
Are Developers Complying with the Process: An XP Study
Nico Zazworka1,3, Kai Stapel2, Eric Knauss2, Forrest Shull3,1, Victor R. Basili1,3, Kurt Schneider2

1University of Maryland

College Park
Maryland, USA

+1 301 405 2668

{nico,basili}@cs.umd.edu

2Leibniz Universität

Hannover
Germany

+49 511 762 19 666
{kai.stapel,eric.knauss,

kurt.schneider}
@inf.uni-hannover.de

3Fraunhofer Center

College Park
Maryland, USA

+1 240 487 2904

fshull@fc-md.umd.edu

ABSTRACT
Adapting new software processes and practices in organizational
and academic environments requires training the developers and
validating the applicability of the newly introduced activities.
Investigating process conformance during training and
understanding if programmers are able and willing to follow the
specific steps are crucial to evaluating whether the process
improves various software product quality factors. In this paper
we present a process model independent approach to detect
process nonconformance. Our approach is based on non-
intrusively collected data captured by a version control system
and provides the project manager with timely updates. Further, we
provide evidence of the applicability of our approach by
investigating process conformance in a five day training class on
eXtreme Programming (XP) practices at the Leibniz Universität
Hannover. Our results show that the approach enabled researchers
to formulate minimal intrusive methods to check for conformance
and that for the majority of the investigated XP practices
violations could be detected.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics.

General Terms
Management, Measurement, Human Factors, Verification.

Keywords
Process conformance, XP programming, process improvement

1. INTRODUCTION
Introducing new processes and practices in industrial
environments is an essential component of improving workflow,
reducing the cost of a project and accomplishing quality goals.
Whenever a manager decides to introduce a new process, it raises
questions of whether the developers can follow the specific steps
and activities defined, and whether the process itself is applicable
in the target environment. As a first step, the development team
should be trained in the new process to guarantee a common

understanding of the definition and to equip personnel with the
necessary skills. In some cases the training might be delivered by
a theoretical lecture with an application of the process to the target
project, in others cases the training might include practical
exercises to strengthen the understanding. In either case it is worth
investigating if developers are complying with the specifics of the
process to validate that the process is indeed executed as
expected. If a process focuses on improving the quality or cost of
the final product then not conforming with its definition will most
likely produce a different result.

In order to uncover process conformance violations (i.e. situations
not conforming to the process’ definition), methods are needed
that fulfill a range of requirements.

First, the methods should be general enough to investigate a wide
range of processes, practices, methods, and techniques at different
stages and levels of the software development lifecycle. A
successful approach should be able to handle different definitions
of process, ranging from informal ones given as text to stricter and
more formal ones expressed through a process modeling
language. Further, most processes need to be tailored to the
specific environment. Numerous project variables, such as team
size, system size and type, implementation language and
environment can influence how the steps are carried out and the
expected process results of the process. The method for assessing
process conformance should also be tailorable as well.

Second, the cost and overhead of the data collection activities to
investigate process conformance should be minimal and ideally
should make use of data already collected by the development
team. Examples for such data bases are version control systems
that are primarily used to coordinate development efforts. Further,
bug and issue tracking systems can provide insight into process
relevant activities. One reason to minimize additional data
collection is to avoid any interference with the studied process.
For example, if developers need to collect too much data
manually, they might be distracted from carrying out the expected
steps of the process. Or, if developers are actively watched they
might follow the steps more precisely during the time of
observation but not afterwards. This effect is known as the
Hawthorne effect [1] in experimental studies.
Another requirement is that the method should give insights into
the different levels of process execution. We consider two layers
as important. A well-defined process describes (a) what steps
should be followed and in which order (syntactic layer) and (b)
how these steps should be carried out qualitatively (semantic
layer). For example, the first XP practice we investigated in our

case study was Test-Driven-Development. The process requires
developers to (a) implement one or more test cases prior to the
associated implementation class and (b) to engineer useful and
complete test cases that test the implementation thoroughly. Both
the syntactic and the semantic layer can be adhered to
independently: developers might follow the steps but still
implement poor or even useless test cases, and they might
implement good test cases but in the wrong order (i.e. write their
test cases after the implementation). A good approach will be able
to detect non conformance on both layers.

