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Abstract

There is a need for distinguishing a set of
useful automatable measures of the software
development process and product. Measures are
considered ugeful if they are sensitive to
externally observaple differences in development
environments and their relative values correspond
to some intuition regarding these characteristic
differences. Such measures could provide an
objective quantitative foundation for constructing
quality assurance standards and for calibrating
matnematical models of software reliability and
resource estimation. This paper presents a set of
automatable measures that were implemented,
evaluated in a controlled experiment, and found to
satisfy these usefulness criteria. The measures
include computer job steps, program changes,
program size, and cyclomatic complexity.

I. Proposing Automatable Measures

There is a need for analyzing software
development phenomena and for developing measures
to facilitate such analysis. Appropriate
measurement is the key to providing vital
information to the developer, manager, and customer
with regard to making an individual development
effort more visible. Measurement is equally
important for investigating techniques and
methodologies in an attempt to recommend more
effective software development methods. The
appropriateness of any measurement depends not only
on its usefulness, but also on the manner in which
it is performed. Mensurative concepts and specific
metrics for software have been devised in abundance
(e.g., [Gilb 77]) but these software measurements
can prove to be expensive, inaccurate, or
completely inadequate in practical application.

The Software Engineering Laboratory [Basili et
al. 77; Basili & Zelkowitz 78; Basili & Zelkowitz
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791, a joint venture of the University of Maryland
and NASA's Goddard 3pace Flight Center, has been
analyzing several multi-man-year software projects.
Data collection in the early stages has been
predominantly manual; i.e., participants in the
project development periodically fill out forms
which provide information on what is being done,
the level of effort involved, the types and numbers
of errors encountered, etc. This kind of data
collection can impair an analysis effort to some
degree since it introduces some overhead and, more
importantly, sources of error and bias due to human
reporting inaccuracies and the phenomenon that
people behave differently when being observed.

It was recognized early that these problems
could be alleviated by developing automatable
measures and collection mechanisms. However, the
kind of data that can be collected automatically is
not always as informative as the kind that can be
collected manually. For example, it is generally
desirable to record the incidence of errors during
software development and to classify them according
to various criteria. However, this task typically
requires extensive and expensive human supervision
and is quite error prone itself. On the other
hand, the textual changes made to source code {once
it exists in a programming-product library) could
oe collected automatically and an algorithm (based
on heuristics for identifying combinations of
textual changes that correspond to the correction
of individual errors) could be employed to count
potential error corrections automatically. Such an
automatable measure is relatively inexpensive to
implement and might approximate the true error
count, but it cannot yield much insight into tne
types and causes of errors.

We define a measure to be automatable if it
satisfies the following criteria: (1) the data can
be collected without interfering with individuals
involved in the development, (2) the measures are
computed algorithmically from quantifiable sources
normally available, and (3) the measures can be
reproduced on other projects by essentially the
same algorithms. Note that these criteria stress
the feasibility of measuring software development
in an unobtrusive, objective, and transportable
fashion and they ignore the issue of how
automatable measures are actually implemented.
There are clear advantages to computerizing
software data collection and measurement
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procedures; in fact, all of the particular measures
presented below were computerized to some degree in
order to study them empirically. However, the
fundamental research issue addressed in this paper
is how to determine whether or not an automatable
software measure is indeed a worthwhile measure of
anything after all.

In order to discover which measures are worth
implementing, we need to do some experimenting.
First we must decide what characteristics of
software development we want to analyze and then we
must choose some automatable means of quantifying
them. As in the error-counts/textual-changes
example above, this approach often involves some
kind of intuitive approximation and requires an
independent validation (to ensure that the
automatable measure does in fact reflect the
designated software characteristic). In analyzing
software development, we have focused on two
distinet facets of the problem: the process and the
product. With respect to the process, we are
predominantly interested in measuring efficiency of
development; i.e., the less effort expended to
develop a given system, the better. With regard to
the product, we are predominantly interested in
measuring quality of developed software; i.e.,
qQuality in the sense of readability, modifiability,
testability, ete. 1In both cases these general
characteristics of software development are
extremely difficult to quantify by any practical
automatic means. To overcome this obstacle we must
transform them into more specific characteristics
that have a chance of being quantified and measured
automatically.

