been gener-
ated things become very manageable. However, we have
found it extremely difficult to write a specification which on
the one hand a user can read and understand, and which on
the other hand defines things well enough to allow design to
begin in earnest.

A second problem area is related to one of the design
goals. From the start it was impressed upon the program-
mers that they were to put design before efficiency. As a
result a couple of activities were implemented which were
very much more expensive to execute than they should have
been. These subsequently, had to be modified for efficiency.

In most cases this efficiency problem might well have
been avoided had we more strictly followed one of our own
published procedures. We did not require each module to
be reviewed by another programmer as we said we would.
The excuse tends to be ‘“‘we just don’t have the time”’, and
is used by programmers and supervision alike. In the face

of tight schedules, this excuse is not easily dismissed. This
problem will doubtless be struggled with for some time to
come.

A final problem is the difficulty in training enough pro-
grammers to be good designers. The training problem is
particularly troublesome because there is no way to give
years of experience, and the attendant design maturity, to
even a highly capable junior individual. This is important
because the structured design of a large process requires the
judgment to make numerous decisions, which involve trade-
offs between strict adherence to structured design princi-
ples, on the one hand, and effective use of human and
machine resources on the other. The best solution is to
employ the most qualified designers on critical designs, and
to use less critical designs for training. But when schedule
constraints force many important designs to overlap, less
desirable compromises have to be made.

Summary of benefits

Although we did not have any solid prior productivity
data, we definitely feel that structured design has improved
productivity. This, however, was not a goal in our adopting
structured design, but has been just a happy side-effect.
What was anticipated were increased reliability, increased
maintainability, and increased visibility.

There is no doubt that we have achieved increased visi-

‘bility. Moreover subsequent experience with modifying

structured programs convinces us that increased reliability
and maintainability have been achieved.

It was found that structured design allowed us to make
very good use of personnel. We have been able to reaily
load up an activity in the module coding and checkout
phases without introducing confusion. It has also been easy
to quickly move a programmer from one activity to another,
with little loss in effectivity. Moreover, we have gotten
excellent productivity from beginning programmers.

Only mild reluctance to adopt structured design tech-
niques was manifested by the staff. Junior personnel adopted
easily with no apparent ‘“‘loss of individuality’’ response.
There was some initial thrashing with senior personnel as
we all strove to understand the implications and tradeoffs of
modularity. For instance, not everyone accepted at first that
structured design was indeed distinct from what they were
already doing.

A final word on interpreting our experiences with struc-
tured design. We feel that our experience is unique to our
application and our environment. A different application in
a different environment might yield better or poorer results.
Nonetheless, we are confident that, for most applications,
structured design will yield more reliable and maintainable
systems, while providing good visibility of the design and
implementation processes. ¢

BIBLIOGRAPHY

1. Constantine, L. L., and E. Yourdon, Structured Design, Yourdon, Inc.,
New York, (February 1976).

636 National Computer Conference, 1978

2. Rader, 1. A., Structured Design—A Case History, Infotech State of the
Art Report on the Practice of Structured Design, London, (1976).

3. Stevens, W. P., G. J. Myers, and L. L. Constantine, Structured Design,
IBM Systems Journal, No. 2, 1974, pp. 115-139.

EXPERIENCE WITH EXXON’S IMPLEMENTATION
OF THE JACKSON PROGRAM DESIGN METHOD
—C. M. Bernstein .l.
In 1973, Exxon’s Mathematics, Computers and Systems

Department conducted an evaluation of the new technolo-

gies of program development. The project was motivated by

the increasing manpower cost for software development and
maintenance and the increasing business vulnerability to
software failure. We concluded that a program’s structure
is the key to its effective development, enhancement, exe-
cution and support. Without a program’s structure we could
not reliably construct the program in parts, put the parts
together such that their interactions wouid be predictable,
and have the whole structure achieve its specified purpose.

Michael Jackson, now of Michael Jackson Systems Ltd.,
was then an ACM lecturer. We found that he had a teachable
method for the logical design of structured programs and a
precise notation to express them. In addition, his method
was effective at attacking practical programming problems
where the designer is not free to define input and output
formats and user interfaces. Michael taught three program
design courses at our Florham Park, New Jersey offices in
the winter of 1973. The courses were well received and,
together with Michael's consulting on specific applications,
provided the knowledge we required. We adapted Jackson's
Methdology to our environment and renamed it Program
Structure Technology, PST.