A last characteristic of a method to assess conformance is how
timely the method is in reporting violations to the manager.
Immediate feedback enables the recognition of risks to a
successful process execution early, allowing the initiation of
appropriate counter measures. As an example, developers might
need to be reminded from time to time to follow certain steps, or a
changing project environment (e.g. a close deadline) might affect
the process execution quality.

Our approach was designed with these goals in mind. Related
work is described in Section 2 followed by a step by step
description of our method in Section 3. A practical example
demonstrating the usefulness and limitations of our approach is
presented in Section 4. The study was part of a practical XP
programming course and investigates the conformance to three
popular XP practices. We found significant violations of the
practices as taught. Section 5 discusses the results and Section 6
offers concluding remarks.

2. RELATED WORK
The need to check for process conformance has been widely noted
in the field of software process improvement and quality
management. Various ISO standards emphasize process
conformance: ISO 9000 recommends we “initiate action to
prevent the occurrence of any nonconformities relating to product,
process and quality system” [2] and ISO 12207 on software life
cycle processes states “It shall be assured that those life cycle
processes (...) comply with the contract and adhere to the plans”
[3].

There is further evidence that we cannot assume that processes are
always executed the way they were intended to be. As one
example, in an empirical study investigating reading techniques
conducted by Lanubile and Vissagio [4] the researchers found that
“ (...) less than one third of Checklist reviewers could be trusted to
have used the checklist and one fifth of the PBR reviewers could
be trusted to have followed the assigned scenario.” They
concluded that “This experiment provides evidence that process
conformance issues play a critical role in the successful
application of reading techniques and more generally, software
process tools.”

One approach for assessing conformance was proposed by Cook
and Wolf [4,6]. They use an event based framework that expresses
the expected process as a finite state machine (FSM). An event
stream representing the observed process can then be compared to
the FSM and deviations can be found. Several string distance
metrics can then be used to express the difference between the
observed event sequence and the expected model. The work
focuses on the syntactic level of conformance. Building upon this
is the work of Huo, Zhang, and Jeffrey [7] that further introduces
the idea of an iterative process refinement. Other approaches [20]
use temporal logic to detect deviations on the syntactic layer.

A model that is able to give live feedback has been proposed by
Thomson et al.[21]. Their work also uses conditions checked
during process execution to detect violations. However, the
approach presented here extends live conformance checking of a
method for defining and evolving the process and rules to be
checked. Further, this work provides evidence through a case
study with real developers.

An approach to detect nonconformance on the semantic layer of
process execution has been previously proposed in [8]. The idea
presented in this work is to define upfront an expected time
measure and an appropriate quality measure for process
execution. These measures can then be compared to the actual,
observed ones and a deviation vector can express the distance
between both of them.

Our own work [9] has focused on applying our model to detect
nonconformance in process execution in a large scale industrial
project. Our approach places fewer restrictions on the formalism
to define the expected process and, as we will show in this work,
captures syntactic and semantic aspects of process execution.

2.1 Agile Conformance
Agile methods claim to have some distinguishing advantages over
conventional software development methods [10,11], but little
work exists about measuring conformance to agile practices. With
risk management being the key motivation for using agile
practices, measuring conformance is important for evaluating,
whether these risks are really tackled.

