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ABSTRACT 
Measuring effort accurately and consistently across subjects in a 
programming experiment can be a surprisingly difficult task. In 
particular, measures based on self-reported data may differ 
significantly from measures based on data which is recorded 
automatically from a subject’s computing environment. Since 
self-reports can be unreliable, and not all activities can be 
captured automatically, a complete measure of programming 
effort should incorporate both classes of data. In this paper, we 
show how self-reported and automatic effort can be combined to 
perform validation and to measure total programming effort. 

Categories and Subject Descriptors 
D.2.8 [Software engineering]: Process Metrics  

General Terms 
Measurement, Experimentation, Human Factors, Verification. 

Keywords 
Effort. Manual approaches. 

1. INTRODUCTION 
One of the primary goals of software engineering research is to 
reduce the amount of effort required to develop software. 
Consequently, many empirical studies in software engineering 
focus on the effect of a given technology on effort. There are 
several easy-to-measure proxies for effort (e.g., size, complexity, 
defect counts), but the most direct and accurate method is to 
record how much time the subjects spend when performing a task. 

While measuring development time in a controlled experiment 
sounds simple, in practice it can be a notoriously difficult task. 
Measuring development time directly becomes particularly 
challenging when the task is too large to be completed in a single 
work session, the subjects are not being observed directly by the 
experimenter, or the experimenter does not have complete control 
over the working environment. Problems of loss of researcher 

control or insight are compounded in the time just before delivery 
of the product. Unfortunately, this “crunch time” could provide 
the most interesting information about the way people work when 
they are under time pressure. 

How time is measured can have a pronounced impact on the 
interpretation of results. If the measure does not capture effort 
consistently across activities or subjects, then it can introduce bias 
and may lead to drawing incorrect conclusions. Even if the 
measure is unbiased, an imprecise measure will reduce the power 
of a study, and is especially inconvenient if the goal is to develop 
quantitative models of the effect of certain variables on effort. 

We have been conducting empirical studies to characterize how 
different variables affect effort in the domain of high performance 
computing. Our initial studies have focused on graduate students 
solving small parallel programming problems [5]. These studies 
were done in the context of the Defense Advanced Research 
Projects Agency (DARPA) High Productivity Computing 
Systems (HPCS) program. One of the goals of the Development 
Time working group, led by the University of Maryland, of the 
HPCS project is to develop methods to evaluate the productivity 
of high-end computing systems, in particular the next generation 
of systems that are currently being developed [14].  

In the context of these studies, we have sought a measure of 
programming effort that is both accurate and complete (i.e., 
captures all programmer activities well). In this paper, we present 
our methods for collecting effort data and how we validated them 
through empirical studies. We show how a combination of self-
reported and automatic measures of effort data can be used for 
assessing confidence in results and estimating total effort.  

This paper is structured as follows: Section 2 is an overview of 
different methods for measuring effort. In Section 3, we describe 
how we performed an initial evaluation of our effort measures 
through pilot studies. In section 4, we describe how we performed 
a more detailed evaluation of these measures using observational 
studies. In section 5, we present our final algorithms for 
measuring and validating effort, and we conclude in section 6. 

2. BACKGROUND 
Many software engineering studies have been conducted that 
involve measuring effort. We can classify them broadly into four 
categories: self-reported, automatic, hybrid, and indirect. 