The efficiency of the software development
process is determined by the level of effort
expended, as manifested in time spent and cost
incurred, both by human personnel and on computing
machinery. For this paper, we have choosen two
aspects of the process that can be measured
automatically: computer usage by type of activity
and program changes [Dunsmore & Gannon 77] as an
approximation to error counts. In some sense, both
of these measures effectively quantify the effort
expended, time spent, and cost incurred duri
software development. :

The quality of a developed software product
can be manifested in its structure. Clearly,
structure has a direct bearing on readability,
modifiability, testability, etc.  For this paper,
we have isolated two aspects of program structure,
size and control flow, to be quantified and
measured automatically. Specific items examined
are the number of routines, the number of source
lines, the number of decisions, and several
variations of cyclomatic complexity [McCabe 76].

The following criteria were used to evaluate
the measures as yseful: (1) the measure should be
sensitive to externally observable differences in
the development enviroment, i.e., if the
observable difference between two developments is
the methodology used, then the measure should yield
different values for these two developments; (2)
the relative values of the measure for specific
environments should correspond to some intuitive
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notion about the characteristic differences for
those enviromments, i.e., if a methodology is
supposed to improve various attributes of the
development process or product, then the value of
the measure should be greater for a development
using that methodology than for a development not
using it. For example, if the measure is the
nusber of textual changes as an approximate error
count, and if the envirommental difference is the
use of a particular methodology, then to satisfy
the first criterion the number of textual changes
should be different for those developments using
and not using the methodology. The second
eriterion would be satisfied if the methodology
purports to reduce errors and the measure yields a
lower value for the methodology development than
the nomnmethodology development.

II. Ap Evaluation Environment

The evaluation of these measures took place
under controlled and slightly varying conditions.
Nineteen independent replications of the same
software development project were conducted and
closely monitored [Reiter 79]. Six were performed
by single individuals using an ad hoc approach to
software development, six were performed by three-
person teams also using an ad hoc approach, and
seven were performed by three-person teams using a
specific disciplined methodology. The following
mnemonics denote the three distinct programming
environments represented by these groups: AI (ad
hoe individuals), AT (ad hoc teams), and DT
(disciplined teams).

Each individual or team in groups AI and AT
was allowed to develop software in a manner of
their own choosing, which is referred to as an ad
hoc approach. The disciplined methodology imposed
on teams in group DT consisted of an integrated set
of techniques, including top down design of the
problem solution using a Process Design Language
(PDL), function expansion, design and code reading,
walk throughs, and chief programmer team
organization [Baker 72; Linger, Mills & Witt 79].
The participants in group DT had just recently been
taught and trained in this disciplined methodology;
thus, they probably were not yet able to exercise
the techniques to maximum capacity and advantage.

Beyond these controlled variations in size of
programming team and degree of methodological
discipline, other software development factors were
explicitly held constant across all replications
wherever possible. Each individual or team worked
‘independently to develop their own software system,
using the same project specifications, computer
resource allocation, calendar time allotment,
implementation language, debugging tools, etc.
Although it was not possible to assign participants
randomly to the programming enviromnents, at least
one independent indicator of the native programming
ability of the participants was observed to be
distributed quite homogeneously among the three
groups.

The particular programming application was a
compiler for a small high-level language and a



simple stack machine. The development task
required between one and two man-months of effort
and the resulting software systems averaged about
1200 source lines, or 600 executable .statements, in
a high-level language. The participants were
advanced undergraduate and graduate students in the
University of Maryland Computer Science Department,
some with up to three years' professional
experience. The implementation language was the
high-level structured-programming language SIMPL-T
(Basili & Turner 76], which is used extensively in
course work at the University and has string-
processing capabilities similar to PL/1.