Schwaber and Beedle give process related metrics that can be
used for measuring conformance to Scrum [11]. They focus on
“sprint signatures” in the shape of burndown charts. A burndown
chart shows the remaining estimated workload. Nonconformance
to agile practices can be deduced from these charts but it is not the
primary focus and there is no support measurement. Cohn
discusses measuring the performance in agile environments [12].
The focus is on estimating, planning, and tracking, rather than
process conformance. In [10] Kent Beck discusses collective code
ownership in detail. He claims the following effects of collective
ownership:

• Complex code does not live very long, because people
refactor code they cannot easily understand. Often, it does
not even enter the system, because nobody would write
complex code that could not be justified: Developers know
that other team members will be reviewing their code in a
very short amount of time.

• Knowledge is spread around the team, because it is unlikely
that there is any part of the system only two people know
about. This reduces project risk (which is the primary
motivation for using XP in [10]).

Beck does not give any support for these claims, apart from
common sense arguments, and claims that all practices in XP
should be “turned to ten,” i.e. that conformance to the textbook
practices should be achieved [10]. But he does not provide
objective measures on how to find out whether a practice actually
is at level ten or not. Krebs and Williams define the conformance
to agile practices through a maturity measure [13]. In their work,
the maturity levels are defined relatively (i.e. 10 is more agile than
8). Resulting assessments of practice conformance will always be
very subjective, because the questionnaire is based on subjective
questions.

3. APPROACH
The approach presented in this paper follows the four step
iterative model presented in Figure 1. In the following subsections
we illuminate each step. We will explain the inputs and outputs of
each step, and the roles that are involved. Primarily three different
roles are important in our model:

1. Process manager: the person(s) interested in studying
the practice/process.

2. Process enactors (developers): the person(s) performing
the practice/process.

3. Conformance analyst: the person(s) investigating
process conformance.

In small scale efforts the first and third role might be assigned to
the same person. Ideally, to limit bias issues, the conformance
analysis should be performed by a different person than the
manager, or - even better - externally by a third party group.

3.1 Define Conformance Rule
The initial step to be performed aims at creating a common
understanding of the details of the expected, planned process. The
process manager makes this knowledge explicit by filling in the
appropriate fields in the process conformance template (Table 1).
How the process is represented (e.g. through a formal or verbal
representation) is up to the manager. Therefore various formal
process modeling languages, such as finite state machines or Petri
Nets [18] are compatible with the template. Also, rather weakly
formulated processes that include no specific steps can be
expressed. As example, in a current study with an industrial
partner the manager formulated that “All developers should write
test cases!”. The requirement to the definition is solely that it
allows the conformance analyst to decide if certain patterns in the
collected data represent a violation of the process definition or
not. Secondly, the conformance analyst and the manager will list
all data and measures that are already implicitly collected in the

project. Typical examples are code management systems, issue-,
bug-, and effort tracking systems. The third step is to connect the
data and the definition in order to formulate process violations.
Both roles have to think and decide about “Which (temporal)
patterns in the collected data will violate the process definition?”
and “Which metric values are indicators of process violations?”
The first question aims at the syntactical aspects of the process
(e.g. the process might be described as a partially ordered set of
activities to be performed). The second question focuses on
violations on the semantic level (i.e. how/with what quality the
process is performed).

The semantic definition of the process might not be always clear
from the beginning on. For example, the investigated XP practice
Collective Code Ownership claims that knowledge about the code
should be collectively owned and the loss of a few programmers
should not lead to project failure. However, the practice does not
define in detail how resistant the project should be to loss of
personnel, i.e. how many programmers are expendable exactly,
and how much code should be covered by the remaining
programmers. In such cases, the manager and conformance
analyst will have to choose a first guess for those parameters and
iteratively refine them if necessary. A second strategy is to let the
practice run for a short time and derive the parameters from the
observed data. This can be understood as the derivation of the
process from its execution. Of course, this only works under the
assumption that the process is performed appropriately.