2.1 Self-reported 
The simplest instrument for measuring effort, from the 
experimenter’s point of view, is to have the subjects keep track of 
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their own effort using an effort log. The only instrumentation 
required is a paper form, although web-based entry forms are also 
possible. Along with recording effort, a log can also capture the 
type of activities that are being performed. A log can capture all 
of the activities related to software development, even activities 
that do not involve a direct interaction with a computer, such as 
“thinking.” One example of the use of such forms is in 
Humphrey’s Personal Software Process [8], which  has 
programmers fill out time recording logs. This self-reported effort 
data is then used for tasks such as schedule estimation.  
Self-reported data can be collected in two different formats: free-
form or pre-specified. In a free-form log, the subject has no 
constraints on the description of activities or the resolution of the 
log. In a pre-specified log, the subject chooses from a pre-defined  
set of activities when filling out the log, and the resolution of the 
individual entries are constrained. Each approach has advantages 
and disadvantages. For example, we have used free-form effort 
logs to collect data on programmers working in industry. We have  
found very large differences in the granularity of the reported 
activities, with one programmer recording log entries in minutes, 
and another recording log entries in days. 
Self-reported measures can vary over time, due to history or 
maturation effects [4]. This is a particular problem when the 
subjects have more interest in completing the task than complying 
with the protocols of the study. For example, students who are 
working on an assignment for a class might become less diligent 
with their log as they approach their deadline. Moreover, 
researchers using self-reported data must also worry about 
accuracy. For example, the student subjects described above 
might, consciously or not, over-estimate their effort in order to 
impress the instructor. Student accuracy may also vary based on 
other variables that are difficult to measure such as motivation to 
capture accurate data.  
Basili et al. [3] evaluated Software Science metrics against self-
reported pre-specified effort data collected  from satellite ground 
support software projects. There was very little correlation 
between self-reported effort and metrics known to predict effort, 
and there was concern that poor self-reported data was distorting 
the results. They were able to validate the programmers’ self-
reported effort data by cross-checking against resource forms 
filled out by the programmers’ supervisors. The authors checked 
for agreement between the programmers’ reports and the 
supervisors’ forms to identify which reports were more reliable. 
Being able to triangulate the data allowed for an evaluation of the 
quality/accuracy of the data. The reported effort of the more 
reliable reports exhibited better correlation with the metrics under 
investigation. 
Perry et al. [11] analyzed previous data from project notebooks 
and free-form programmer diaries which were originally kept for 
personal use. They found that the free-form diaries were too 
inconsistent across subjects and sometimes lacked sufficient 
resolution. They had developers maintain time diaries, filled in at 
the end of each day, to recount how their time was spent during 
that day. The experimenters observed the developers for five days 
over a 12-week period to evaluate the accuracy of the logs. They 
found that, on average, subjects overestimated their time by about 
2.8% per day. The agreement between subject and observer varied 
considerably across subjects, ranging from 0.58 to 0.95. Each 
subject tended to consistently overestimate or consistently 

underestimate his or her effort. They also found that a major 
source of error in the logs was the failure to report unexpected 
events such as interruptions that occurred during the course of a 
day. The developers often failed to account for these unplanned 
events when retrospectively filling in their diaries. 
We have seen confirmation of the findings of Perry et al. in a 
study performed for a high-school science project. The study 
measured the accuracy of self-reporting of task-completion times 
for short tasks (<10 minutes), and found that under-estimation or 
over-estimation occurred consistently within subjects.  

2.2 Automatic 
If the experimenter has some control over the subject’s computing 
environment, then the experimenter can use software to collect 
data from the environment. which can be used to measure effort. 
Data can be collected from interactions with the shell, editor, 
compiler, etc. By collecting events and their corresponding 
timestamps, the experimenter can estimate how much time the 
subject spent interacting with different programs. The 
experimenter can also try to infer the subjects’ activities based on 
the nature of the events being captured (e.g., an active debugger 
may be classified as “debugging”). Furthermore, measures based 
on automatic data collection should be consistent across subjects 
and time, provided the experimenter has equal control over the 
computing environments of all subjects. Hackystat [8] and 
GRUMPS [13] are examples of such data collection systems. 

The disadvantages of an automatic effort measure are the need for 
specialized instrumentation and for integrating the collected data 
to form an estimate of the effort. An automatic method generally 
leads the experimenter to focus on the data that is easiest to 
collect, rather than the data that will be most informative. 
Furthermore, the collected data will be a stream of timestamped 
events, which must be transformed into a single measure of effort. 
For example, effort could be estimated by adding up time 
intervals between events, or by slicing up time into equally-sized 
chunks and counting the number of chunks that contain events. 
Each of these methods has its own shortcomings.  

Figure 1 is a graphical depiction of an interval-based method, 
where the circles are recorded events. Using this method, we 
estimate effort by adding up time intervals between events. 
However, this method must avoid counting time intervals that 
represent non-working gaps between work sessions (e.g., should 
t2 be counted as effort or not?). Szafron and Schaeffer used an 
interval-based method to measure effort, ignoring time intervals 
larger than 15 minutes [12]. 
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Figure 1 Interval-based method 

Figure 2 is a graphical depiction of a chunk-based method, where 
time is broken up into chunks of size tc, and we estimate effort by 
adding up the chunks that contain events. For this method, we 
need to determine the appropriate chunk size to avoid 
overestimating or underestimating.  
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Figure 2 Chunk-based method 

Hackystat supports a chunk-based method to estimate effort [9]. 
Hackystat sensors can be plugged in to different software tools 
(e.g., editors, shell, version-control systems). These sensors 
collect data on the use of these tools without user intervention. 
While Hackystat is designed for project monitoring rather than 
effort estimation, it does have some support for estimating the 
time spent editing source files, which it calls “active time”. Active 
time uses the chunking method to estimate the time spent editing 
files. Kou and Xu analyzed the effect of chunk size on active time 
and concluded that the measure is not very sensitive to chunk size 
in the range of 3-10 minutes [10].  

