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Abstract 

 
Providing robust decision support for software 

engineering (SE) requires the collection of data across 
multiple contexts so that one can begin to elicit the 
context variables that can influence the results of 
applying a technology. However, the task of comparing 
contexts is complex due to the large number of 
variables involved. This works extends a previous one 
in which we proposed a practical and rigorous process 
for identifying evidence and context information from 
SE papers. The current work proposes a specific 
template to collect context information from SE papers 
and an interactive approach to compare context 
information about these studies. It uses visualization 
and clustering algorithms to help the exploration of 
similarities and differences among empirical studies. 
This paper presents this approach and a feasibility 
study in which the approach is applied to cluster a set 
of papers that were independently grouped by experts. 

 
1. Introduction 

 
Empirical studies have long been used to provide 

confidence in assertions about what is true and not true 
in the software engineering domain. By providing 
rigorous observation of the effects of a development 
technique under specific conditions, empirical studies 
allow for analyses of the conditions under which 
practices yield similar effects on a project’s cost, 
quality, or schedule.  

The ability to build up rigorous abstractions of 
information about practices not only provides 
confidence in individual assertions about specific 
techniques, but also is an important capability in 
providing an engineering basis for software 
development. This capability is an essential part of 

approaches like the Experience Factory [4] or the more 
recently suggested Evidence-Based Software 
Engineering [14]. 

Providing robust decision support for software 
development – i.e. making a statement about what 
development practices can help achieve goals related to 
cost, quality, or schedule for a given environment – 
requires the collection of data across multiple contexts 
so that one can begin to elicit these variables. 
However, the task of comparing contexts is a complex 
one. The set of potential context variables is quite 
large, including issues such as team size; team 
experience; lifecycle model; product size and 
complexity; automated support; organizational culture; 
application domain; among several others.  

Due to the large number of possible variations from 
one development environment to another, we have 
argued [1] that this process of knowledge building 
about practices must therefore be based on families of 
related studies, designed so that a range of context 
variations can be explored. Although this approach is 
logically appropriate, it does pose some practical 
problems. First, it is not always clear a priori what the 
important context variables are, meaning that important 
sources of variation may go unmeasured. Second, 
because there are so many potential context variables, 
we often cannot design experiments or even identify 
environments which offer coverage of all the variables. 

In other words, to design an effective family of 
studies, multiple experimenters, without having a clear 
concept of all the contributing factors, must agree a 
priori on a set of variables to collect and identify 
environments that cover a fairly complete set of 
variables, so that all studies are comparable. 

An alternative approach is to abstract information 
across several previously run studies. One method for 
this is to perform a literature search, reviewing the 



relevant literature in a rigorous way and constructing a 
textual summary of the evidence related to a given 
issue. If the sources do not agree then it is the 
reviewer’s responsibility to construct a fair summary of 
the evidence on both sides of the issue [14]. A key 
issue in supporting these systematic reviews is 
therefore to have a robust approach to identify and 
compare the studies’ contexts. 

In this paper, we extend the work from an earlier 
paper [18], in which we proposed a practical and 
rigorous process for identifying possible hypotheses 
and context information from papers. In that work, we 
observed that to make this approach work, and build a 
suitably large and varied dataset, we had to be able to 
analyze information about many relevant variables and 
the effect of practices from several studies that were 
not a priori designed to fit together. In effect, this 
required the ability to simulate a family structure over 
independent studies that were not explicitly designed to 
build directly on one another. For this we defined a 
specific template to collect context information from 
the papers. Since then, we have improved this 
approach. We have better formalized the context 
information data collection process [6] and we have 
developed an interactive approach to compare context 
information across studies. This paper focuses on this 
last issue. It presents an approach that uses 
visualization and clustering algorithms to help the 
exploration of similarities and differences among 
context descriptions of empirical studies. 
 

2. The Analysis Process 
 

Our methodology has the goal of building a set of 
conclusions about contexts of experimental papers 
when analyzed together to get insights about software 
development practices contained in multiple studies, 
which need not have been designed specifically to 
produce related data.  