It is important to remember that PST does not address the
systems design process. PST is not concerned with defining
the organization or contents of files, specification of input
and output formats or transactions, designing data bases, or
defining required processing. PST is concerned with the
work of designing and impiementing the program which
meets those specifications. PST incorporates the technolo-
gies of top down design, structured programming, top down
development and test, and structured walk-thrus.

‘We conducted our first in-house PST course in August of
1974 and aggressively fostered the assimilation of PST over
the following three years. Over 1,000 programmer/analysts
have been taught PST. All Exxon regions can now provide
their own training and support. This includes training for
supervisors, consulting, and the support of standards. PST
is being used in both large and small installations to develop
batch commercial and interactive data base applications, as
well as minicomputer, process control and program product
software.

The Jackson Program Design Method defines hierarchical
program structures whose components are dissected. There
are four basic component types:

Elementary, which are not dissected
Sequence, whose parts are executed once each, in order

Selection, one of whose parts is executed, the choice part
depending on a condition"

Iteration, which has only one part which is executed zero
or more times

The four component types have exact analogies in data
usage structures for files, records and in internal data. The
program’s structure is designed to correspond to the usage
of the data to be processed. Alternative usages of data can
be imposed on a given set of data and the alternative pro-
gram structures evaluated. Each operation carried out by
the program appears in an appropriate component. For ex-
ample, “INITIALIZE CUSTOMER TOTAL" should ap-
pear in a component which happens once per customer. If
no appropriate component exists, the program structure is
deficient. Where there is a conflict between data usages to
be processed by one program, the program is designed as if
it were two or more separate programs. The separate pro-
grams are subsequently combined by the technique of pro-
gram inversion. Where a data usage cannot be handled sim-
ply, more elaborate forms of iteration and selection must be
used.

The major benefits of the Jackson Methodology are as
follows:

Reduced program compiexity

Eliminated logic errors at design instead of debugging in
the testing stage or later

Identified sensitive points in the problem specification

Easily maintained programs ‘

Effective program documentation as a by-product of de-
sign

Step-by-step methodology has enabled effective use of
software to support the process

Four PST projects of varying size (.5, 1, 5.1, and 25 work
years of effort) were evaluated and productivity was found
to be above 7000 lines per work year in every case. This
compares favorably with the New York Times Archives
project’s 9000/WY and the ‘‘Industry Averages’ of 2000-
4000 lines/WY. In the case where we attempted to measure
program quality, we found less than one error per program
during the first six months of production.

We have done little to the Jackson Methodology to adapt
it to the Exxon environment other than minor changes in
terminology and emphasis. We have complemented it with
our own material on structured programming in PL/I, top
down development and test, and structured walk-thrus. We
have also employed different pedagogical technigues to en-
able programmers who are not expenenced instructors to
teach the PST course. -

The Jackson Methodology has been extremely successful
in Exxon and is now virtually a standard throughout the
world. I recommend not underestimating the difficulty of
teaching programmers ‘‘how to program properly’’ and de-
velop an assimilation plan and a skilled staff to accomplish
it.

User Experience With New Software Methods 637

REFERENCES

1. Jackson, M. A., Principles of Program Design Academic Press, 1975,
2. Pinsonneault, L. L., Course Overview. Program Structure Technology
Course Manual, March 1975.

g

INITIAL EXPERIENCE WITH A METHODOLOGY
FOR CORRECT PROGRAM DESIGN—F. T. Baker

In the fonhboming book, Structured Programming: The-
ory and Practice," the authors describe three techniques
which have been incorporated into a Methodology for
achieving correct designs. These are:

1. A view of program correctness as a demonstration of
a correspondence between the function of a program
design (i.e., the set of ordered pairs corresponding to
input states and output states) and the function re-
quired by its specification. This approach, when used
with stepwise refinement, permits selective and incre-
mental correctness proofs to be carried out, since it
incorporates a procedure for verifying the correctness
of the expansion of a specification into any one of a
basic set of control structures. (The expansion of a
specification at any level into a program design can
thus be verified, contingent on the correctness of
lower-level specifications and their expansions.) Fur-
thermore, proofs can be carried out with varying levels
of rigor, ranging from a set of questions the designer
may use to validate an expansion to a formal demon-
stration recorded in a precise manner.

2. A method for incorporating specifications into program
designs to support correctness demonstrations when
desirable. Each specification (either initial, or those
generated in the expansion process) is retained as a
comment (logical commentary) directly associated with
the control structure which refines it.

3. A design language (Process Design Language) to assist
in the design process and to record the history of a
design. PDL includes a standard ‘‘outer syntax’’ of
essential control and data structures, and encourages
development of an “‘inner syntax’’ appropriate to each
design environment.