2.3 Hybrid 
A hybrid measure is a combination of manual and automatic data 
collection. These methods rely on automatic instrumentation 
software that also prompts the user for some additional input (e.g., 
each time the user invoke the compiler, the system asks the user 
how long they have been working). This approach has advantages 
over the self-reported and fully automatic methods. The subjects 
are prompted for input on a regular basis and so we would expect 
more consistent reporting than a fully self-reported method. This 
approach can be used to improve the accuracy of an automatic 
time-interval based effort measure by distinguishing work times 
from break times through the help of user input.   
A disadvantage is that subjects are forced to record information at 
the rate dictated by the software, rather than at their own pace, 
and they may become frustrated if they are prompted for data too 
often. Like the fully self-reported data, the subjects may not 
report their data consistently. 
We have developed our own instrumentation that uses a hybrid 
approach to collect effort data. We have developed “wrapper” 
programs that instrument compilers. When users invoke these 
instrumented programs, they are asked questions about what type 
of activity they are doing, and how long they have been working. 
We use an interval-based approach to measure effort, applying the 
user input to help us identify gaps between work sessions. 
Another example of combining automatic and self-reported data 
to measure effort is work by Atkins et al [1]. They combine 
monthly time sheets with change management data to estimate 
effort spent on particular changes. 

2.4 Indirect 
An indirect measure is one that does not measure subject activity 
directly, but measures something else that is believed to correlate 
well with effort. These measures are typically code-based: for 
example, size (e.g., lines of code, tokens), complexity, number of 
defects that occurred during development. Indirect measures can 
be attractive because they are typically much easier to obtain than 
direct measures (this is why they are used). In some cases, they 
may be appropriate. For example, if a researcher is concerned 
primarily with debugging time, then counting the number of 
defects may be a suitable proxy for measuring the time. However, 

the relationship between such measures and effort is not yet well-
understood.  
Basili and Reiter evaluated a number of indirect measures in an 
experiment where subjects developed software either as 
individuals with no particular methodology, in teams with no 
particular methodology, or in teams with a specific disciplined 
methodology [1]. They focused on both process metrics (which 
measured activity during development) and product metrics 
(which measured the delivered program). For process metrics, 
they looked at job steps and program changes, where job steps are 
counts of compiles and executions, and program changes are a 
measure of textual changes in the source code during 
development. For product metrics, they looked at various size 
metrics (line counts, routine counts, decision counts) and 
complexity metrics based on cyclomatic complexity. They found 
that the various process metrics agreed on differences between 
groups (disciplined teams required few job steps and fewer 
program changes than both ad-hoc individuals and ad-hoc teams), 
while the various product measures showed different trends.  

3. PILOTING EFFORT MEASURES 
We conducted studies with graduate students at various 
universities across the United States. One of the goals of the 
research is to evaluate parallel programming technologies for 
their effect on development time and execution time. The studies 
described in this section were pilots which we used to evaluate 
our data collection methodology, as well as to familiarize the 
professors with empirical studies involving human subjects. We 
were concerned with measuring overall development time, as well 
as identifying the different activities of development (e.g., 
parallelizing, debugging).  
Each study was done in a graduate level class about parallel 
programming. We collected data on students as they worked on 
parallel programming assignments that were required coursework. 
These assignments were generally due two weeks after they had 
been assigned, and required on the order of ten hours of work to 
complete.  
The student programs had to be compiled and run on a parallel 
machine, which the students accessed through remote login. This 
gave us some control over the students’ environment, as we could 
collect data on the remote machine. However, we could not 
collect data if the students worked on a local machine (e.g., serial 
program development, editing source code, etc.). While students 
were encouraged to develop on the remote machines, we could 
not force them to do so. 

3.1 Data collection 
We chose to use a self-reported measure of effort as well as a 
hybrid measure of effort. For the self-reported measure, we asked 
the students to keep an effort log, to report how much time they 
spent each day in different activities, which we call self-reported 
effort. Figure 3 shows the log format and one entry. We also 
asked the subject to specify, for each entry, whether they were 
working on an instrumented machine. We used a web-based form 
to collect the data. 



To collect data for automatically measuring effort, we 
instrumented the compiler. On each compile, the timestamp was 
recorded and a copy of the submitted source code was captured. 
Each time the user invoked the instrumented compiler, we asked 
them to specify their work time: how long they had been working 
since their last compile. This question is optional, and if they do 
not respond it means that they have been working continuously 
(see Figure 4). 