As input, the methodology requires a focus of study, 
i.e. a (set of) software engineering phenomenon(a) 
about which information is needed. The process 
consists of three main steps (Figure 1), starting with a 
selection of papers of interest, the extraction of 
information from these papers and finally the analysis 
and interpretation of the contexts.  

This process is iterative, in that the results of a 
given step may convince the researcher to go back to a 
previous step and redo the associated activities. For 
example, if the researcher is not satisfied with the 
information extracted from a set of papers, he or she 
may use these results to suggest new areas to search in 
order to select more papers for analysis. 

 

 
Figure 1 - High level analysis process 

The output of the process is a set of conclusions and 
new knowledge that arises from the process. As a 
secondary output the process creates a structured and 
searchable repository of evidence and context 
information. The advantage of the creation of the 
Structured Base is that it can be reused. Other 
researchers can evolve and reuse it according to new 
research goals as they arise. 

The first step of the methodology, selecting relevant 
papers, is performed much the same as it would be in 
any method, no matter how formal, and is thus not 
discussed here at length. Defining the problem of 
course depends largely on the interests of the 
researcher. The problem definition is also related to the 
amount of knowledge already accumulated in an area. 
For example, as more evidence is accumulated we can 
move from studying how failure-prone software 
products are to which types of failures are most 
common; to which types of products display common 
failure profiles; to which context variables make those 
failure types more likely to occur. This allows us to 
evolve our knowledge into more useful models over 
time. Selecting papers that can be searched for 
evidence in the focus area is also conducted largely in 
the same way regardless of the individual process 
being followed. To be suitable, a paper must provide 
some empirical information or experience-based 
hypotheses relating to the focus of study.  

The remaining steps will be performed in a quite 
specific way in this methodology. Part of Step 2, 
specifically the extraction of evidence, was described 
in detail elsewhere [18]. In this paper we focus on the 
extraction of the context information. Then we present 
a context comparison approach for the reported studies 
that can be used as part of Step 3, Analysis and 
Interpretation.  
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3. Extracting Context Information from 
Papers 
 

In the Information Extraction step, the researcher 
must review each paper, looking for experimental 
evidence on the subject of interest and potential 
context descriptions described in the text. While 
reviewing the papers selected in the previous step, the 
researcher should highlight the important information 
(so that there can be some traceability to the original 
source if questions arise later). After highlighting the 
information, it is important that key details are 
transferred to data entry forms to create the structured 
base for analysis. Up to now, we are using forms 
implemented in Excel; although in future work we 
intend to create a tool to support the activities of the 
process. 

As said before, this paper will focus specifically on 
context descriptions. Context descriptions are the 
details concerning the environment from which the 
measures were drawn. The context descriptions are 
important for comprehensibility of measures and 
influencing factors for the focus of study. 

Our approach proposes a template (Figure 2) to 
collect context information. At least one template is 
filled for each paper, possibly more, if the paper 
describes data that was collected from several studies. 
As different studies report different metrics of interest 
to them, not every paper will have all of the desired 
context information. However, the template should be 
filled out as completely as possible. Although there are 
not mandatory attributes, missing values will be 
accounted for during the analysis, as they limit the 
strength of the conclusions that can be drawn. Besides 
that the analyst can review the template to insert new 
fields, for example: threats to validity. 

This list of attributes on the template was adapted 
partially from Sjøberg et al. [19]. The attributes of the 
context description template are:  
1) Paper Title: The title of the paper from which the 

reader is extracting the information. 
2) Type of the Study: This field classifies the study 

as an Experiment, a Case Study or a Survey [22]. 
3) Topic: This field uses the IEEE keywords in the 

Computer.org website to denote the topic of study.  
4) Goals: These fields state the goals for the study 

described in the paper, using the GQM goal 
template [3].  

5) Variables: These fields record all variables related 
to the study. A variable is a concept or construct 
that can vary or have more than one value. The 
researcher might then be interested in knowing how 
certain variables are related to each other. There are 
two basic kinds of variables: dependent and 

independent [22]. The following characteristics 
must be gathered for each dependent and 
independent variable in the study: Name, Type 
(independent, dependent or unclear), Possible 
Values, Data Collection Procedure (explains the 
method used to measure the variable, including for 
example what instrumentation and tool support 
were used). 

