Measuring Productivity on High Performance Computers

Marvin Zelkowitz"?Victor Basili*Sima Asgari®
Lorin Hochstein® Jeff Hollingsworth* Taiga Nakamura®
'Department of Computer Science, University of Maryland, College Park, MD 20742
2Fraunhofer Center Maryland, College Park, MD 20740
{mvz, basili, sima, lorin, hollings, nakamura} @cs.umd.edu

limited form of productivity should be useful, suas
deciding which computer system or development ntetho
would be best for solving a specific applicationlgem.

Abstract

In the high performance computing domain, the speed of
execution of a program has typically been the primary
performance metric. But productivity is also of concern to
high performance computing developers. In this paper we
will discuss the problems of defining and measuring

Since the value component of productivity depends
upon the needs of the various stakeholders, we can
approach productivity from several points of view:

productivity for these machines and we develop a model of
productivity that includes both a performance component
and a component that measures the development time of
the program. We ran several experiments using studentsin
high performance courses at several universities, and we

What is the productivity of a team producing a
specific program?

What is the productivity that one environment (i.e.

HPC machine, compiler, development tools) provides
over a second environment?

report on those results with respect to our model of

productivity. In this paper we will use the first point of vieMe want

to be able to compare the productivity of two diffet
teams developing the same program on the same aardw

1. Introduction platform.

Productivity is an economic concept that messihe

amount of output per unit of input in an econonystem. gqfware project, software developers have typichden
For a unit of output we will use the general conceP oncemed with the amount of output a development
value and for a unit of input we will use the concept of generates for the amount of effort used to prodiree
cost. Therefore, a simple definition of productivity is output. For commodities (e.g., pencils, telephones,
value/cost. In this paper we want to define these terms in computers, tons of coal) output is easily compuedhe
the context of solving specific problems on a cotapun number of such objects produced. However, for safew
particular, for the domain of high performance cameps. the situation is murky. What does it mean for ormgpam
that costs $2M to have “more output” than a similar

This seemingly simple relationship\afue divided by 5-55ram that costs $1.5Mility is an economic concept
cost becomes quite complex when we try to quantitafivel {hat tries to measure such value. It is a stakensld
define value. The value of a product depends upon the giempt to measure the increased value for andserén
needs of the various stakeholders involved in @rgadr it to the economic system. But computing thiséase
using a product. As we show, under different sim, iy ygility is very inexact and somewhat subjective.
the value of a product may change depending upon
context.

In measuring productivity over the lifetime &

Therefore, output for software is often meadun the
. numbers of lines of code, and cost is often expikss the

In this paper, we present the development of &, mper of hours required by the staff to producat th
productivity measure applicable for the high perfance iyt But as the utility discussion above implisige is a
computing (HPC) domain. Since we want to compute highiy dubious number. What about code quality afier
productivity values for specific programs, our g&@hot yribytes such as maintainability and reliability@ith
only a formal model of productivity, but one thaash great reliance on COTS (Commercial Off the Shelf)
parameters that can be easily computed. While gat ig products, use of program libraries, reuse of magule
to ulimately produce an absolute measure of pdc — pject oriented class libraries, etc. such caltat are
in this paper we limit our discussion to the refati \ery hard to interpret. Using other measures sugh a
productivity between two implementations. Even this ,nction points doesn't really help. They have #mme
problem as lines of code in being an imprecise omeasf
the value of a product.

Presented at International Symposium on Software
Metrics, Como, Italy, September 2005.

While lines of code per day (or per hour dodj have
been a traditional measure of productivity — mostly
because of the lack of a good alternative — it daaktrue
definition of utility for that software. This issugcomes
evident in looking at the utility of programs rempd by
the HPC community. They are concerned about mesguri
and evaluating the performance of the various hagh

We will first discuss several other theoretical misd
that measure productivity using high performance
computers. Can we use these theoretical modelsiar to
develop a computationally effective way to measure
programmer productivity in the HPC domain? Just as
important, will these productivity models be
computationally effective? That is, can we actualiy

computers used to solve complex problems. For thes&xperiments to collect the relevant data to comphig

stakeholders, execution time is often the domirfaator
and various benchmarks have been developed fo
measuring performance on these machines. Howewer, t
HPC community is quite aware that there are othtical
factors involved in setting up the problem solutitme to
program the solution and tune it for maximum eéiay,
problem set-up times, times waiting in job queues a
scheduling delays, and post execution processinthef
results. These times can be significant [5, p. 60].

In this domain, the chief performance measiged is
time to solution. “The single most relevant metric for high-
end system performancetise to solution for the specific
scientific application of interest.” [5, p.6] Venjttle is
known about the various development processes (.
one designs, codes, tests) are used in this emv@on In
particular, what are appropriate models of proditgtifor
this domain so that various environments can bepeoed
for their effectiveness?