 
 

3.2 Instrumented effort measure 
We used an interval-based hybrid measure, defined as follows: 
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In this equation, w  is the average work time specified by the 
subject across all compiles. If the subject specifies a work time, 
we use that as the time interval. If the subject does not specify a 
work time, we use the actual time interval, provided it falls below 
a threshold T1. If the user does not specify a time interval and the 
actual time interval exceeds T1, we use the mean work time 
specified by the subject, as an estimate of the time interval. If the 
subject never specified a work time throughout the development 
process, we use the value T2.  We determine T1 and T2 from 
analysis of the collected data of the pilot studies. 

3.3  Experimental setting 
The pilot studies took place in courses at the following 
universities: University of Maryland, MIT, University of 
California Santa Barbara, and University of Southern California. 
Each class had 1-4 assignments, and the focus of each assignment 
was the implementation of a program to be run on a parallel 
machine, typically in MPI [6], OpenMP [5], or both.  

3.4 Analysis 
3.4.1 Estimating T1 
We use T1 as a threshold to determine if an interval should be 
counted as continuous work. This is necessary because subjects 
do not always specify a work time at the start of a work session. 
An ideal value for T1 would be longer than the longest interval of 
true continuous work, and shorter than the shortest break, so that 
it would perfectly classify intervals as being work or breaks. We 
assume the longest interval of work is shorter than the shortest 
break. In practice, this won’t be true, since many work sessions 
involve brief interruptions, but for the purposes of our algorithm 
we would still count them as work. Recall that Perry et al. [9] 
found that people tend to forget about unscheduled interruptions 
when keeping retrospective logs, so we hoped this would not be a 
source of disagreement.  
The method we use to estimate T1 is to compare the time intervals 
(ti) where users specified a work time with the time intervals 
where users did not specify a work time. We expect the 
distribution of time intervals where users did specify a work time 
to be similar to the distribution of time intervals that represent 
breaks, and we expect the distribution of time intervals where 
users did not specify a work time to be similar to the distribution 
of time intervals that represent continuous work. This method 
does not depend on the accuracy of reported effort and we do not 
expect the results to vary by size of the assignment. Note that 
roughly 20% of the subjects never specified a work time 
throughout an entire assignment.  
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Figure 5 Distribution of time intervals 

In Figure 5, we show box plots of these two groups of time 
intervals: when users specify work time (“input”) and when users 
do not specify work time (“no input”). This data is across 4 
classes, 8-20 participating students in each class, with 1-4 
assignments in each class, and represents roughly 18,000 
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compiles. We had expected most of the time intervals labeled 
“input” to be larger than those labeled “no input”, but there is 
considerable overlap among the two data sets. The very high 
values for “no input” suggest that students do not always fill out 
the work time after coming back from a break, illustrating the 
need for a good T1 estimate. More surprising is the many low 
values for intervals when the user specifies a work time. The 
median time interval is under 3 minutes: more than half of these 
intervals are from students specifying a work time when it has 
been less than 3 minutes since their last compile. We can only 
conclude that these students either did not understand when they 
were supposed to answer this question, or were intentionally 
answering incorrectly (e.g., just hitting “1” each time).  
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Figure 6 Filtered distribution of time intervals 

To filter these out, we eliminated the data from all subjects who 
ever specified a work time when the actual time between 
compiles was 5 minutes or less, since it is reasonable that if a 
subject had compiles that were 5 minutes apart, they were 
working continuously, and entering a work time would be 
incorrect. This reduces our total sample from 18,000 to about 
5,000 compiles. This updated plot is in Figure 6.  Now there is 
considerably less overlap between the two distributions. For the 
“input” intervals, the first quartile is 43 minutes, which implies 
that 75% of the time intervals that were effectively classified by 
the subjects as breaks were over 43 minutes. It seems reasonable 
to round this up to T1=45 minutes.  