6) Subjects: This field describes the subjects of the 
study by category (undergraduate students, 
graduate students, professionals, scientists, other or 
unknown) and number. 

7) Instrumentation: These fields describe data 
gathering or data generation tools used in the 
experiment. 

8) Task: These fields categorize the tasks done by the 
subjects, as reported in the paper; duration of the 
task(s); and work mode (team or individual). 

9) Work Products: These fields describes the 
working products used in the tasks, including: 
Name, Type (Requirements; Architecture/design; 
Code; Change Reports; Error Reports; Other), 
Origin (Constructed, Commercial, Student Project,  
Open Source; Other, Unclear), Application Domain 
(E.g. Text Processing, Flight Simulation, etc), Size 
(using the metric specified by the author.), 
Representation Paradigm (E.g. Object Oriented, 
Imperative, Structured, etc.) and Language (E.g. 
plain English, Fortran, Pascal, C++, Java). 

10) Replication: This field indicates whether this study 
is a replication of another one.  

11) Other: This fields records any other information 
that is important for understanding the model, 
metric, techniques, or the empirical study itself 
(e.g., missing definitions, environmental 
characteristics, or information about process 
conformance). 
Besides the context, we collect the following 

information for each paper: 
1) The paper reports on a study done on pilot or 

production projects? The study involved one or 
several projects? This information helps to evaluate 
the applicability of the results; 

2) How well the results were measured? This 
information helps on the assessment of the rigor on 
which the study was run. 

3) How the experience was reported (journal papers, 
conferences, TRs)? It measures the acceptability of 
the results in a specific community; 

4) The person who reported the evidence was directly 
involved with the study? It assesses the familiarity 
of the author with the results.  



Figure 2 – Information Gathering Template 
 
4. Analysis and Interpretation 
 
The analysis and interpretation phase aims to analyze 
the study contexts in order to explore similarities and 
differences among them. For this, we propose the steps 
shown on Figure 3.  
 

 

 

Figure 3 – Context Analysis Process 
 
4.1. Ensuring Semantic Consistency 
 

The first step aims to harmonize the context 
descriptions to ensure the consistence of the terms and 
concepts used among the forms. For that one needs to 
certify that conceptual mismatches problems are 
solved. There are three types of mismatches we foresee 
[20].  
• Scope Mismatches: Occurs when there is a 

difference in the way a domain is interpreted 
(conceptualized), which results in different 

concepts or different relations between those 
concepts. In this type of mismatch, two results 
seem to represent the same concept, but do not 
have exactly the same meaning (although there may 
be some overlap). For example: Two studies may 
refer to the “cost” of a practice, although one may 
include only the cost of the effort to apply the 
practice, while the other may include the start-up 
costs as well (e.g. sending personnel for training).  

• Model coverage and granularity: This type of 
mismatch describes problems that can arise in 
trying to combine results when it is unclear to what 
part of the domain those results are applicable. For 
example, a study may make claims about a large 
class of software development projects while only 
having evidence concerning one or two specific 
instances of such projects.  

• Explication Mismatches: An explication mismatch 
is a difference in the way the conceptualization is 
specified. This can manifest itself in mismatches in 
definitions, mismatches in terms and combinations 
of both. There are three types: 

o Synonymous terms: Synonyms, in this context, are 
different terms that refer to the same concept. A 
trivial example is the use of the term “strength” in 
one study and the term “cohesion” in another, to 
refer to the same concept (that is, the amount of 
interaction within components of a system). 

o Homonym terms: This type of mismatch occurs 
when the meaning of a term is different in different 
contexts. For example, the term “interface defects” 
can have different interpretations, depending on the 
context: It can refer to a defect in the Human-
Computer Interface or a defect in the interfaces 
between two software components.  

o Encoding: Values in the studies may be encoded in 
different formats. For example, a numbers of lines 
of code may be represented as “KLOC” or as 
“LOC” or “SLOC,” etc.  