If not enough process violations can be defined using the
implicitly collected data then it is up to the manager to decide on
additional data and metric collection activities, such as self-
reported data. These can be goal and priority driven (e.g. by using
a GQM approach [14]) by first listing the violations that one
would be most interested in, and secondly defining the data and
measures that have to be collected to detect these violations.
However, the collection activities should have the goal of
minimizing (or better, avoiding) any kind of interference with the
studied process.

3.2 Detect Conformance Violation
After the violations have been defined automated tools and
algorithms can be built to detect and extract them from the
collected data. These tools might, for example, mine code
repository data or self reported data (assuming it is available in
electronic form). The algorithms can then be executed on a
recurring basis. The frequency of execution might vary from one

Figure 1: The nonconformance process at top level

Table 1: Process Conformance Template
Process Name A unique identifier.

Process Focus Quality attributes that the process should
improve: e.g. maintainability, correctness

Process
Description

Formal or verbal description of the process.

Collected Data List of implicitly, manually, and automatically
collected data.

Process Violations Syntactic:
Which temporal patterns in the data violate the
steps of the process?
Semantic:
Which measures and thresholds derived from
the collected data indicating low quality of
process execution?

process to another; in our case study we used daily intervals to
generate a list of violations, since one day matched one XP
development iteration.

3.3 Gathering Supplemental Information
Once the list of violations has been made available, the process
conformance analyst should augment the violations with more
detail. This supplemental information can include related
quantitative measures as well as data of a qualitative nature (e.g.
through interviews with developers). The goal of the
augmentation activity is to support the following rule and process
improvement step. It is necessary for multiple reasons and
purposes:

(1) The violations identified can be false positives, e.g. if the
conformance rules are not yet fully tailored to the environment, or
if their definition is incomplete. For example, our first version of
the Test-Driven Development detection assumed that all Java
compilation units should be accompanied by a unit test class.
Investigating the violations more closely, we realized that specific
types of units, such as Interface classes, do not require test cases1.
These interfaces were therefore falsely identified as violations.
This fact was included in the second version of the conformance
rule.

(2) Secondly, it is important to get insight into the cause-effect
relationships among violations. Only finding root causes can help
us understand why a process is not being followed and what
actions have to be taken to improve the situation. Some of these
causes might be found through further inspection of the collected
data. Others might require interviewing the developers to reveal
the reasons for not following the process under investigation.

3.4 Improve Rule and Process
The fourth and final step in the scheme is to make decisions about
how to improve the agreement between the executed and expected
practice. There are essentially three ways to reduce the number of
violations for the next iteration:

(1) In the case of false positives, the conformance analyst will
have to adjust the rules for detection in the process template (e.g.
through modification of the algorithms in step 2 or changing the
thresholds for metrics).
(2) In settings that allow modification of the process itself the
manager might decide to change or tailor the expected process so
it better fits the executed one.
(3) In settings that do not allow process modification the manager
might put additional effort into the enforcement of the process.
Process enforcement can either be done by reminding the subjects
to execute the necessary activities or by the use of mechanisms
that enforce the process (e.g. through tools).

3.5 Knowledge Packaging and Transfer
Once the conformance process has gone through multiple
iterations, the rules should become more and more stable. These
rules, in form of the template in Table 1, now represent
transferable knowledge. A new project inside the organization can
benefit from using optimized rules from prior projects. In
experimentation a study replication can make use of the rules
formulated in a prior experiment. Therefore, it is necessary to

1 Java interface classes solely define function names, parameters,

and return type, but implement no testable functionality.

store and package the final rules and, even better, all versions that
led to the final rule, in an experience base [15]. The
implementation of the experience base can vary from simply
adding it to the appendix of an experimental paper, to using more
sophisticated electronic systems such as reports, data bases or web
wikis.

3.6 Research Questions
To test the feasibility and applicability of our method, we set up
the following research questions:

R1- Feasibility: Is the approach able to find nonconformance
issues in process execution using minimally intrusive methods?