3.4.2 Estimating T2 
To choose an appropriate value for T2 we need to know how long 
students typically spend working before their first compile when 
they begin a work session. This should be equal to their “work 
time”, which is how long they say they have been working before 
a compile, since they are only supposed to specify a work time 
when they have returned from a break. 
Figure 7 shows a box plot of the work times specified by graduate 
students in the Applied Parallel Computing course at the 
University of California, Santa Barbara, over four parallel 
programming assignments. The plot suggests that the work time 
distributions are quite different across subjects (note that the  

y-axis is logarithmic). Even within subjects, there can be a great 
deal of variation (e.g., subject 18 exhibits variation from 1 minute 
to 100 minutes).   
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Figure 7 Work time distributions across subjects 

Figure 8 shows the distribution of work times for the entire class. 
The median work time is 4 minutes and the mean is 4.8 minutes. 
Therefore, we felt that a reasonable value for the time interval 
estimate in the absence of work time to be T2 =5 minutes. 
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Figure 8 Work time distribution for entire class 

Figure 9 shows the results when we apply equation 2 to the data 
collected from the three courses (T1=45 minutes, T2=5 minutes). 
To compute reported effort, we only count entries where the 
subjects specify that they are working on the instrumented 
machine. Note that each data point is one student solving one 
assignment. Since some classes had up to 4 assignments, a single 
subject may appear up to 4 times on this plot. Table 1 shows the 
summary information for the deviations (instrumented effort – 
self-reported effort) across subjects, where n is the number of 
subjects, mean is the average of the deviations across all subjects, 
stdev is the standard deviation of the deviations, and % is the 
mean of the deviations divided by the mean effort (To compute 
mean effort, we take the mean of the self-reported and 
instrumented effort for each subject, and average this across all 
subjects). The negative mean deviation indicates that the 
instrumented effort tends to underestimate the effort reported by 
the students. 



Table 1 Summary info for deviations 

n mean stdev % 

56 -3.7 hours 11.7 hours 26% 

 

3.4.3 Examining the reported data 
Subjects claim that they spend about 80% of their development 
time working on the instrumented machine, averaged across all 
subjects who submitted effort logs. More than half claim that they 
spent 100% of their time on the instrumented machine.  
We observe both overreporting and underreporting in this data. 
Two of the largest instances of overreporting are from the same 
subject on two different assignments. This subject reported 44 
hours on one assignment and 63 hours on another. When we 
examined the collected data in detail, it appeared that the subject 
was either significantly overestimating their effort, or the subject 
was not invoking the instrumented compiler while working, 
despite claims in the effort log to be working on the instrumented 
machine. This subject tended to use relatively large entry sizes: 
specifying several 10-hour entries and one 14-hour entry. By 
comparison, the median entry across all subjects and assignments 
was 3.8 hours.  
There are three subjects with instrumented effort of over 10 hours 
whose effort logs consisted of a single one-hour entry, clear 
instances of underreporting. It is notable that these subjects all 
came from the same class, so perhaps there was some unknown 
factor which caused students in this class to be less diligent with 
their logs. 
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Figure 9 Reported vs. instrumented effort 

3.5 Lessons learned 
We learned several lessons from these pilot studies: 

• The work time (time spent working before first compile, 
after having returned from a break) varies considerably 
across subjects. 

• Subjects will not always specify when they have 
returned from a break, even if prompted to at each 
compile. 

• Subjects will sometimes specify work time even when 
the gap in question is quite small. Either they do not 
understand the question or are specifying breaks at too 
fine a level of granularity for our purposes. 

• Students claim that they spend most of their time 
(>80%) working on the instrumented machine, so 
instrumented effort can potentially be within 20% of 
total effort. 

• Underreporting and overreporting are significant issues. 
They appear to be the source of the largest deviations. 

4. VALIDATING EFFORT MEAURES 
4.1 Motivation 
In the pilot studies, we tried to increase the accuracy of our 
instrumented effort by asking the subjects for additional 
information. However, we found that the data provided by the 
subjects was often inconsistent with data collected automatically. 
We did not have sufficient confidence in either instrumented 
effort or self-reported effort for a proper evaluation.  
We decided to run a series of observational studies to compare the 
various effort measures to a more accurate effort measure, 
obtained through direct observation. We also wanted to collect 
more detailed information about what types of activities our effort 
measures do not capture well. 
An observational study involves a single subject who solves one 
of the programming problems from the classroom studies. We 
apply all of the same data collection measures which were used in 
the classroom studies (effort logs, instrumented compilers). The 
additional factor in these studies is a passive observer, who sits 
with the programmer and keeps a separate log of the 
programmer’s activities. The goal of the observer is to provide an 
accurate measure of effort against which the other measures can 
be compared.  