 
4.2. Analyzing Contexts 
 

Once the researcher solved the mismatches 
problems, the analysis can be conducted. The 
researcher should analyze the distance, proximity, 
affinity and confidence among the contexts on which 
the results from the papers were generated. There are 
many approaches that can be used to perform this 
activity; we propose an approach in which we use a 
hierarchical clustering algorithm to organize the study 
contexts. 
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Before applying any automated approach one has to 
organize and weight the attributes of concern for the 
analysis of experimental contexts. As shown on Figure 
4, we organize the attribute as follows: 

1) Systematic: characteristics of the study that may 
have influence on the results and may be 
controlled by experimenters. They can be related 
to: 
a. Theory – concerns the theory used to design 

the experiment. We suggest the following 
attributes: type of study, topic and goals. 

b. Experimental Condition – differences that can 
come from instrumentation of environment 
conditions  

c. Human – differences on the results can come 
from the different skills of the experimenters 
while running the experiment, or of the person 
who is reporting the results. 

2) Opportunistic: characteristics of the study that 
may have influence on the results but were not 
controlled by experimenters or not reported on 
the papers. 

Based on these categories the researcher can weight 
the attributes collected using the information gathering 
template [10]. That can be done by: 1) directly raising 
the attribute importance for the clustering algorithm; 2) 
submitting to the algorithm only the attributes of 
interest; 3) creating new columns for each possible 
value of multi-valued attributes of interest. 

These weighted attribute are used to define a 
composed distance measure to compare the studies 
experimental contexts. For that, our approach uses an 

interactive clustering approach in which hierarchical 
clustering is combined with visualization, to identify 
how different study contexts compare to each other. 
Section 5 will explain in detail how this is done. 

 
4.3. Drawing Conclusions 
 

The last step of the analysis process consists on 
drawing conclusions based on the patterns observed, 
create new hypotheses, or refute or confirm initial 
hypothesis or folklore. This is done by expert analysis 
of the evidence extracted from the papers and the 
analysis of the context in which this evidence was 
gathered [18]. In this manner, the clustering of studies 
by experimental context discussed in the previous 
section, and detailed in the next one, gives the analyst a 
systematic way to reason why study results agree with 
or contradict one another. This creates a robust basis 
for decision making support about a studied software 
engineering method, tool or technique. 
 
5. Clustering Studies 
 

Clustering is a division of data into groups of 
similar objects. A clustering algorithm attempts to find 
natural groups of components (or data) based on some 
similarity. To determine cluster membership, most 
algorithms evaluate the distance between a point and 
the cluster centroids. Cluster centroids represent the 
mathematical center of items in a cluster. The output 
from a clustering algorithm is basically a statistical 
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Figure 4 – Conceptual Distance Tree for Context Attributes 



description of the cluster centroids with the number of 
components in each cluster. 

Each cluster consists of objects that are similar 
among themselves and dissimilar to objects of other 
groups. The overall goal of the clustering is to allow 
many data objects to be represented by relatively few 
clusters, which means that the level of granularity is an 
important factor in the usefulness of the model. 
Representing data by fewer clusters necessarily loses 
certain fine details, but achieves simplification.  

One of the requirements of good clustering is the 
ability to determine the number of natural clusters in 
the data set. In fact many clustering algorithms ask 
users to specify the number of clusters that they want 
to generate [10]. This is not an option in our scenario, 
in which the researchers want to interactively explore 
what is the best grouping for a set of studies, so as to 
produce clusters of studies run in meaningfully similar 
contexts. Unnecessary merges or splits need to be 
avoided, as they produce unnatural clusters. The 
solution to this problem is to use the hierarchical 
agglomerative clustering (HAC) algorithms [11] that 
allow users to control parameters to determine the 
proper number of clusters. HAC algorithms generate a 
hierarchical structure of clusters instead of sets of 
clusters. It has the disadvantage of requiring the 
calculation of the distance between all pairs of objects 
of the analyzed data set, O (N2) of storage space. 
However, this is not a problem in our domain in which 
we have at most a few tens of studies to compare.  