An HPC machine with 1000 processors, for example,
has the capacity to execute a program in 1/10@08eofime
of a machine with only one processor. The tricktds
divide up the problem space so that every processobe
kept busy solving the problem in parallel. If weultbdo
this, then we would achievespeedup of 1000.

Realistically, however, we achieve a speedup much

less than this theoretical maximum. While the total
processing power increases linearly with the numifer
processors, it becomes harder to divide some prabieto
equal-sized parallel pieces. Adams [1] gives ampta
where a solution that used 92% of the total contpmurtal
power of 32 processors used only 48% of the total
processing power when the machine was expandeg8o 1
processors.

In developing HPC programs, there is the rieddne
a program to utilize the multiple processors of HIRC
system. This parallelization effort becomes a Siggt
part of the total cost of the system. Because d th
parallelization effort, for this class of stakehaig| utility
is related to the speedup an HPC machine can achiey
productivity can be reduced to some function of the
execution time of the program and its developmiem t

productivity? We ran several experiments using esttslin
high performance courses at several universitied, ae
will report on those results as it applies to owmnanodel
of productivity.

The work reported here is part of the Defense
Advanced Research Projects Agency (DARPA) High
Productivity Computing Systems (HPCS) program. The
mission of the HPCS productivity team is to better
understand how one develops software that will eeeon
the next generation of high performance computéng
HPCS program consists of several Working Groups and
the activities presented in this paper represenk haat
came out of the Development Time Working Group, led
by the University of Maryland [4]. As part of ddeping
new high performance machine architectures, rekearc
from this HPCS activity may play a role in decidioig the
software environments (e.g., compilers, editors,
development tools) that need to be built to makeseh
machines most productive.

2. Productivity
2.1. Models of productivity in the HPC domain

In the HPCS program, the primary interest in a
productivity metric is to support the acquisitiorogess, as
one of several criteria for deciding which system t
purchase. Such a metric can also be useful for a
programmer or project manager faced with the dewisf
which parallel programming technology to use for a
particular project. Note that in the former case, metric
would be applied to evaluate an entire HPC systamd,in
the latter case would be applied to evaluate aicpdat
technology on a given HPC system.

A productivity metric can also be applied on a
individual project, to evaluate how productive the
programmers were in developing and executing the
software on a particular HPC system. We restrict ou
discussion to productivity at the project level. dpply a
productivity measure on a technology or system lleve
would involve some method for aggregating the
productivity measures from individual projects, ahiis
outside the scope of this paper.

Several models have been proposed to defin€ HP
productivity. Here we present 3 of them as typufthe
many that have been proposed. See [7] for addltiona
proposed models.

2.1.1. Utility values

Snir and Bader are one example of using ytilieory
to the problem of developing a model of producyiyitO].
Cost is the cost of developing the solution plus thet af
using the system, but tivalue is the utility preference of a
stakeholder (e.g., Laboratory director) to the work
performed by the system. The utility of a solutieitl be
how long it takes for the solution to be readytiretato the
need for using that solution.. Utility, relatedth® concept
of risk, is a function over [0..1] and in this cake utility
is generally a decreasing function of time, reaghinust
at the deadline when the solutionst be available.

For example, consider the problem of weather
prediction. Assume you want to know the weather 48
hours in advance. If you could accurately compine t
weather for 2 days in the future using only 1 hofér
computation, then the 47 hour advance notice haseso
economic value (e.g., should you plan an outdotivigc
or if it will rain, move indoors?). If it takes 2dours to
compute the weather 2 days hence, then the 1 deanee
notice still has value, but less so than if wouivén after
only 1 hour of computation. Finally if it takes neothan
48 hours to compute the weather, the calculation i
value; you can simply look out the window to seeathe
weather is.

As stated earlier, because of the importaridem® to
solution as a performance metric, the use of wtilit

functions to address this attribute has appeal as a

productivity measure. But as a measure of prodigtiv
this approach has two weaknesses:

1. It is somewhat subjective since the utility of the
solution over time depends upon the subjective
opinion of the stakeholder creating the utility étion.

2. Productivity is very dependent upon the particular

needs of the application being developed. Thahs,
time that the solution is needed greatly affects th
utility curve that is produced. Therefore, two difint

total lifetime work produced by a system and cssthie
total lifetime costs of the system, or more forypals:

W SXE XA M
CL

where $ is the peak performance of the machine, E is the
efficiency of the computation (i.e., how much oé theak
performance is actually used), and A is the avditatof

the machine (i.e., how much wall-clock time is aditu
needed to compute one second of the solution) wiile
represents the total lifecycle costs to develop exetute
the program. The numerator represents the calendar
needed to execute a solution to the problem byffexg in
how much of the peak performance a computation, uses
how efficient the computation is and how much tiilse
spent in various job queues waiting for acceshicoHPC
machine. Note that only execution characteristicghie
final solution are used to computalue in this calculation

of productivity. The time to develop the programnist
considered (although the cost to develop is pad pf

w —

2.1.3. Power and efficiency

Kennedy [9] looks at the problem from the pextive
of the power of a given programming language bynitef
power and efficiency with respect to a language.