4.2 Modification to data collection 
For these studies, we also collected two new types of automatic 
data. We used Johnson’s Hackystat [7] system for collecting the 
time spent in the editor and commands sent to the shell. We also 
captured information on when the user submitted a job. We were 
able to do so because the subjects were using a Beowulf cluster 
on which we could instrument the batch scheduler used for job 
submission. Unlike the compiler instrumentation, we did not ask 
the subject questions when a job was submitted.  
Our initial compiler instrumentation software asked the subject 
questions on each compile. Some subjects in previous studies 
found these questions irritating, especially when they had to 
recompile due to a syntax error. To reduce the frequency of 
questions, we modified the compiler instrumentation to only ask 
the subject questions if there were no syntax errors in the source 
code).  
We made several modifications to our effort logs. We switched 
from a web-based interface to paper effort logs as we suspected 
that the web interface may have been related to underreporting in 
the previous studies. Between our first and second observational 
study we modified the effort log so that the subject had to specify 



start and stop times for each activity (see Figure 11). This 
increases the precision of the log, and allows us to compare the 
logs more directly with automatically collected data.  

4.3 Instrumented effort measure 
The modification of the compiler instrumentation introduces a 
problem into our instrumented effort measure. 
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Figure 10 Dealing with compile-time errors 
Consider the scenario depicted in Figure 10. Let c1,c2,c3 be 
captured compile events, and assume that the subject took a break 
between c1 and c2. Consider the case where c2 is a failed compile 
(syntax error) and c3 is a successful compile. The instrumentation 
will not ask a question at c2, but it will ask at c3. If the subject 
specifies a work time, the algorithm will incorrectly use that work 
time in place of t2, when it should be used in place of t1. To avoid 
this problem, we do not use failed compiles in computing 
instrumented effort, though we still record when they occur. 
Ignoring compiles that are not successful should not impact 
instrumented effort unless the time to fix syntax errors exceeds T1 
(45 minutes). 
We also saw in the previous studies that subjects sometimes 
specify work times that exceed the time interval between 
compiles. This led to a further refinement of algorithm that checks 
for this occurrence: 
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In addition to our previous instrumented effort measure, we 
applied a new instrumented effort measure that incorporates all 
captured events (i.e., compiles, run, edits, shell commands). We 
no longer incorporate the work time in this measure because we 
expect too much overlap between work time and other captured 
events. We use a simple interval-based algorithm where we only 
include the interval if it exceeds a certain threshold, otherwise it 
does not contribute to the estimate. We used a threshold of 45 
minutes, as before.  

4.4 Experimental setting 
For the first observational study we chose a small, relatively 
simple problem, used in two of the classes from our second round 
of studies. The problem was the “Buffon-Laplace needle 
problem”, a Monte Carlo simulation to estimate the value of π by 
dropping needles on a grid and counting how many needles 
intersect with the gridlines. The task was to solve the problem in 

serial in C, and in parallel using the MPI  library on a Beowulf 
cluster. The subject was a member of our research group who had 
taken the graduate-level high performance computing course at 
the University of Maryland. The study took place in a single 
session and ran for a little over two hours.  
For our second observational study, we chose a more difficult 
problem from the set of assignments: Conway’s game of life. We 
kept the same objectives as before (serial implementation in C, 
parallel implementation using MPI on a Beowulf cluster). The 
subject was a professional programmer working for a research lab 
involved with parallel applications.  Though the focus of his day-
to-day work was not MPI-related, he had experience with MPI. 
The programming task took about nine hours to complete, which 
was done in six sessions over the course of two weeks. 

4.5 Analysis of first observational study 
Figure 12 graphically depicts the data we collected from the first 
observational study using the automatic instrumentation, as well 
as effort measures using our method and Hackystat’s “active 
time” measure. The x-axis represents the actual clock time of the 
observation. On the y-axis, compiles refers to successful 
compiles, runs refers to submissions to the batch scheduler for 
parallel runs, edits refers to edit events captured by Hackystat, 
cmds refers to commands typed in the shell, inst. effort is our 
effort measure described in the previous section (using only data 
captured from compiles), and active time refers to Hackystat’s 
“active time” estimate, which is a measure of how much time is 
spent editing a file. The vertical lines indicate the beginning and 
end times of the session as recorded by the observer.  
We can see that the instrumented effort has some (small) gaps at 
the beginning and end of the session. The gap near the beginning 
of the session is because the subject slightly underestimated when 
specifying the work time. The gap at the end of the session shows 
that instrumented effort fails to take into account effort after the 
last compile. We were able to capture the time before the first 
compile because of work time specified by the subject. From the 
figure, it appears that our instrumented effort may have been more 
accurate if we used all captured events, rather than rely solely on 
compile events. 
Active time captures most of the effort, with two gaps. The first 
gap (10:20-10:40) is due to the initial “thinking” time, where the 
subject is thinking about the problem and is working out a 
solution on paper. The second gap (12:05-12:10) is due to the 
subject doing testing, measuring the effect of compiler 
optimization on execution time. 
 