 

 
Figure 5 - Hierarchical clustering and a dendrogram [11]  

Hierarchical clustering results are usually 
represented as dendrogram. A dendrogram is a binary 
tree, in which each data item corresponds to a terminal 
node of the binary tree and the distance from the root 
to a sub-tree indicates the similarity of the sub-tree – 
highly similar nodes or sub-trees have joining points 
that are farther from the root. Figure 5 shows the 
clustering of five data points (A, B, C, D, and E) on a 
2D plane. The dendrogram (a binary tree) on the right 
side shows the clustering result by using Single-
linkage and Euclidean distance [10]. The height of 
each sub-tree represents the distance between the two 

children. For example, the distance between A and D is 
the smallest among all possible pairs, they are merged 
together as a sub-tree and the height of the sub-tree is 
very short because they are similar in terms of the 
distance measure. On the other hand, B and E are not 
so close and the height of the corresponding sub-tree is 
taller because of this. 

The existence of a good interaction and clustering 
visualization interface is an important requirement of 
our approach. In order to better learn and understand 
how the studies compare to each other, the analyst 
should be able interpret how the studies are being 
grouped by their context information. In our work, we 
have used a tool that produces interactive visualization 
and exploration of hierarchical clustering, the 
Hierarchical Clustering Explorer (HCE) [11]. 

The HCE uses dynamic queries and coordination 
among multiple views to produce visualization of the 
hierarchical clusters. Users begin by performing a 
hierarchical clustering and build a dendrogram with a 
color mosaic display underneath (see Figure 6). 

The color mosaic displays a graphical 
representation of the data set color-coding each value 
in the table according to a color mapping scheme. The 
records are transposed into the color map; they are 
shown as vertical lines color-coded in accordance to 
each of its attribute values. When researchers want to 
identify hot spots and understand the distribution of 
data, they can examine the color mosaic. 

The dendrogram is displayed with a color mosaic at 
its leaves so that the analyst can better interpret the 
data. For this reason, the arrangement of rows and 
columns of the color mosaic display changes according 
to the clustering result. By default, in HCE, a high 
attribute value has a bright red color and a low value 
has bright green color. Middle values have a black 
color. 

With a widget control, users can interactively adjust 
a minimum similarity parameter to find the most 
natural number of clusters. They can also see how the 
hierarchical clusters are presented in other familiar and 
easy-to-understand views such as 1-dimensional 
histograms and 2-dimensional scatter plots. The 
coordination between the overview color mosaic and 
those views is bi-directional, that is, users can select a 
group of items in a view and see where they fall in 
other views.  

The HAC algorithm implemented on HCE [11] is 
summarized as follows. Let's assume that we want to 
cluster n data items, and we have n*(n-1)/2 similarity 
(or distance) values between every possible pair of n 
data items:  



 
Figure 6 – Usage of the minimum similarity bar (MSB) [11) 

1) Initially, each data item occupies a cluster by 
itself. So there are n clusters at the beginning.  

2) Find one pair of clusters whose similarity value 
is the highest, and make the pair a new cluster.  

3) Update the similarity values between the new 
cluster and the remaining clusters.  

4) Steps 2 and 3 are applied n-1 times before there 
remains only one cluster of size n.  

There are many possible choices in updating the 
similarity values in step 3. Among them, most common 
ones are complete-linkage, average-linkage, and 
single-linkage. Complete-linkage sets the similarity 
values between the new cluster and the remaining 
clusters to be the minimum of similarities between 
each member of the new cluster and the rest. Average-
linkage uses average similarity value as a new 
similarity values. Single-linkage takes the maximum. 

One of the key components in HCE is the minimum 
similarity bar. By dragging down the bar whose y-
coordinate determines the minimum similarity 
threshold, users can filter out the less similar elements. 
Using this Minimum Similarity Bar, or MSB, users can 
easily find the clusters of elements that are tight 
enough to satisfy a given threshold. The algorithm 
used to calculate the MSB is explained in detail in 
reference [11].  