111. Evaluating Automatable Measures

A series of controlled experiments have been
conducted within the enviromment described above in
order to evaluate several automatable measures. A
legitimate experimental design and rigorous
nonparametric statistical methods were employed;
details appear in [Basili & Reiter 78; Basili &
Reiter 79; Basili & Reiter 80). In each case, the
null hypothesis that the metric shows no
distinction in its expected value among the
software developments performed by the Al, AT, and
DT groups was tested against the empirical data.
The experimental results, in the form of
statistical conclusions, are presented in Tables 1
and 2. Each conclusion consists of the comparison
outcome (as a symbolic inequality) and the
associated critical level (as a probability) for a
particular automatable measure.

The outcome indicates the observed distinction
among the programming environments represented by
the AI, AT, and DT groups, and the direction
thereof. For example, the outcome Al < AT = DT
indicates that the expected value for the metric
was noticeably lower for the ad hoc individuals
than for either the ad hoc teams or the disciplined
teams, which both exhibited about the same expected
value for the metric; in other words, the metric
differentiates between individual programmers and
programming teams, with individuals scoring lower.
The critical level indicates the statistical
"strength" of each conclusion, since it is the risk
of having claimed the corresponding conclusion
erroneously (i.e., concluding that the data support
some distinction when in fact no systematic
difference truly exists for that metric). For
example, a critical level of 0.1 means that the
chances are one in ten that the same measurement
scores could have occurred due to purely random
fluctuations among the groups. The critical level
may also be interpreted as indicating the relative
degree of differentiation observed between the
groups.

For each set of measures, we will define the
individual metrics, explain how they are computed,
motivate their general intuitive appeal, and
briefly interpret their experimental results. It
will be demonstrated that almost all of the metrics
presented in this paper qualify as both automatable
and useful measures, according to the criteria
established above.

In the remainder of this paper, the term
"module" refers to a separately compiled source
code component of the entire software system, and
thé term "routine® refers to an individual
procedure or function,

A. Process Measures

Essentially two aspects of the software
development process were examined: job steps (or
runs) and program changes [Dunsmore & Gannon 77].

" These were 3elected as quantifiable, automatable
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approximations to two important dimensions of the
process: level of effort expended in development
and errors occurring in program source code during
development.

Job Step Metrics. A "computer job step” is a
conceptually indivisible programmer-oriented
activity that is performed on a computer at the
operating system command level, is inherent to the
software development process, and involves a
nontrivial expenditure of computer or human
resources. Typical examples of job steps would
include editing symbolic texts, compiling source
modules, link-editing (or collecting) object
modules, and executing entire programs; however,
activities such as querying the operating system
for status information or requesting access to on-
line files would not qualify as job steps. In this
study, consideration as COMPUTER JOB STEPS was
limited exclusively to the activities of compiling
source modules and executing entire programs.

Several subcategories and normalizations of
the basic computer job steps measure were also
investigated. A "module compilation" is an
invocation of the implementation-language processor
on the source code of an individual module. In
this study, only compilations of modules comprising
the final software product (or logical predecessors
thereof) are counted in the MODULE COMPILATIONS
metric. All module compilations are categorized as
either "identical” or "unique" depending on whether
or not the source code compiled is textually
identical to that of a previous compilation.

During the development process, each unique
compilation was necessary in some sense, while an
identical compilation could conceivably have been
avoided by saving the (relocatable) object module
from a previous compilation for later reuse (except
in the situation of undoing source code changes
after they have been tested and found to be
erroneous or superfluous).