Figure 11 Updated effort log 

Date Start time Stop time
Breaks 
(minutes)

Total time 
(minutes) Activity Comments

10/4 3:15 PM 3:42 PM 27 Serial coding
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Figure 12 First observational study 

Table 2 gives a summary of the different effort measures, where 
Direct obs. Refers to direct observation, Rep. effort refers to 
reported effort, Inst. effort refers to instrumented effort, and 
Active time refers to Hackystat active time. We see that 
instrumented effort underestimated by a very small amount (<5 
minutes), with active time underestimating somewhat more (15 
minutes) The reported effort overestimated by about 17 minutes. 
We believe that the subject kept the effort log as accurately as can 
be reasonably expected. The effort log errors were most likely 
due to the resolution of the log: the subject was asked to specify 
time in hours for each activity (see Figure 3). Most entries were 
either 0.25 h or 0.5 h, which is probably the finest level of 
granularity at which a person can estimate their time spent in a 
particular activity. If ideal conditions yielded errors of about 13%, 
we don’t expect to do better than about 20% in a classroom study. 

Table 2 First observational study results 
 Direct 

obs. 
Rep.  
effort 

Inst. 
effort 

Active 
 time 

Time 2.17 h 2.45 h 2.10 h 1.92 h 

Error  0 h +0.28 h -0.07 h -0.25 h 

Error % 0 % +13% -3% -12% 

 
The results of this first observational study, though encouraging, 
were most likely not representative. Most problems are more 
difficult and require work to be done across multiple sessions, 
which is what we speculated to be the most likely source of errors 
in our effort measure. This study does give us some lower bounds 
on how accurate we should expect our effort measures to be.  

4.6 Agreement measure: fidelity 
As we mentioned in section 4.2, between the first and second 
observational study, we modified the effort log so we could 
directly compare the self-reported effort with the instrumented 

effort. We adopted the fidelity measure described in Perry et al. 
[9] to give us a sense of how much we should trust the self-
reported effort. They define fidelity as the overlap between the 
two measures, divided by the measure which is considered more 
accurate.  

4.7 Analysis of second observational study 
Table 3 gives a summary of the accuracy of the different methods. 
Inst. effort refers to the instrumented effort measure from equation 
3 (using only compile data), and All refers to instrumented effort 
which takes into account all of the different types of data. 
Note that the increase in the accuracy of the effort log, decrease in 
accuracy of instrumented effort, and increase in accuracy of the 
Hackystat measure compared to the first observational study. 
While it is unwise to draw conclusions from two data points, these 
results support our hypotheses that a more precise effort log 
improves accuracy, and that instrumented effort decreases in 
accuracy when the work is done over multiple sessions.  

Table 3 Second observational study results 
Direct 
obs. 

Rep. 
Effort 

Inst. 
 effort 

Active 
time 

All 

Time  9.05 h 8.98 h  8.28 h  8.60 h 9.08h 

Error   0.00 h -0.07 h -0.77 h  -0.45 h +.03 h 

Error % 0% -1% -8% -5% +0.3% 

 
If we compute the fidelity to check the agreement of the self-
reported effort and the instrumented effort (All), assuming the 
instrumented effort to be more accurate, we get an agreement of 
0.97, a very high value which is consistent with Table 3. 
Figure 13 shows activity for the second session of the study, and 
illustrates some of the problems with our effort measure (it does 
not depict the instrumented effort measure which takes all types 
of events into account). On the first compile, the subject did not 
specify the time spent working, so the instrumentation used the 
average work time specified (18 minutes). The observed time 
spent working before first compile was only 3 minutes. The 
subject spent this entire session debugging the serial version of 
the program, so no parallel runs were recorded. On this plot, we 
can also see the gap between the time of the last compile for the 
day and the time when the subject actually stopped working: our 
compiler-based effort measure has no mechanism for estimating 
this time. These two errors illustrate the weakness of an interval-
based method for estimating effort. 
The subject spent much of this session looking at source code and 
output of previous runs. While he was interacting with the editor 
(e.g., scrolling, switching from one file to another), no editing was 
taking place, resulting in gaps in the Hackystat “active time” 
measure. Note that for the second large gap in active time (10:35-
10:55), there are no captured events at all: no compiles, edits, 
shell commands, or runs. This illustrate the weakness of a 
chunking-based method for estimating effort.  
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Figure 13 Activity for second session 

The instrumented effort measure which takes into account all 
types of events clearly performs the best, achieving within 1% of 
the observed effort. For this measure, we used T1=45 minutes, 
T2=0. We initially tried larger values of T2, which always resulted 
in overestimates. In our study, the subject always began a session 
by logging in to the remote machine, so the first recorded event 
coincided very closely with the beginning of a work session, and 
the last recorded event (the logout command) coincided with the 
end of the work session. Note that if only compiles are used, the 
same algorithm yields an effort of 6.2 hours, which is an error of 
about -30%. This suggests that compiles do not occur frequently 
enough to be relied upon exclusively for estimating effort without 
additional information. 