Figure 6 shows the process of cluster discovery 
using the minimum similarity bar, from now on called 
MSB. The y coordinate of the bar determines the 
minimum similarity value. Users can drag down the 
bar to filter out items that are distant from a cluster. 
The minimum similarity values changed from 0.36 to 
0.764 in this example to separate 1 large cluster into 13 
small clusters. 

To prevent users from losing global context during 
dynamic filtering, the entire dendrogram structure is 
shown on the background, and users can highlight the 
position of a cluster in the original data set by just 
clicking on the cluster. 

Using the approach discussed in Section 4 and on 
the clustering procedures presented in this Section, the 
analyst has the tools to analyze the context from many 
papers and draw conclusions about the results found. 

6. Applying Clustering on Testing Papers 
 

We ran a feasibility study, in order to evaluate how 
the information is gathered and analyzed using our 
approach. Our strategy was to cluster some papers 
following our approach and to compare it to expert 
manual clustering done independently, the goal being 
to check if our approach led to the same grouping done 
independently by experts. 

We choose the work by Juristo, Moreno and Vegas 
that performs a review of 25 years of Testing 
Technique Experiments [12] as our basis of 
comparison. This paper, which we refer to as the TTE 
paper, analyzes the maturity level of the knowledge 
about testing techniques by examining existing 
empirical studies about these techniques. The work 
analyzed 24 studies, and produced a testing technique 
knowledge classification. 

In our study, we selected 11 of the 24 papers from 
the TTE paper. The criterion for choosing them was to 
choose the papers related to functional, control-flow, 
data-flow and mutation testing techniques, following 
the classification scheme of Juristo et al. This criterion 
was used for the reason that our previous knowledge 
on the domain of these techniques could help on the 
analysis of the papers. Table 1 lists the chosen papers 
and their original grouping in the TTE paper.  
 
Table 1 Selected papers and their original grouping 

Group Studies 
Weyuker [21] Group 1 
Bieman & Schultz [5] 
Frankl & Weiss [7] 
Hutchins [9] 

Group 2 

Frankl & Iakounenko [8] 
Myers [15] 
Basili & Selby [2] 
Kamsties & Lott [13]  

Group 3 

Wood et al. [23] 
Offut & Lee [16]  Group 4 
Offut et al [17] 



After selecting the papers we executed the 
following steps: 

1) Using the proposed template, we extracted the 
context information from each one of the 
selected papers. 

2) We interactively applied the clustering 
approach on the gathered data. 

3) We compared our results to the original 
grouping. 

As defined in our approach, we used the following 
attributes to derive a data file describing the contexts of 
the studies reported in the 11 papers analyzed: 

• Type of the Study; 
• Description of the Topic; 
• Object of Study; 
• Subjects Category (students, professionals, etc); 
• Subjects Work Mode (individual, team, etc); 
• Task Category (create, analyze, plan, etc) 
• Work Products (code, requirements, design, etc); 
• Instrument Origin; 
• The name of each dependent and independent 

variable after semantic consistency check; 
• The testing technique studied on the paper 

(Functional, Code Reading, Structural, etc). 
In the list above, we must notice two particularities. 

The first is that each study involves several dependent 
and independent variables. The second is that the 
number and type of variables vary from study to study. 
In order to weight this in our clustering approach, we 
created a record for each variable of each study on our 
data file. This way, a study that involved five variables, 
for example, yielded five records in the data file. 

Another important issue is the weighting of the 
testing technique attribute. This attribute defines the 
study treatments, so one has to consider it as the most 
important attribute to group the studies. The 
assumption was confirmed by interviews that we 
conducted with the TTE paper authors last year. To 
factor this into the data file, we created a column for 
each technique involved in the studies. 

In both cases discussed above, we are effectively 
strengthening the weighting given to the context 
attributes categorized as “instrumental” on the 
conceptual distance tree shown in Figure 4. It is 
important to remark that one could also have asked the 
algorithm to weight other attributes more strongly on 
the clustering process based on the Theoretical, 
Experimental or Human context attributes. 