Let B be a standard reference implementation of a
program. We can define I{Pas the implementation time
for P,. If L is another language we also compute)l@hd
the ratio of the two,p, represents the programming
efficiency of implementing a solution in_Bver a solution
in Py (which he calls power). We can express this as:

1(Pg) @)
()

This gives a value of how efficient it is to progran L
over the reference language P

p

Similarly we can compute the execution efficige as
the ratio of execution times, or
(©)

£ E(R)
This ratio shows how much execution time it talesdlve

E(®

programs may have the same performance andhe problem in L relative to the reference language

development time characteristics, but very différen
utility curves. This model, while theoretical pleag
becomes difficult to use in practice.

2.1.2. Work Estimator

Sterling [11] developed an alternative modehtt
defines productivity as utility over cost wherédlitytiis the

Kennedy’'s time for a solution is the sum of

implementation time plus execution time, or:
T(P) =1(P)+r E(R) 4

where T(R) is the time to solution for program P in
language L, and is a problem specific factor giving the
relative importance of implementation time over@x@®n
time (e.g.r is large for programs that execute many times,
r is small for a program that executes once). Simegoal

is to evaluating various languages, he wants o fire P
that minimizes T(f. By choosing an appropriate value for
r, the impact of I(Pi) becomes more or less important
decide whether only execution time or developmiem is
the more important component of (P

Substituting for I(B and E(P), using the definitions of
p ande, we get the time to solution as:
©)

T(P) =11(Py+ 1 r E(R)

p €

Under the assumption thatande are relatively constant

for a given language L, productivity is then théaaf the

time to solution of Pdivided by the time to solution of P

which gives us the result:
Productivity = T(B) = p+e X (6)

TH 1+X

X = rER) (7)
()

This approach has some similarity to the oeeadopt
later in this paper. However, it has one weaknasgsi
present definition to be applicable within the HPCS
program. Often L and the reference languageafe
variants of the same language and implementaticonef
aids the implementation of the other. As we latates a
system like MPI simply adds the parallelizatiompitives
to a language like C so this straightforward corapah of
p in equation (2) may be difficult to compute sin¢e,)
also includes I(p) and it may not be able to obtain an
accurate value of I(P.

where

hours give a productivity of 8 SLOC per hour or&40C
per day).

But if we could quantify program utility (againg we
knew what one unit of program utility representeh
could define productivity accurately. Let M repnas¢he
number of program utility units contained in thegmam.
Traditional productivity can then be defined as:

Traditional Productivity = Program utility units
Effort in hours

9

2.3. HPC productivity Model

In order to quantify the value of an HPC peogr we
need to compute its productivity as givenutyity/cost of
equation (8). But what are the utility and costsoich
programs? If we assume that we can measure
traditional productivity of an organization (by eqion
(9)) then the starting point for HPC productivity this
utility in program utility units per hour, which peesents
the development effort for building a large prograrive
will assume here that it remains relatively consfan an
organization, although we know that it actually cary
greatly from project to project.

the

Creating a program for an HPC machine has st co
factor generally not present in building a progréom a
single processor. Often a C or FORTRAN program is
written to execute on a single processor, and séhearallel

While all of these models compute a value forversion is built by adding function calls that iheo

productivity, our goal was to produce a model weldo
easily measure in the laboratory and would alsocobe
practical value. Beginning with a simple definitiayf
productivity, we proceed in the next section toelepg an
alternative view of productivity.

2.2. Traditional productivity

In the HPC domain, productivity, as we stated hefor
can be represented as:
8

W

Productivity = _Utility
Cost
For traditional software projects, this has beerelsive
concept. We don't really know the utility of a peeof
software, so its size is a reasonable estimatoritsof
complexity and usefulness and the effort to buihe t
product is a reasonable estimator of the costadyme it.

So Utility is often expressed as source lines of code

(SLOC) and productivity is often expressed as SLjie€
hour of effort, and numbers like 10-20 lines pehd@w
day, averaged over the entire development proeess)ot

processes to create parallel paths of executiseparate
processors. MPI and OpenMP are two common intesface
used to parallelize a program. The Message Passing
Interface (MPI) builds a network of processes thass
messages for communication and OpenMP creates-multi
threaded, shared memory parallelism. It requires
significant effort to achieve this parallelism bgding the
appropriate MPI or OpenMP interfaces to a seriasioa

of the program.