Figure 1 is an example of a design for a program which is
to save the maximum value occurring in an input sequence.
In that design, each of the paired brackets encloses logical
commentary which is a functional specification for the con-
trol structure which follows it (sequence, ifthenelse or while
do in this case). For each of the structures the appropriate
proof procedure can be carried out to demonstrate the cor-
respondence between its specification function and its pro-
gram function. Furthermore, this can be done prior to the
completion of the expansion process, or even on selected
portions of the design.

The methodology is primarily aimed at the detailed design
of a program. It covers the period between the formulation

[m:=maximum(inputseq)] .
do
[(inputseq=empty—m: =undefined |
inputseq #empty—>m: =next(inputseq)]
if
inputseq=empty
then
m:=undefined
else
m: =next(inputseq)
fi
{m:=maximum(m,remainder of inputseq)]
while
inputseq#m_
do [m: =maximum(m,nexi(input)}
temp: =next(input)
[m:=maximum (m,temp)]
if

temp>m
then
m:=temp

i
od
od

Figure |

of an effective system design, and the translation from the
design language into an implementation language. It was
developed to introduce more precision into the design proc-
ess and to encourage more consistent expression of designs.
Whether or not formal correctness demonstrations are car-
ried out, the stress on viewing programs as functions, de-
veloped from specifications through a rigorous refinement
process, should help achieve the goal.

Experience to date suggests that the methodology is ca-
pable of being practiced in the application development en-
vironment. We believe that the control structures inherent
in PDL are sufficient to support all levels of the design
process, from system and module specification down to
precise algorithms. The invention and use of logical com-
mentary direct attention to specification and program func-
tions, as they were intended to do. In particular, they en-
courage the designer to specify and deal with boundary
conditions and anomalies which frequently are poorly at-
tended to and which sometimes lead to difficult-to-find er-
rors. Finally, the view that each progrm should be designed
as if it is to be proved correct, means that even if correctness
demonstrations are not formally carried out, the program
has a greater likelihood of properly embodying its specifi-
cation. R

Experience to date also indicates several areas where
more work is needed. The nature of the expansion process,
and the desire to record the design history, mean that much
copying is done as the design is developed. An interactive
support tool appears useful to assist designers in this expan-
sion and recording. The data structures in PDL (stacks,
queues, sequences and sets) are useful ones, but better proof
techniques to validate operations with them must be devel-
oped. There is a notational problem inherent in specifying
functions precisely, particularly in nonmathematical envi-

638 National Computer Conference, 1978

ronments, which must be solved through a combination of
inventing better notations and abstracting operations. Fi-
nally, the ability to demonstrate correctness does not mean
that it is appropriate to do so in all cases; better guidelines
for applying the varying degrees of rigor possible in the
methodology must be developed.

REFERENCE H

1. Linger, R. C., H. D. Mills, B. 1. Witt, Structured Programming: Theory
and Practice, Addison-Wesley, 1978, to appear.

EXPERIENCE WITH THE IPAD SOFT WARE
DEVELOPMENT METHODOLOGY—Susan Voigt

NASA is sponsoring the development of a computer-aided
design system for use by the aerospace industry. The sys-
tem, denoted IPAD, is being designed and implemented by
Boeing Commercial Airplane Company and Boeing Com-
puter Services. IPAD is a software system to enhance the
computer complexes of aerospace companies to improve
speed, efficiency and reliability of the design process for
complex aerospace vehicles. The contract calls for appli-
cation of an effective software engineering approach to min-
imize programming and software design errors, as well as to
produce highly portable software.

THE TECHNIQUE

NASA established general guidelines for phases of the
development and release of software in stages, to allow early
user testing and experience. The development phases are:

1. Definition of the Problem (namely the Aerospace de-
sign process)
2. Requirements Definition (integrated information proc-
essing and functional requirements)
. Development of IPAD System Specifications
- Preliminary Design
5. Detailed Design, Code, and Test for each incremental
release
6. Acceptance Test and Demonstration with sample prob-
lems for each release
. User Training and feedback
. Software maintenance during remainder of develop-
ment contract

W

o0 3

Several plans and specific documents were called for in
order to encourage a systematic approach and a well docu-
mented product:

1. Management and Technical Plans to describe general
approach

2. Configuration Control Plan to control and track all
changes to requirements, design, code and documents

3. User Involement Plan to insure the sytem developed
is satisfactory to the users

4. Test Plans to establish systematic procedures for de-

velopment and acceptance testing

. Software Standards Handbook

- Requirements and Preliminary Design Documents

7. Preliminary User’s Manual written during design so
early user feedback can be obtained

8. User and Demonstration Manuals

9. Installation and Maintenance Manuals

As the basis for the IPAD software engineering method-
ology, the Boeing IPAD Development Team selected the
Boeing Computer Services *Systematic Software Develop-
ment and Maintenance (SSDM)” approach. SSDM is basi-
cally a set of general guidelines for all phases of the software
life cycle, and it corresponds well with the NASA require-
ments.