A "program execution" is an invocation of a
complete programmer-developed program (after the
necessary compilation(s) and link-editing) upon
some test data. In this study, only executions of
programs composed of modules comprising the final
product (or logical predecessors thereof) are
counted in the PROGRAM EXECUTIONS metric. A
"miscellaneous job step" is an auxiliary
compilation or execution of something other than
the final software product. In this study, the
MISCELLANEQUS JOB STEPS metric counts exadtly those
COMPUTER JOB STEPS not already categorized as
MODULE COMPILATIONS or PROGRAM EXECUTIONS. An
"essential job step" is a computer job step which



involves the final software product (or logical
predecessors thereof) and could not have been
avoided (by off-line computation or by on-line
storage of previous compilations or results). In
this study, the number of ESSENTIAL JOB STEPS is
the sum of the number of UNIQUE MODULE COMPILATIONS
plus the number of PROGRAM EXECUTIONS.

Finally, both the average and worst-case
number of unique compilations per module were
examined. The number of AVERAGE UNIQUE
COMPILATIONS PER MODULE is simply the number of
unique module compilations divided by the number of
modules. The number of MAXIMUM UNIQUE COMPILATIONS
FOR ANY ONE MODULE is computed in the obvious way:
each unique compilation is associated (either
directly or as a logical predecessor) with a
particular module of the final product, a total
number of unique compilations is obtained for each
module, and the maximum of the totals is taken.

On the whole, these job step metrics directly
quantify the frequency of computer system
activities during software development. They are
one possible way of measuring machine costs, in
units of basic activities rather than monetary
charges. Assuming that each computer system
activity also involves a certain expenditure of the
programmer's time and effort (e.g., effective
terminal contact, test result evaluation), these
metrics indirectly quantify the human costs of
development (at least that portion exclusive of
design work).

Metric. The "program changes"
metric {Dunsmore & Gannon 77] is defined in terms
of textual changes in the source code of a module
during the development period, from the time that
module is first presented to the computer system to
the completion of the project. The rules for
counting program changes--which are reproduced
below from the paper referenced above with the kind
permission of the authors--are such that one
program change should represent approximately one
conceptual change to the program.

The following each represent a single program

change:

(1) one or more changes to a single

statement
(A single statement in a program
riEresents a single concept and even
multiple character changes to that
statement represent mental activity
with a single concept.

(2) one or more statements inserted between

existigﬁ statements,
(The contiguous group of statements
inserted probably corresponds to a
single abstract instruction.)

(3) a change to a single statement followed

by the insertion of new statements.
This instance probably represents a
iscover¥ that an existing statement
is insufficient and that 1t must be
altered and supplemented in order to
achieve the single concept for which
it was produced.)

However, the following are not counted as
program changes:

(D

the deletion of one or more existing

statements,
(Statements which are deleted must
usually be replaced with other
statements elsewhere. The inserted
statements are counted; counting
deletions as well would give double
welght to such a change.
Occasionallf statements are deleted
but not replaced; these are probably
being used for debugging purposes
and their deletion fakes no great
mental activity.)

(2)

the insertion of standard output

gtatements or special compiler-provided

debugging directives,
%These are occasionally inserted in
a wholesale fashion durin§
debugging. When the problem is
discerned, these are then all
removed, and the actual statement
change takes place.)

(3)

the insertion of blank lines, insertion
of comments, revision of comments, and
reformatting without alteration of
existing statements.
(These are all judged to be cosmetic
in nature.)

Program changes are counted according to these
rules by symbolically comparing the source code
from each pair of consecutive compilations of a
particular module (or logical predecessor thereof).

The program changes metric directly
quantifies, at an appropriate level of abstraction,
the amount of textual revision to source code
during (postdesign) development. Arguing that
textual revisions are generally necessitated by
errors encountered while building, testing, and
debugging software, independent research [Dunsmore
& Gannon 77] has demonstrated a high (rank order)
correlation between total program changes (as
counted automatically according to a specific
algorithm) and total error occurrences (as
tabulated manually from exhaustive scrutiny of
source code and test results) during software
development. This metric is thus a reasonable
measure of the relative number of programming
errors encountered outside of design work.
Assuming that each textual revision involves a
certain expenditure of the programmer's effort
(e.g., planning the revision, on-line editing of
source code), this metric indirectly quantifies the
level of human effort devoted to implementation.