In order to compute productivity in the HPCndon,
we need to know the increased value of a prograah th
achieves a speedup of We make the following two
assumptions:

The economic utility is modeled as a combination

of program size and speedup. A program withM

program utility units (e.g., SLOC) that achieves a

speedup ofs on an HPC machine has the same

economic utility as versions of the program, each of

! For ease in understanding, you can substitute SLOC for

uncommon (e.g., 160,000 SLOC divided by 20,000l tota program utility units. As stated previously, SLOC is the most

commonly used proxy for these units.

size M and each running on a single processor. The* C = 1/k. In this case, dividing the two productivity
utility of this code is thers*M. That is, achieving a values gives us a measure of utility of the paraistem
speedup of is equivalent ts implementations of the over relative costs compared to a serial implentigmta
program, each of siZd.

2. Thecost is modeled as development effort. Because We can then represent HPC productivity, by the
of the complexity of achieving parallelism, an HPC following model, originally developed by Jeremy Kep
program has an increased cost of developmentCLet of MIT Lincoln Labs (and Project Director of the BB
represent the relative increase of producing theproductivity team) that we have been using for HPC
parallel version of the program over the single programs. We define productivity as given in Figlre
processor serial versiol€ can be expressed as the

ratio of the cost of the parallel version over tlst of Serial Execution Time
the single processor version. and for HPC progr@ms Speedup = _
is generally greater than 1. Paralle| ExecutionTime

Letk be the cost for producing 1 program utility uifit.
M is the program size in program utility units, thibre Productivity =
uniprocessor cost ig*k. The cost of the parallel program Balutive EFfort
is thenM*k program utility units times the relative cost - o
factor OfC or MK C. Figure 1. HPC Productivity Model.

Reélative Speedup

Combining both assumptions, we get a tentatiAC

ivi 2.3.1. Relati eed
productivity measure as: ative Speedup

Y = g¢M = _s (10) The numerator of our HPC productivity modelative
M*k*C kxC speedup, sounds like a simple concept, but has significant

or issues when trying to compute a reasonable valueoife

WY o - 1% s (12) thing we would I?ke to use relative speedup as anado
K C compare two different implementations of a program,

perhaps to compare the effectiveness of the uridgrly
language or parallelization model (e.g., MPI versus
OpenMP). However, one can artificially inflate ttedative
speedup by using a poorly implemented serial vardtor
example, one can build a serial implementation, sumea
the serial execution time, then simply turn on cienp
optimization switches and recompile. One can often
achieve a speedup of 2 or 3 that way with no
parallelization effort at all. (i.e., Relative effdas a value

of 1, with a resulting productivity of 2 or 3.)

wheres is the speedup ard is the relative cost or effort
for creating and parallelizing the program (e.gtalt effort

to both create the serial and then parallel versibthe
program). The constaktrepresents the costs to produce 1
program utility unit of the final program (or asatd
previously, can be approximated by the cost to yeed
one line of code). Instead of program utility unite can
use any proxy for that figure. So it is irrelevifnive use
hours of effort, SLOCs, function points, or somdent
attribute as long as this attribute measures wiititsome

direct way. A more serious problem is that it is often easy to

even get the serial implementation. Many developank

on both the serial and parallel implementationthatsame
time and the project may not even pass through a
development stage where there is a complete serial
implementation to measure. Some problems are sitoply
complex to test or run via a serial implementatan a
single processor.

Equation (10) gives us an absolute value for
productivity, but unfortunately we have no idea wkand
a program utility unit are. However, given two difént
developments, if we divide one productivity value the
other, thel/k factors cancel, and we can use equation (11)
to compute the relative productivity between twifedent
projects. In this case, if we let P be the HPGQyam we
wish to evaluate andyP®e a reference implementation of
the same program, then R/fBYovides a relative value for
parallel implementation P compared to the reference
implementation R For a reference implementation we
choose to use a baseline serial implementation @e
implementation running on one processor). In mases
we will set the serial execution tinseas 1 and the relative
costC as 1, so baseline serial productivity will We= 1/k

In order to get a level playing field, onewtimn to this
problem is to use a reference serial implementafpnit
actually doesn’t matter which one is used since ane
only comparing relative HPC productivities. Thatusing
a different reference implementation, Rvill have the
effect of changing all values of productivity byetfactor
Ri/ R, and the relative ranking of each project will réma
the same.

Obtaining a reference serial implementatioso ahas
the effect of validating the value of the programitie time
to solution equations. If we can obtain an optirsatial
implementation, then a parallel implementationupesior
to this serial implementation only if it has a puetivity
greater than 1 according to Figure 1. That is, wedna
speedup sufficient to counteract the increasedteffothe
parallel implementation.

2.3.2. Relative Effort

For a similar reason, we can often not evemiotboth
the serial and parallel effort for a developmentcsi
parallelization may occur during the initial devateent of
the solution. However, if we substitute the effdor
building the serial reference implementation, ashwi
relative speedup, we get uniform value we can updd a
multiplicative constant).

