
Position Paper and Brief Announcement: An Empirical
Study to Compare Two Parallel Programming Models

Lorin Hochstein
University of Maryland

Computer Science Department
College Park, MD 20742

lorin@cs.umd.edu

Victor R. Basili
University of Maryland

Computer Science Department
College Park, MD 20742

basili@cs.umd.edu

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming—parallel pro-
gramming

General Terms: Human Factors, Experimentation, Lan-
guages

Keywords: MPI, XMT, message-passing, PRAM, empiri-
cal study, HPC, productivity, parallel programming, effort

1. ABSTRACT
While there are strong beliefs within the community about

whether one particular parallel programming model is eas-
ier to use than another, there has been little research to
analyze these claims empirically. Currently, the most pop-
ular paradigm is message-passing, as implemented by the
MPI library [1]. However, MPI is considered to be difficult
for developing programs, because it forces the programmer
to work at a very low level of abstraction. One alterna-
tive parallel programming model is the PRAM model, which
supports fine-grained parallelism and has a substantial his-
tory of algorithmic theory [2]. It is not possible to program
current parallel machines using the PRAM model because
modern architectures are not designed to support such a
model efficiently. However, current trends towards multicore
chips suggest that large-scale, fine-grained uniform-memory-
access parallel machines may soon be feasible. XMT-C is an
extension of the C language that supports parallel directives
to provide a PRAM-like model to the programmer. A pro-
totype compiler exists that generates code which runs on a
simulator for an XMT architecture [3].

To better understand how much benefit a PRAM-like model
could provide over a message-passing model, we conducted
a feasibility study in an academic setting to compare the
effort required to solve a particular problem. The questions
under study were: can we measure the effort in developing
a program using these two programming models and can we
differentiate the amount of effort for each model?

The subjects participating in the study were divided up
into two groups. One group solved a problem using the MPI
library in either C,C++, or Fortran, and the other group
solved the problem using XMT-C. The task was to write a
function to multiply a sparse matrix with a dense vector.

To obtain subjects, we leveraged existing graduate-level

Copyright is held by the author/owner(s).
SPAA’06,July 30–August 2, 2006, Cambridge, Massachusetts, USA.
ACM 1-59593-452-9/06/0007.

parallel programming courses at two different universities:
University of California, Santa Barbara (UCSB), and Uni-
versity of Maryland (UMD). At UCSB, the students solved
the problem in MPI, and at UMD, the students solved the
same problem in XMT-C. The focus of the UCSB class was
on developing parallel programs to run on the current gener-
ation of architectures, and the students were taught MPI, as
well as other models. The focus of the UMD class was par-
allel algorithms in the PRAM model, and the students were
taught XMT-C. The students were assigned to treatment
groups by class. The study was integrated into each class,
as the problem was a required assignment in each class.

Subjects kept track of their effort with a self-reported ef-
fort log. We also collected automatic effort data by instru-
menting the compilers, which recorded data at each compile.
We computed three effort measures: self-reported, instru-
mented, and combined. Self-reported effort measures are
based entirely on effort logs, instrumented effort measures
are based entirely on timestamps from the instrumented
compilers, and combined effort measures are based on com-
piler timestamps when the subject is working on the instru-
mented machine, and self-reported effort when the subject
is working off the instrumented machine.

The results of this preliminary study answer both of our
questions in the positive. In this case, on average, students
required less effort to solve the problem using XMT-C com-
pared to MPI. The reduction in mean effort was approxi-
mately 50% for all three measures, which was statistically
significant at the level of p < .05 using a t-test.

This study demonstrates that the effect of programming
model on effort can be directly measured through empiri-
cal studies with human subjects. While no single study can
conclusively demonstrate the advantage of one programming
model over another, a series of studies examining different
models and different problems can provide insights into the
relative strengths of parallel programming models in differ-
ent contexts. The study described above is one of a series
of such studies that we are currently conducting.

2. REFERENCES
[1] J. Dongarra, S. Otto, M. Snir, and D. Walker. A message

passing standard for MPP and workstations. Communications
of the ACM, 39:84–90, July 1996.

[2] J. JaJa. An Introduction to Parallel Algorithms.
Addison-Wesley Professional, March 1992.

[3] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman. Explicit
multi-threading (XMT) bridging models for instruction
parallelism. In 10th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’98), 1998.