These process
measures are quite automatable. The raw data for
computer job steps might be obtainable directly
from operating system logs and accounting
‘information, or the processors involved in each job
step could be instrumented to maintain similar
logs. The subcategorization of Job steps is quite
objective and the normalizations are defined
mathematically, so that they can all be automated

+easily. Program changes are computed
algorithmically from symbolic comparisons of
successive versions of source code modules. If a
programming-product library is maintained on-line
during development, the comparisons can be made as
part of regular updating procedures. Alternatively
(as was done in our study), the language processor
could be instrumented to record automatically the

10



Table 1.
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complete source code of every compilation in an
historical data bank of source code versions;
comparisons can then be made from the data bank in
an off-line fashion without interfering with the
programmer's normal activities. Many computing
systems already support some kind of symbolic
comparator utility which isolates the literal
differences between the line images of two files;
such a utility is easily augmented or extended to
implement the rules for identifying program changes
as defined above.

These process measures satisfy our usefulness
criteria, since they have differentiated between
the different programming environments in our
evaluation enviromment and they have done so in a
manner that corresponds intuitively to the
arranged, observable differences among those
enviromments. The experimental results for these
process measures (see Table 1) are strong. As a
whole, their strength derives from the near
unanimity of comparison outcomes and the low
critical levels involved. Except for one instance
of no distinction (IDENTICAL MODULE COMPILATIONS),
each metric distinguishes the disciplined teams
from both the ad hoc teams and the ad hoc
individuals. Further, the direction of the
‘distinction indicates that the DT group required
noticeably fewer job steps and textual revisions
than the AI or AT group to complete the exact same
project. This corresponds directly to our
intuition about how efficiency should be affected
by disciplined methodology, since it is widely held
that the disciplined methodclogy has a beneficial
effect on software development in terms of
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minimizing development effort/time/costs and
reducing errors during implementation and testing
by enhancing their detection at earlier phases.

‘Thus, the process measures presented here do
meet the criteria established above as both
automatable and useful measures.

B. Product Measures

Essentially two aspects of the developed
software product were examined: program size and
control flow complexity. These were selected as
quantifiable, automatable facets of program
structure. Program size is measured in terms of
the number of routines, the number of symbolic
lines, and the number of programmer-coded decisions
in the final product source code. Control flow
complexity is measured in terms of cyclomatic
complexity [McCabe 76], a graph-theoretic metric
which has been shown to be independent of physical
size (adding or subtracting functional statements
leaves the measure unchanged) and dependent only on
the decision structure of a program.

Program Size Metrics. The ROUTINES measure
counts the individual procedures and functions of a
program, since they are the smallest packaging unit
of contiguous statements that the programmer deals
with conceptually. The LINES measure counts every
textual line of delivered source code, including
compiler directives, documenting comments, data
variable declarations, executable statements, etc.
The DECISIONS measure counts each of the decisions
coded by the programmer to govern flow of control;



in a structured programming language, this is
simply the number of constructs, such as IF-THEN-
ELSE, WHILE-DO, CASE-OF, etc., that appear in the
source code,

On the whole, these program size metrics
directly quantify the sheer frequeney of certain
"elements" within a softiware product, Simple size
metrics are usually the most readily available
measures of a software product and are often a
central factor in large-scale software productivity
studies (e.g., {walston & Felix 77)) and resource
estimation models (e.g., {Putnam 781).
Traditionally, sheer size has been used as an
indirect indicator of the logical complexity of
software Systems; i.e., the larger a system is or
the more "elements" it contains, the more complex
it is likely to be and therefore of lower quality.