Combining both of these results, we get aragou for
HPC productivity as given in Figure 2. Note thatr ou
equation for relative effort is a variant of thduesp from
Kennedy’'s model given in equation (2) and speedup i
simply Kennedy's efficiencye from equation (3). The
difference is that in Kennedy's case he is usingaas
reference implementation a standard parallel swiutp
the problem. In our case, we want the
implementation to be a serial implementation.

Reference Execution Time

Speedup =

Paralle| ExecutionTime

Rélative Speedup
Productivity =———— = 4= =

Relative Effort

Paralle| Effort
Reference Effort

Figure 2. Revised HPC productivity

Relative Effort =

In order to provide normalization to the vaud e and
p, a good choice for this reference implementatiooutd
be the best serial implementation in terms of etieou
time that can be written. As stated at the end extiSn
2.3.1, p represents the additional
parallelize all solutions to the problem over a gj@erial

implementation, and represents the ultimate speedup one

can achieve over the reference implementation. Mewe
if no optimal implementation is available, then aseyial
implementation will do, except that the valuespadinde
will have to be interpreted differently.

reference

effort needed to

3. Experimentation

As part of our work on the HPCS program, weeha
been evaluating development characteristics for HPC
programs by studying the development of prograntkimi
selected high performance computing classes atraeve
universities [4]. Each semester 2 or 3 graduate HPC
related classes at several universities run several
experiments addressing HPCS development time issues
These experiments are done within the context ef th
programming assignments for the course. Typically
students develop 2 or 3 programs using severatiaten
models (e.g., MPI, OpenMP) and we collect all
compilation and execution time characteristics toese
programs as well as copies of all source programs
compiled by the students. In addition the studdate
supposed to) turn in logs giving the time spent on
performing the various tasks in completing thegrssient.
From this data we are able to evaluate the various
workflows used to build those programs. We canthse
data in order to evaluate our model of productivity
described in this paper.

Reference Execution Time

Speedup =
Parallel ExecutionTime

Rélative Speedup
Productivity = ———————

Relative Effort

Parallel SLOC
Relative Effort = ———

Reference SLOC
Figure 3. Simple HPC productivity measure

Accurate effort data is usually very difficuiard to
obtain [6]. Programmers are either reluctant od fit
difficult to keep accurate records on their acibat
However, we have already shown by equation (11) tha
any measure of relative effort suffices. As long ths
application domains are similar, SLOC counts are an
approximation of effort, so within a limited domaffigure
3 gives an easily computed formula for productivitye
use this as well as effort in our classroom expenitn

3.1. Evaluating productivity measures

Table 1 presents an initial evaluation of pheductivity
measures from Figures 2 and 3. These represent&nts
in one class where we have the relevant data wingpl
Conway’s game of life program in C using MPI as the

parallelization interface.

Part A represents the calculations where adffart
data is used to compute productivity. Program 8 vased
as the highest productivity. The program with sbsirt
execution time (Program 5 with an execution timeBd&f
seconds) was only the second best in terms of ptivity.
Even though it took 4 seconds longer to run (alx®9b),
total effort to construct the program was only lfuts
compared to 22 for program 5. Program 4 which eadso
about 10% faster than program 3 took 34.5 houtsutll
instead of the 10 hours of program 3. The othetogams
clearly had lower productivity both in terms of aff to
complete and in performance.

Table 1. Productivity — Game of Life program
Part A. Using effort for productivity
Program 2> 1 2* 3 4 5
Serial effort (hrs) 3 7 5 15
Total effort (hrs) 16 29 10 34.5 22
Serial Exec (sec) 123.2 | 75.2] 1015 80.1| 311
Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5
Speedup 158 | 4.76] 5.87 6.71] 8.9D
Relative Effort 229 | 414 143 493 3.14
Productivity 0.69 | 1.15] 411 1.36] 2.8B
Part B. Using SL OC as effort measure
Serial SLOC 161 134
Parallel SLOC 123 352 300 1827 151
Relative SLOC 0.76 | 2.19] 1.86 11.35 0.94
SLOC Productivity | 2.07 | 2.18] 3.15 0.59| 9.4P
*- Reference serial implementation

Using SLOC counts to estimate effort, we dget t
results in Part B of Table 1. We believe the rasalte
similar, but not as accurate. The two programs Wigihest
productivity are the same and the bottom 3 arestiree.
In this case program 5 does have the highest ptiodyc
due principally to the extreme brevity of the MRlusce
program compared to program 3.

Applying this analysis to a second program,gðe
results described by Table 2. This second problesithe
Buffon-Laplace needle problem, a Monte Carlo
simulation, where the value of can be computed by
dropping a needle randomly on a grid. In this caf$ert
data is mostly missing and several serial execstiye not

execution, we can get a representative productixtye.

In this example, the reference implementatibnsen
was program 18. It had the optimal serial executiime at
3.17 seconds, but exhibited an all too common
phenomenon in the HPC domain that the parallelimers
running on 8 processors actually ran slower at 3.42
seconds (i.e., a speedup of less than 1).