R2 - Correctness: Do these violations give useful insights and do
they match the perceived conformance of the developers?
R3 - Steering: Can these violations be used to actively steer and
improve process conformance?
R4: Rule improvement: Can our initial rule set be iteratively
refined and improved?

R5: Quality Mapping: Does a lack of process conformance
correlate with product quality?

We conducted a case study to test our approach. The following
section will give an overview of the study design, the collected
data, and the results in relation to our research question.

4. XP STUDY
In order to show that the suggested approach is feasible we
conducted a case study. The study should help to answer the
research questions given in Section 3, help in understanding
where our process needs improvement, and where its limits are.
To address R1 (Feasibility) we chose to investigate three popular
XP practices:

1. Test-Driven Development
2. Continuous Refactoring
3. Collective Code Ownership

Table 2: Process Conformance Template for Test-Driven-
Development (green/light grey font text are additions and

modifications made to tailor the template)
Pr. Name Test-Driven Development

Pr. Focus Improved correctness.

Process
Description

For each component (i.e. Java class) developers are
supposed to create a JUnit test class (collection of test
cases) prior to the development of the component.

Collected
Data

Subversion code history. Developers are advised to
use following file naming scheme for implementation
and test classes:

Implementation class: SomeName.java

Test class: SomeNameTest.java

Process
Violations

Syntactic:
(1) Implementation classes (but not interface classes)
without test classes. Violation detection:
Implementation class is checked into the Subversion
repository before its according test class.
 Semantic:
(1) The line coverage of the test cases is below 70%
(2) The branch coverage of the test cases is below
70%

R2 (Correctness) was investigated by a comparison of the
perceived conformance versus the measured one and R3
(Steering) was evaluated using one instance where developers
were actively advised to improve conformance to a practice
during project runtime. R4 and R5 were investigated internally by
the team of conformance analysts during execution. Note that for
none of the questions we are able to produce statistically
significant results due to the nature of the study.

4.1 Study Design
The case study took place as part of an XP class taught at the
Leibniz Universität Hannover, Germany (LUH). Conformance
analysis was performed remotely at the University of Maryland,
USA (UMD). In the first theoretical part of the course developers
received lectures about agile development and XP basics. All but
one of the XP practices were taught in this lecture on a theoretical
level. The XP practice Test-Driven Development was taught
separately in a practical exercise. The second part of the course
was a five day (eight hours per day) development project where
the developers worked on building a software product in an - as
close as possible - industrial environment. On the first day the two
customers introduced their visions, an initial technical spike was
conducted, and the XP specific story cards were created. The
following 4 days were development iterations, each with a
duration of one day. The 14 developers, 11 graduate students and
3 undergraduate students without XP experience prior to the class,
were split into two groups with seven developers each. Both
groups developed a different product; in the following we will
refer to them as team Zeit and team KlaRa in accordance with the
names of the two products. The goal of Zeit was to build a time
logging system. The system is currently in use in several software

and research projects. KlaRa is a tool that helps coordinate room
assignments during exam time at a university. The
implementation language was Java in both cases. The course was
not the first of its kind. It was already in its 5th iteration. More
details about the course design can be found in [16].
Before the start of the programming project the researcher teams
from LUH and UMD agreed to investigate the conformance of the
three XP practices: Test-Driven Development, Collective Code
Ownership, and Continuous Refactoring. Each of the three
practices was translated into a process conformance template
using the criteria specified in Table 1 (see Tables 2 to 4). Further,
they agreed on the type of data to collect. Automatically and
implicitly collected data was derived from the Subversion code
repository that the subjects used to coordinate their work.