An Industry Technical Advisory Board (ITAB) was es-
tablished at the start of the contract to closely involve the
prospective user community. They have helped review and
critique the requirements definition and software design
phases. Subsequently, they will have the opportunity to
install and test the software at their own computing facilities.

EXPERIENCE AND EVALUATION

At the time of this writing, the development is in phase 4,
Preliminary Design. The techniques used to date and an
assessment of their usefulness in the software development
process is described below.

In phase 1, a reference aircraft design process was doc-
umented in flow diagrams indicating activities and decision
points, with accompanying discussions. Also communica-
tions between various disciplinary groups participating in an
aircraft design project were diagrammed to illustrate the
complex network of interfaces. Separate volumes were writ-
ten to document the interactions between designers and the
manufacturing organization and the activities in managing a
product development. These three volumes written by en-
gineers representing potential users defined the problem to
be addressed with the IPAD system. .

The requirements were defined by the engineers in phase
2. The BCS technique SAMM (Systematic Activity Model-
ing Method) (Reference 1) was used to chart the inputs and
outputs (description and quantity) for each activity in the
flow-charts of phase 1. The user’s view of his requirements
for computer-aided support in the aerospace design process
also was documented.

The results of phases 1 and 2 represent a very thorough
definition of the aerospace design process and CAD users’
needs. These were well-received by the user community and
have provided guidelines for their own analyses within their
respective companies. The flow diagrams of the design proc-
ess and the SAMM charts of the data flow are well correlated
and provide a very systematic look at the problem.

User Experience With New Software Methods 639

Phase 3 was done by the software team, assisted by the
engineers. They developed a concise set of IPAD require-
ments based upon the engineering documents and NASA
requirements for the IPAD system. A formal analysis
checked that each requirement was complete, correct, un-
ambiguous, precise, consistent, relevant, testable, traceable,
free of unwarranted detail, and manageable. The engineering
team developed criteria for acceptance testing for each re-
quirement. Each test criteria was summarized in a paragraph
which accompanies the requirement statement in the IPAD
Requirements Document. The requirements were reviewed
carefully by both NASA and ITAB, with considerable feed-
back and revision resulting. A set of IPAD system specifi-
cations were not produced, per se; the [IPAD Requirements
became the baseline for further development.

The formal analysis of requirements was not successful.
Ambiguities, inconsistencies, and redundancies were very
difficult to eliminate, especially between similar require-
ments. These arose from using secondary sources in devel-
oping the IPAD requirements and giving them weight equal
to the primary source, the engineering definition of the prob-
lem. A satisfactory set of requirements was obtained through
careful reorganization and joint review by software and en-
gineering team members and NASA. The inclusion of the
summary for acceptance test was very helpful in clarifying
the intent of a requirement, as well as setting the stage for
later testing. It also forced the engineering and software

teams to collaborate, and is highly recommended for future
projects.

In Preliminary Design, phase 4, a user interface model
was developed using state transition diagrams (Reference
2). This included a set of user functions correlated to the
IPAD requirements. These state diagrams have been used
to walk through “‘user scenarios’ to illustrate the function-
ing of IPAD from a user point of view in performing a
specified set of tasks. The other major components of [PAD
are: the executive, the information processor, and the other
systems interface and are currently undergoing design by
separate subteams. Coordination among the various sub-
teams in producing an integrated design has been difficult.

While the approach used has been successful in achieving
a good set of requirements, IPAD is not yet developed and
the design methodology is unproven. The basic concepts
appear to be an effective approach and further assessments
can be made when the software is developed.

REFERENCES

1. IPAD Document D6-IPAD-70012-D, **Integrated Information Processing
Requirements,™ June 24, 1977 Boeing Commercial Airplane Co., under
contract NAS1-14700. (Data Modeling Method, SAMM)

2. Pamnas, David L., *'On the Use of Transition Diagrams in the Design of
a User Interface for an Interactive Computer System,’ Proceedings, 24th
Conference ACM, 1969, pp. 379-385.

[N