Program 11 was judged highest in productiaitys.81
with program 15 at 4.01 not far behind. Progranintieed
has the least execution time at 0.70 seconds widbram
15 being the second at 0.94. Program 11 also had th
characteristic of requiring the least lines of catld3 with
program 15 only requiring 46.

Tables 1 and 2 also demonstrate some of thetigal
problems in computing productivity measures. We rehitl
obtain the serial effort for program 5, but forttedg it is
not needed in our calculations &. Similarly, serial
SLOC counts for programs 1, 3 and 4 were also ngssi
Almost all effort data for programs 11 through 2@sanot
submitted by the students. Fortunately, againetlaes not
needed to compute our productivity measures. As/ave’
said previously, obtaining intermediate values.(esgrial
effort, serial SLOC count, serial execution timas) very
hard to obtain and basing our calculations on firsiies
greatly increases the usefulness of the formulsem & the
precision is not as great. All we need is someresfee
implementation upon which to base our relative mess

3.2. Discussion

The productivity measure has an implicit tine
solution component built in with the calculatiorfsecand
p. But going back to Table 1, do we want to say that
program 3 with productivity of 4.11 is always betthan
program 5 with productivity 2.83? If this is a plein
executed once (what is often called the “lone netea’
workflow), then program 3 probably is better sinoe are
trading off 12 development hours for a decreaset.8f
seconds of execution time. But if this is a probtbat will
run daily for the next 10 years, then we want tcréase

available. But using the SLOC counts and parallelthe importance of execution time over effort in garting

Table 2. Productivity — Buffon Laplace needle probl em

Part A. Using effort for productivity
Program 2> 11 12 13 14 15 16 17 18* 19 20 21 22
Serial effort (hrs) 4 4 12
Total effort (hrs) 7
Serial Exec (sec) 3.33] 5.10 20.00 6.2(3.1y 3.90 591
Parallel Exec(sec) | 0.70| 1.07 2.50 2977 094 400 195 342 150 2198 1.81 |1.81
Speedup 454| 2.96 1.27 1.07 3.3¢ 079 162 093 2j112 160 175 |1.75
Relative Effort
Productivity

Part B. Using SLOC aseffort measure
Serial SLOC 32 40 28 36 37 50 55 33 48
Parallel SLOC 43 52 43 50 46 57 66 92 55 62 42 17
Relative SLOC 0.78 | 0.95 0.78 091 084 104 120 167 1)00 113 Q.76 [1.40
SLOC Productivity | 5.81| 3.13 1.62 117 401 076 135 055 201 142 229 |1.25

*- Reference serial implementation

productivity. Much like the factor in Kennedy’s time to
solution equation (4), we need to modify produdtyivio

reflect the execution versus implementation traidedf

computing productivity. In the next section we offeme
comments on approaching that problem.

4. Productivity revisited

The productivity formula of Figure 3 has theakness
that it doesn’t address the total lifetime exeaquti@havior
of an HPC program. In order to address that faci@r,
propose to modify the equation by reducing the ichjéd
the cost factor (e.g., relative effort term in Fig) when

Since parallel effort (consisting of the tdiale to write
a serial then parallel version of the program)dsnauch
greater than the serial effort alone in the HPC aarnif
we assume that the parallel effort is greater thiam
reference effortRelative effort becomes a monotonically
decreasing function af, so productivity is monotonically
increasing. Because of this, we can always eliminat
solutions with lower speedup values. So for Table 1
programs 1 and 2 can never have highest prodyctioit
any value of r. Program 4, with speedup of 6.7 bpiially
has higher productivity than program 3, but by tohgt
program 4 (dotted line) we see that program 3 angrpm
4 have the same productivity of 5.59 &t0.76, but

a program is repeatedly executed. As in Kennedy'sProgram 5 already is higher at 7.73.

productivity model, we propose a factar in the
calculation of relative effort to cause this effeag in:
(Parallel Effort + r x Reference Effort)
(Reference Effort + r < Parallel Effort)

The valuer represents the number of executions of the
program over its lifetime and varies between 0 anthis

is only a temporary solution. As we show, this
modification has most of the properties we want, \wa
need to establish it on a better theoretical fotinoda

(12)

RelativeEffort =

For the single execution lone researcher tygbe

program,r has the value of 0 and equation (12) reduces to

Table 3. Kennedy’s productivity from Table 1
r Prg.1 | Prg.2 |[Prg.3 Prg.4 |Prg.5
1 0.44 0.24 0.70 0.20 0.32
100 0.52 0.31 0.88 0.26 0.41
1000 0.95 0.84 2.06 0.74 1.14
10000| 1.45 2.96 4.74 3.29 4.73
20000 1.51 3.64 5.24 439| 6.14

In order to better resolve this issue, we sifled to
evaluate equation (12) so that:
1. We have a better understanding of the modifications
of relative effort to better reflect the contritoni of
development time over the repeated execution of the
program over its lifetime.
We need to correlate the factorto the number of
repeated executions of a program. (That is, what do
r=0.26 mean for the example graphed in Figure 47?
What is the physical reality expressed by r=0.267)

2.