Cyelomatic . In standard
graph theory [Berge 731, the cyclomatic number
v(G) of a graph G having n nodes, e edges,
and p connected components is defined as

v(G) =e=~na+p
and is equal to the minimum number of basic paths
in a strongly connected graph, from which all other
Paths may be constructed as linear combinations.
By modeling the control flow of a computer program
a3 a graph in the traditional manner, an
analogously defined number serves as a software
metric [McCabe 76). This "eyclomatic complexity"
measure v(P) , for a wellwformed {i.e., all
statements are on some path from start to finish)
program P with n predicates strewn among r
reutines, is computed as

V(P)=ﬂ+r‘,
where a predicate is a Boolean expression governing
control flow, and is equal to the minimum number of
basic execution paths through the routines, from
which all execution paths may be "econstructed."

This measure originated as an absolute count
of the minimum numbepr of program paths to be tested
and thus served as a3 quantitative indicator of the
difficulty of testing a given program to a certain
degree of thoroughness. The cyclomatic complexity
measure is one particular way to directly quantify
the complexity of a program's flow of control,
something that has been identified as a key factor
of software quality.

Several variations of the basic cyclomatic
complexity measures were considered, because there
are at least two definitional issues for which
intuitively motivated alternatives lead to
meaningful variations, One of these issues is the
weighting given to instances of CASE statement
constructs. The original definition ofr cyclomatic
complexity views a CASE statement as the
Semantically equivalent series of nested IF-THEN-
ELSE statements: each CASE statement contributes

N units of c¢yclomatie complexity, where n is
the number or individual cases involved.
argued, however, that a CASE statement deserves a
smaller contribution to eyclomatic
its inherent uniformity and readability have a
moderating effect on control flow complicatedness
(relative to an explicit series of nested IF-THEN-
ELSE statements). oOne reasonable alternative

"2

defines each CASE statement as contributing
{log,( n )}* units of cyclomatic complexity,

where n 1is the number of individyal cases
involved. This logarithmic weighting is
appropriate since the CASE statement's moderating
effect seems to increase with the number of cases
involved,

The other issue is the manner of counting
predicates. The original definition counts simple
predicates~individually S0 that the compound
predicate

(I <J)and ((ACI) = a®J)) Qr (not SORTED))
would contribute three units of eyeclomatic
complexity, for example. An alternative definition
considers each full compound predicate as an
indivisible part of a program, contributing one
unit of eyeclomatic complexity, since it represents
a single abstract condition 8overning the flow of
control. Note that this issue is the basis for a
proposed extension [Myers 77] to the original
cyclomatic complexity measure. This issue also
affects the way individual cases of a CASE
statement construct are identified and counted.
The original definition counts each case label’
Separately, since multiple case labels on the same
case branch are Semantically equivalent to simple
predicates joined by or's to form the Boclean
éxpression governing the case branch. The
alternative definition counts only the case
branches themselves, regardless of case label
multiplicity, since Rultiple case labels could
represent a single abstract case designator (e.g.,
case labels 9, 1, 2y 0y 9 may be abstracted

simply to digit).

This study examined the four variations of

eyclomatic complexity defined as follows:

SIMPPRED-NCASE - Simple predicates contribute
1 unit; CASE statements contribute 1 unit
for each case label.

SIMPPRED-LOGCASE - Simple predicates
contribute 1 unit; CASE statements
contribute {log,( n )] units, where n
is the number of case labels.

COMPPRED=NCASE == Compound predicates
contribute 1 unit; CASE statements
contribute 1 unit for each case branch;
multiple case labels on the same case
branch are disregarded.

COMPPRED~LOGCASE we Compound predicates
contribute 1 unit; CASE statements
contribute [log,( n )] units, where n
is the number of case branches; multiple
case labels on the same case branch are
disregarded.

Note that the SIMPPRED-NCASE variation of
cyclomatic complexity is MeCabe's original
proposal.