Additionally, a small amount of manually collected data was
captured. The researchers provided the developers with a special
Subversion commit template that had to be filled in every time
they committed new code to the repository. As shown in Figure 2
the following manually collected data was provided by the
developers:

• The names of the two programmers in a pair
• The story card id that was implemented or changed by

the commit
• The type(s) of change(s) from the set {new feature,

enhancement, refactoring, bug-fix, test-fix, other}

After each iteration of the XP project the researchers at UMD,
who took the role of the conformance analysts in Figure 1, created
a report with the results of steps 2 and 3 of the method presented
in Section 3 (Figure 1).The report was sent to the researchers on
site (process managers) before the start of the next iteration.
There is a time difference of 6 hours between UMD and LUH.
The researchers specifically planned to use this time to create the
report and thus benefit from the global distribution of the two
sites. From the German perspective, analysis was done overnight.

The report included quantitative analysis describing how many
violations occurred (Figure 1: step 2), as well as visualizations to
give better insight into which components are affected (e.g. Java
classes not being developed according to the Test-Driven
Development practice) and/or which developer violated the
practice (e.g. for Pair Switching). Further, the report included

Table 4: Process Conformance Template for Collective
Code Ownership

Process Name Collective Code Ownership (Pair
Programming + Pair Switching)

Process Focus Code is collectively owned, high Truck Factor

Process
Description

Pair Switching: subjects are supposed to
switch their pair programming partner with
each new story card and between iterations.

Collected Data Manually: SVN commit template include
name of programmers and story card number

Process Violations Syntactic:
(1) The same developer pair working together
on two consecutive story cards
(2) The same developer pair working together
on two consecutive iterations
Semantic:
(1) The project’s Truck Factor (explained later
is low

Figure 2: SVN commit template for additional data collection

Table 3: Process Conformance Template for Continuous
Refactoring

Process Name Continuous Refactoring

Process Focus Improved maintainability (extendibility).

Process
Description

Refactoring activities should be a continuous part
of code development.

Collected Data • Manually: SVN commit template includes
change type (e.g. refactoring)

• Implicitly: SVN data provides us with
information about changes of architecture.
Further Code Metrics /Code Smells can
provide insight into decay of code.

Process
Violations

Syntactic:

(1) No refactoring activities in the commit
template at all (during whole project)

(2) Large refactoring only in a single stage (e.g. at
the end of the project)

Semantic:

(3) Increasing amount of God Class code smells

descriptions of how the violation detection rules were tailored
over time (Figure 1: step 4). Optimizing the rules of the templates
was done by a manual in depth analysis of false negatives and
false positives (Figure 1: step 3). A typical example of a false
positive was the Java Interface classes that were wrongly marked
as violations in the first version of the Test-Driven Development
template.
It was up to the process managers at LUH how to use the reports
to intervene with the ongoing projects. They discussed the
violations that were found in the Test-Driven Development
practice with the subject groups before the third iteration and
advised them to better adhere to the practice.

After the last iteration the developers received an end of study
questionnaire that asked how well they followed the different XP
practices. To increase the chance of receiving the most honest
answers developers had to provide neither their name nor the
project they were working on.

4.2 Study Results
The following paragraphs summarize the data that was collected
during the study, the violations that were found, and the self
reported data the developers provided through the end of study
questionnaire.

4.2.1 Test-Driven Development
Table 5 shows the results for the two groups (Zeit and KlaRa).
The conformance level (in the Table abbreviated with “Conf.
Level”) for Test-Driven-Development was calculated as follows:
for each of the four iterations the newly developed Java classes (in
Table “New Classes”) were considered and the analysts checked
whether unit test classes were created according to the practice.
The conformance level then describes in how many cases the
developers followed the test first practice. As example, if the
practice is followed all times the conformance level would be
100%, if the practice is followed half of the time the level would

be 50%, and so on.

The data shows that the developers of project Zeit followed the
practice in only 27.3% of the cases in the first iteration and scored
even lower (14.3%) in the second iteration. The developers were
made aware of their rather poor performance at the beginning of
the third iteration, in a stand up meeting, and improved their
conformance to 60% after iteration three, and 66% after the fourth
and last iteration. The KlaRa team shows better and more stable
conformance levels. They scored between 50% (iteration 3) and
83% (iteration 4) conformance level. Overall, both groups adhered
in about 50% of the cases to the practice.