As a final check on our model, we compare our
productivity results with the results from Kennesly’
productivity analysis (Equation (6)). Table 3 pmsehis
productivity results for the data in Table 1 basgedn the
value ofr chosen. We use the same program 2 as the
reference Pof his analysis.

Figure 3 with productivity given by Tables 1 and 2.
However, if the program represents one used regligate
then r is close to 1 and therelative Effort value
approaches 1, meaning that the influence of devstop
time is less on productivity and the utility of tpeogram
reduces to just speedup.

Returning to the example presented in Tabl¢hére
was a question of whether program 3 or 5 had highe
productivity. Program 5 had higher speedup of &9ér
5.87 for program 3, but required 12 more hours of
development. Our analysis chose 3 as the bettgram

=
o

Productivity

N Wb OO N 00O

o
I

0O 01 02 03 04 05 06 07 08 09 1
Value of r

In Figure 4 we plot the values Bfoductivity for both
program 3 and program 5 asaries between 0 and 1. The

Figure4. Productivity for programs 3, 4, and 5.
We get a result similar to his model. Fat, program 3

solid line represents program 3 and the dashed linga5 the highest productivity (in bold in Table Byt asr

represents program 5. For0 we get the productivity of
Table 1 and for=1 we get productivity as simply the
speedup of the various solutions with program Sdpei
most productive. Ar=0.26 the lines cross, changing the
answer of which program has higher productivity.

increases, the execution component of T(P) beconues
important and for r=10,000 program 3 and progranae
almost the same productivity. For largemprogram 5 has
the highest productivity, demonstrating that forg&a
number of executions, implementation time is less

important than execution time speedup. (As with our

model, Kennedy needs a correlation of the value with
a measure of total execution time.) In both mod#is,
limiting value in productivity as execution timecieases
will be the speedup factor.

Table 4. Rank of each program by each model
r Model 1|2 4 5
small Kennedy 2] 4 1 5 3
Ourmodel | 5| 4| 1 3 2
large Kennedy 5| 4| 2 3 1
Ourmodel | 5] 4| 1 3 2
Very large Both 5| 4] 3 2 1

Table 4 compares the productivity ranking bkt
programs in the two models for increasing valuegs.of
(Remember that is an integer for Kennedy and a number
between 0 and 1 for our model.) Both identify tkene
highest ranking program for smallln our case program 1
received the lowest ranking because of its extrgrhigh
execution time compared to the others. In Kennedgse

all 5 programs were ranked the same as their tota

development effort. For our data at least, exeoutime
did not play a role in his model until the influenof
execution time (via increasirg was significant.

Asr increases the two rankings converge. Both will
have the same rankings for extremely largdeing just
the speedup factor.

5. Conclusions

In this paper we have addressed the
productivity in the high end computing domain. Altlgh
measures such as source lines of code per dayhctidn
points per day are traditionally used in the sofeava
engineering world as measures of productivity, ¢hes
measures are not applicable in all domains. InHRE
world, time to solution counts as well or may berewmore
important.

We have been working on a productivity moduedtt
uses relative speedup and relative costs as tmearyri
drivers of the model. What still needs to be deped is a
relationship of the parameters of our model antl weald
characteristics of HPC programs.
productivity measure to create an absolute measfire
productivity rather than simply a relative measamgong a
set of implementations? This requires an undergtgnaf
the constant/k we dropped from equation (11). White
was not important in the analysis performed hetds i

necessary in order to compute an absolute value for

productivity. Also, the factor introduced in Section 4
needs a relationship with physical reality and messthe
relative costs of development time versus
executions.

Can we use our

repeated.

In our HPCS project, we have been investigatin
productivity via a series of experiments in studeasses.
Our initial productivity measure, given by Figures@ems
appropriate and its modification using SLOC couims
Figure 3 gives results that are generally availallé easy
to compute. Looking at the effects of repeatedigoeking
a given program with a long lifetime, the effectf o
development time diminish in importance. We therefo
get the tentative absolute productivity formula egivin
Figure 5. (We put back the constaktwe dropped
previously in evaluating the class experiments égtti®n
3.) (While actual effort is the preferred measuseOC
counts instead of actual effort may also be usedhis
case,k would be the cost to produce 1 line of code.) As
given in the previous section, we need to betteletstand
and evaluate thRelative Effort term in this formula.