Because of the way it is defined, the
cyclomatic complexity metric is sensitive
modularization, particularly to the number of
routines. Hence, a fairer comparison of cyclomatic
complexities can be made on the basis of individual

R | —

to system

® The notation | X | signifies the smallest
integer less than or equal to «x .



Figure 1. Erequency Distributions for Cyclomatic Comploxity

Both the absolute and relative~cumulative freguency distributions for cyclomatice
complexity values from 47 routines comprising a complete system are plotted.
The tail region associated with the 0.8 quantile is shaded on each plot.

........................ 0.5 quantile
19 ¢ .
M emccmcccccccc—aa———— 0.7 quantile
/\ V H
af I 0.8 quantile
br 1o\ v
s e 10 ¢+ / \ : mm————— 0.9 quantile
0 q v :
lu ! !
ue * \ v
tn / LI
e c 5 / r—
y
, .
, AN
0 i 3 \\/\\\ \l-* <\<Y\\* «{\\\*
o 2 4 6 8 10 ‘12 14

cyclomatic complexity per routine

0 2 4 6 8 10 12 14
"o ﬁ. r— A A %_—;
x&mmw
0.9 $ weccmmmcccceeaa S '
0.8 + cmmvmcem———a >
cf 0.7 $ wecwnccaa > I
ruf :
eme 0.6 + | I
lugq » :
alu 0.5 4 commn= >
t ae | SO
itn 0.4 % :
vie :
evy 0.3+ :
e :
0.2 + :
| .
0.1 - .
0.0 beo
o 2 4 6 8 10 12 14

cyclomatic complexity per routine

13



routines, rather than globally for entire systems.
It is also desirable to focus attention on
instances of higher cyclomatic complexity since
most systems usually contain several small, easily
understood routines with very low cyclomatice
complexity values (e.g., a routine which computes
the average of a vector) while the remaining
routines are really the heart of the system and
embody most of the true "complexity." One general
technique for applying such routine-oriented
metrics to entire systems is in terms of the sample
quantiles [Conover 71, pp. 31-32, pp. 72-73] of the
empirical distribution of the metric's values
across the routines comprising each system (see
Figure 1). Both the quantile point value (i.e.,
the largest integer x such that the fraction of
cyclomatic complexity values which are less than

X 1is less than or equal to some fixed fraction)
and the quantile tail average (i.e., the average of
cyclomatic complexity values greater than or equal
to the quantile point value) are normalized ways to
quantify just how high the cyclomatic complexity is
for the typical nontrivial routines. Several
different quantiles were examined: the 0.5 quantile
is closely related to the median of the
distribution, and the 0.7, 0.8, and 0.9 quantiles
provide a series of increasingly smaller tails of
the distribution.

ity and Usefulpess. These product

measures are all clearly automatable since the
required information is routinely de-ermined within
he front end (lexical and syntactic analysis
~hases) of a typical language processor. A
compiler can easily be instrumented to compute the
values of the measures for each module of source
code. The technique of applying cyclomatic
complexity to entire systems is readily computed
according to its mathematical formulation.

The experimental results for these product
measures (see Table 2) are rather interesting.
a whole, they each make some sort of distinction
among the programming enviromments. But there is a
subtle shifting among the observed distinctions,
making it more difficult to draw connections with
our intuitive notions about how program size and
structure are affected by differences in
programming team size and degree of methodological
discipline. This is not surprising in view of the
poorly understood nature of program structure in
general, and program complexity in particular.
any event, the measures presented here certainly
satisfy the first part of our usefulness criteria,
and we will proceed to delineate some
interpretations by which the second part will also
be satisfied.