4.8 Lessons learned 
We learned several lessons from these observational studies: 

• Instrumented effort underestimates due to time spent 
working before the first compile, time spent working 
after the last compile and time intervals where work 
was being done outside of the instrumented 
environment. 

• Active time, which is a chunk-based automated 
measure, underestimates because of time intervals 
where work is done that doesn’t trigger edit events. 

• If we incorporate events recorded by Hackystat sensors 
into our instrumented effort, we capture more of the 
effort. 

• An effort log that asks for start/stop times simplifies the 
task of evaluating self-reported effort against 
instrumented effort, and can potentially increase the 
accuracy of the effort measure.  

• For an effort log that does not use start/stop times, the 
limit to the granularity of effort reporting is about 15 
minutes. 

• For an effort log that does not use start/stop times, we 
do not expect to get better than about 20% agreement 
on reported and instrumented effort. 

• Instrumented effort accuracy may decrease when 
subjects program over multiple sessions because effort 
errors occur at the beginning and end of sessions. 

• When a subject is debugging, sometimes no events are 
captured because the subject is simply looking at source 
code and program output. This may be particularly 
problematic for chunk-based effort measures. 

5. EFFORT ALGORITHMS 
5.1 Instrumented effort  
We found that if there is sufficient automatically collected data 
(e.g., edit events, shell commands), then a simple, interval-based 
measure works well: 
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where E is the effort, ti is the time interval between captured 
events, and T1 is a constant. Based on our analysis, we concluded 
that T1=45 minutes was reasonable. In our observational studies, 
the largest interval where the subject was working but no activity 
was recorded was 20 minutes. 
If it is possible to collect a subset of the above data (e.g., compile 
timestamps), then the simple method above will under-estimate 
the effort. We can increase the accuracy by asking the subjects 
questions at compile-time and using a hybrid measure to estimate 
the effort: 
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where E is the effort, ti  is the time interval between events, wi is 
the work time (amount of time the subject indicated that they 
working before the event, 0 if no response), w is the average 
work time for the subject, and T1 and T2 are constants. From our 
analysis, we found T1=45 minutes, T2=5 minutes to be reasonable 
values. 

5.2 Total effort and confidence 
To obtain a measure of total effort, we combine instrumented and 
self-reported effort measures using the following equation: 

)8()1( repinsttotal EkEE −+=  

where Etotal is total effort, Einst is instrumented effort, Erep  is self-
reported effort, and k is the fraction of the self-reported effort that 
corresponds to work done on an instrumented machine. 



We use fidelity as a confidence measure to help us judge whether 
we should use the self-reported effort or discard it, based on how 
well it agrees with the instrumented effort: 
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where f is fidelity, and Ov is the overlap between two effort 
measures. 
A disadvantage of fidelity is that it only measures underreporting. 
Measuring overreporting by comparing with instrumented effort 
is difficult because a subject may still be working even if no 
activities are recorded, as we saw in the observational studies. An 
alternate method is to look for coarse-grained self-reported 
entries, which are more likely to be suspect. We have found that 
large effort entries are a warning sign that overreporting may be 
occurring. In studies that follow the ones described here, we ask 
subjects to specify for each entry whether it was filled in close to 
the actual work, or retrospectively. This information may provide 
experimenters with additional warnings that the data is suspect. 

6. CONCLUSION 
In this paper, we have described how we evolved self-reported 
and automatic methods of data collection through a series of 
empirical studies, and how we combined them to assess our 
confidence in the data and measure total effort for small 
programming problems. We found that effort estimates based on 
automatically collected data can be quite accurate if sufficient 
data can be collected, particularly if the data comes from multiple 
sources. This data can be augmented by self-reported data to 
capture activities that would be missed by automatic 
instrumentation. However, the quality of self-reported data will 
vary considerably across subjects, and it should be validated 
against automatically collected data. 
It is not clear whether a similar approach could be adopted in 
industrial environments, where much of the effort is spent in 
phases other than coding and there are barriers to using 
instrumention. Furthermore, larger projects may not require effort 
measures at the same level of precision as small experiments.  
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