Reference Execution Time

Speedup =
Parallel ExecutionTime

/

Relative Speedup
Productivity = —————

k x Relative Effort

N

(Parallel Effort + r x Reference Effort)

Relative Effort =
(Reference Effort +r x Parallel Effort)

Figure5. Modified Productivity

issues of

The major weakness in using the formula iruFégp is
in capturing actual effort data. SLOC counts dogieé as
accurate a result. This data has been difficulcapture
accurately in our experiments, and from 30 years
experience with industrial projects (such as theSMA
Software Engineering Laboratory), it is just adidifit to
capture accurately in industry [3]. This is someghiwe
are well aware of and have been addressing it.un o
experiments, effort time is captured in 3 ways:
1. Student logs. This is the method reported in this
paper and the one we believe is most accurate, Wwhen
can be collected. Students turn in web-based forms
periodically on the effort spent on various acibst
Instrumented compilers. We have implemented
scripts that students use to compile and execate th
programs. These capture machine times quite
accurately. However, it doesn't capture think time
when the student is thinking about the problemnor i
evaluating changes to make in the source program
while editing the program. This is a significanttpaf
the total effort.
Instrumented environment. We have also been
using Johnson’s Hackystat system to automatically

2.

extract information from the computer system as Society and ACM International Conf. on Soft. Eng., Orlando FL,
students work [8]. Hackystat works by pluggingdn t May 2002, 69-79.
an editor, listening for edit events, and recording

activity the student is working on and what file is [4 Carver J. S. Asgari, V. Basili, L. Hochstein, J. K.

. . L S Hollingsworth, F. Shull, M. Zelkowitz, Studying Code
being manipulated. This gives an indication of what Development for High Performance Computing: The HPCS

computer resources arg be,ing used, but doesn"Drogram, Workshop on High Productivity Computing, ICSE,
address the same “think time” problem of the gginpurgh, Scotland, (May, 2004) 32-36.

instrumented compiler solution.
[5] Workshop on The Roadmap for the Revitalization of High-
For now we rely mostly on student logs, buée ar End Computing, Computing Research Association, June 2003.
investigating ways to automate the process beker.) N])
Tables 1 and 2 we chose those classroom projeatsewh [6] Hochstein L V. Basili, M. Zelkowitz, J. HoII!ngsworth gdd
we believed we had the most accurate effort date. iGea Carver, Combining self-reported and automatic data to improve

. . ! . programming effort measurement, Joint 10th European Software
we have been looking at is integrating Hackystah whe Engineering Conference and 13th ACM SIGSOFT Symposium

Eclipse environment [2] to make the process more,, e Foundations of Software Engineering (ESEC/FSE 2005),
transparent to the student and we hope more aecrais Lisbon, Portugal, September 2005.

and other approaches are being studied.
[7] International Journal of High Performance Computing
The major impact of this work is the realipatithat Applications (18)4, Winter 2004.
productivity may have different meanings in diffetre _
application domains. Source lines of code per dagksvin ~ [8] P- M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Kagawa
traditional software development environments, Frt and T. Yamashita, Practical automated process and product

- . . metric collection and analysis in a classroom setting: Lessons
other applications, such as the HPC domain disdusse,._ 4" tom Hackystat-UH, Proceedings of the 2004

her'e,. we need to 90 back to th? .original economicInterna’tional Symposium on Empirical Software Engineering,
definition of productivity as value divided by coahd | o5 Angeles, California, August, 2004.

define each of these in the context of that envirent.
[9] K. Kennedy, C. Koelbel, and R. Schreiber, Defining and

Acknowledgement measuring the productivity of programming languages, The
International Journal of High Performance Computing

. . Applications, (18)4, Winter 2004, 441-448..
This research was supported in part by Departrof

Energy contract DE-FG02-04ER25633 to the University [10] M. Snir and D. A. Bader, A framework for measuring

Maryland. We wish to acknowledge the contributiaris supercomputer productivity, The International Journal of High

the various faculty members and their students tdnee ~ Performance Computing Applications, (18)4, Winter 2004, 417-

participated in the various experiments we have auer 432.

the past 2 years. This includes Alan Edelman at,M6hn . . _ _

Gilbert at the University of California Santa BabaMary (11 T. Sterling, Productivity metrics and models for high

Hall at the University of Southern California, Alan performance computing, The International Journal of High
. : . . . Do, Performance Computing Applications, (18)4, Winter 2004, 433-

Snavely at the University of California San Diegad Uzi 440.

Vishkin at the University of Maryland. We are also

indebted to Jeremy Kepner of MIT Lincoln Labs fas h

contributions to the basic productivity model.

References

[1] M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P.

Papadopoulos, Ultrascalable Implicit Finite Element Analyses in
Solid Mechanics with over a Half a Billion Degrees of Freedom"
SC2004, Pittsburgh, PA, November 2004.

[2] J. Arthorne and C. Laffra, Official Eclipse 3.0 FAQs Asith
Wesley Professional, 2004.

[3] Basili V., F. McGarry, R. Pajerski, M. Zelkowitz,eksons
learned from 25 years of process improvement: The rise and fall
of the NASA Software Engineering Laboratory, IEEE Computer