As

In

The results for size aspects exhibit
distinctions with a common underlying trend,
namely, AI § DT s AT. This trend says that-the
disciplined teams produced software smaller in size
than the ad hoc teams, but still larger than the ad
hoe individuals. This is reasonable, and indeed
expected, under the following assumption:
disciplined methodology serves to mitigate the
organizational overhead experienced in team
programming, enabling a team to function with
greater conceptual integrity. Conceptual integrity
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(which is easily achievable by an individual
programmer working alone) certainly has an impact
on the structural quality of the software being
produced, resulting in a closer-knit design and
implementation. Thus, we would expect the AI group
to always measure less than the AT group, and the
DT group to be measured closer to AT on some
product aspects and closer to AI on other product
aspects, but generally between the two. The
experimental results obtained on the size aspects
display this kind of behavior, and thus correspond
to a reasonable intuition.

In a similar vein, the results for cyclomatic
complexity exhibit another common underlying trend,
namely, DT & AT S AI. In fact, the non-null
outcomes were all either DT = AT < AI or else
DT < AT = AI. This says that either the teams were
differentiated from the individuals or else the
disciplined methodology was differentiated from the
ad hoc approach, depending on the particular
variation of cyclomatic complexity involved.
corresponds well with the intuition that team
programming alone should force a general reduction
of cyclomatic complexity for individual routines,
and that use of the disciplined methodology within
team programming should promote this effect even
further. The observed results for the cyclomatic
complexity metrics seem to display this kind of
behavior, and thus correspond to a reascnable
intuition. The generally weaker differentiation
(i.e., larger critical levels) observed for the
cyclomatic complexity metrics relative to the other
metrics presented above is quite understandable in ]
light of the fact that all 19 systems were.coded if’
a structured-programming language which greatly ’
restricts potential control flow patterns. We .
would expect cyclomatic complexity metrics to be ..
even more useful in the context of unrestrictive
programming languages such as FORTRAN.

This

Thus, the product measures presented here do
meet the criteria established above as both
automatable and useful measures.

IV. Summary and Future Research Directions
Empirical data and statistical conclusions
from a controlled experiment in software
development have been used to evaluate certain
software measures. Criteria have been established
for the automatability and usefulness of software
measures in general. Several measures of the
software development process and product have been
presented that satisfy these criteria for useful
automatable measures. Both process metrics ( job
steps and program changes) have proven, in our
evaluation enviroment, to differentiate strongly
on the basis of efficiency of software development.
The program size metrics (lines of code, number of
routines, and number of decisions) have
demonstrated reasonable utility in differentiating
among our programming enviromments. Several
variations of the cyclomatic complexity metric have
shown very encouraging potential for usefulness as
measures of software product quality. As a side
issue, a technique was described for circumventing
the problem cf applying routine-oriented measures



Table 2. Conclusions for Product Measures

N.B. A simple pair of equal signs ( = =z ) appears in place of the null outcome
AL = AT = DT in order to avoid cluttering the table.
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to entire software systems (i.e., how to measure an
entire system using a metric that is only
appropriate for individual routines).

Work is progressing on developing and
evaluating additional software measures. Another
measure of control flow complexity, called
essential complexity [McCabe 76], is currently
being evaluated. The program length, volume, and
effort measures from software science theory
(Halstead 77) have recently been automated within
our compiler. We are interested in developing
several pfoduct measures based on declarative scope
of data variables, data variable usage span
[Elshoff 76], and interprocedural communication via
global variables [Stevens, Myers & Constantine TU4;
Basili & Turner 75]. We are also interested in
developing process measures based on the concept of
error-day [Mills 76]. All of these software
measures can be evaluated using the same test bed
of empirical data acquired from the experimental
study that was conducted in our evaluation
environment. Furthermore, by exploring various
comparisons and correlations, we intend to probe
for quantitative relationships between automatable
software .metrics. .

There is a great deal of work to be done.
Automatable measures must themselves be evaluated
according to some empirical eriteria regarding
their usefulness. Only then will there be any hope
of employing them to provide the user and the
researcher with cost-effective and accurate
reedback on software development. Only then will
their application to medium-scale software
development, such as the projects in the Software
Engineering Laboratory, be warranted.
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