The input file was opened in the HCE tool and we 
ran the algorithm of Hierarchical Clustering using the 
Pearson Correlation Coefficient as the distance 
measure. The minimum similarity distance starts with 
50%. This, in our case, yielded two main clusters. One 
included Group 1 and the other included Groups 2, 3 
and 4 of the TTE paper (see Table 1). In order to get 
more groups, we moved the MSB, raising the internal 
similarity measure within the clusters. We obtained 
four groups for a MSB between 56% and 60%. Figure 
7 shows how the HCE tool uses the dendrogram colors 
to highlight them.  

Looking at Figure 7, one can see that there is only 
one paper that was classified in a different way than 
the TTE paper: the paper by Myers was categorized by 
us as in Group 4 while the TTE paper placed it in 
Group 3, as shown in Table 1. We discussed this 
anomaly with the authors of the TTE paper, who said 
that this paper was later excluded from their analysis 
because of a lack of some details of the context 
information, especially on the details of the studied 
techniques. This is a good result as the other 10 papers 
were classified correctly. 

Some interesting results were obtained at different 
MSB values. For an MSB greater than 60.5%, for 
example, we obtained 5 clusters. Group 1, with papers 
by Bieman & Schultz and Weyuker, was split into two 
(see Table 1). Looking at the data, we realized that 
both papers have a technique in common, but 
Weyuker’s study included three other techniques that 
were not covered by Bieman & Schultz. 

Next, we investigated other distance measures and 
obtained similar results. We believe that the grouping 
of studies will vary little with the distance metrics used 
(Manhattan, Euclidean, and Pearson). 

Another important point to mention is that the color 
mosaic is very useful to visualize the similarities and 
differences among contexts. For example, Figure 7 
shows that this set of studies is very uniform in many 
of the context attributes. 

The feasibility study illustrated the usefulness of 
using our approach to quickly understand how a 
sizeable amount of studies compare to each other. We 
want to emphasize the importance of using a good 
interactive visualization tool for this task. As an 
example, consider a sample of the data file (reduced 
both in number of lines and columns) shown in Table 
2. Looking at it, one can realize how difficult it is to 
cluster the studies manually and see a relation among 
the studies even when only a few attributes are used.  



 
Figure 7 - HCE Tool - Clustering Context Based on Various Attributes 

Table 2 Techniques studied on each paper 

 
7. Conclusions 
 

In order to provide useful and accurate decision 
support about software development practices and their 
effects on projects, one usually needs to analyze results 
from several empirical studies that cover different 
development environments. Due to the wide range of 
influencing factors, and the fact that one cannot yet 
confidently specify them all ahead of time, it is 
desirable to have an approach from which observations 
about experimental results and influencing factors can 
be built bottom up. Building such a dataset would be 
infeasible if we cannot make use of existing data, even 
data that was never designed to contribute to a larger 
empirical base.  

We have been working on a practical process to 

 
 

 
gather and combine empirical evidence from papers. 
Having looked at a collection of datasets and 
abstracted up conclusions on several specific topics, 
we have shown elsewhere that our methodology can 
produce useful and feasible results, especially when it 
is compared to the results output from the more 
manual, expert-based approach [18]. However, a 
problem we frequently find is how to compare studies 
that report conflicting results among themselves. 

This paper proposes an approach to group studies 
according to their context information, so that 
conflicting and corroborating evidence can be better 
understood according to the context in which they were 
obtained. The paper presents evidence that the use of a 
systematic approach to gather context information 
combined with clustering techniques can group studies 
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in the same way as an expert would. This opens up 
several interesting possibilities such as using 
interactive clustering to evaluate the generality of 
evidences across studies, and to use cluster centroids to 
identify the typical context for a set of conflicting 
evidences. 

It is important to point out that the approach 
presented here can be used together with any other 
methods of combining results from studies. It can be 
helpful to analyze data collected for systematic reviews 
for instance. 

As future work, we intend to use our approach in 
bigger contexts, analyzing studies on the context of 
large systematic reviews. Other than this, we will 
investigate the cost-effectiveness of the use of the 
algorithm in early stages of systematic reviews. 
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