The end of study questionnaire data show a similar result. The
developers were asked how often they wrote a test case before the
implementation. Subjects could answer on a scale from “Never”,
“Sometimes”, “Most of the time”, and “Always”. Table 6 shows
the results. No subject said the practice was followed all the time,
and only 29% of all developers said that they followed it most of
the time. The majority said they followed it sometimes (57%) or
never (14%).

4.2.2 Continuous Refactoring
The second practice under investigation was continuous
refactoring. In comparison to the other investigated practices the
process violations were rather weakly formulated (see Table 3).
The reason for this was that no good description could be found
that describes how much or with what frequency refactoring
should be done according to the XP practice. Developers are
asked to refactor code whenever they feel it is necessary to adapt
the design to new requirements or to improve maintainability.
Therefore, we measured the number of times the developer teams
indicated in the Subversion template that they refactored. The
objective was to find out if subjects refactor at all and if there
were differences in the amount of refactorings between the two
groups. In addition to the self reported data the number of code
smells was measured, in particular the God Class code smell.
Inspection of God Classes can give insight if classes implement
multiple responsibilities and grow too complex. We used the God
Class identification strategies as defined by Marinescu and
Lanza[22].

The data in Table 7 shows that developers reported to have
performed refactoring activities at a constant frequency. Both
projects show about the same refactoring ratio: 19% (Zeit) and
24% (KlaRa) of all changes included the desired activity. Only
two iterations did not include any refactoring activities (iteration
three for team Zeit, and iteration two for team KlaRa). In both
projects the code smell analysis did not detect any God Classes
during development. Therefore, violations of the practice as
defined in Table 3 could not be detected. Even though the
presented analysis could not find any violations, it helps to build a
stronger baseline: the refactoring ratios from this study can be

Table 7: Continuous Refactoring Results.
 Zeit KlaRa

Iterat. Commits Refac. Ratio Commits Refac. Ratio

1 11 4 36% 4 1 25%

2 7 2 29% 8 0 0%

3 4 0 0% 9 5 56%

4 15 1 7% 8 1 13%

Totals 37 7 19% 29 7 24%

Table 5: Test-Driven Development Results.
 Zeit KlaRa

Iteration New
Classes

Test
First

Conf.

Level

(%)

New
Classes

Test
First

Conf.

Level

(%)

1 11 3 27.3 9 5 55.6

2 7 1 14.3 4 3 75.0

3 5 3 60.0 2 1 50.0

4 3 2 66.7 6 5 83.3

Totals 26 9 34.6 21 14 66.7

Combined Conf. Level (%) 48.9

Table 6: End of study questionnaire answers for Test-
Driven Development

How often did you write the test case
before the implementation?

Instances Percentage

Never 2 14%

Sometimes 8 57%

Most of the time 4 29%

Always 0 0%

used to detect non conformance when used as thresholds in a
future study. Further, the self-reported data can help give the
numbers more meaning. From the post-study questionnaire (Table
8) one can see that seven developers said that they either “never”
refactored or that they refactored only “one time”. The other seven
subjects indicated to have done refactorings “few times” or ”with
every new story card”. The answers indicate that the practice was
not followed by all developers (at least three subjects did not
refactor as often as the practice recommends); therefore the
computed refactoring ratios of 19% and 24% might be still below
an optimal, desired ratio.

4.2.3 Collective Code Ownership
The third XP practice under investigation was Collective Code
Ownership. The goal of the practice is to ensure that all
developers collectively own the code to be able to make changes
and that a loss of a small set of programmers does not lead to
project failure. The practice is not defined as a set of activities that
have to be followed; it rather is a goal, i.e. a desirable state, which
is reached through two other XP practices: Pair Programming and
Pair Switching (particularly switching pairs regularly during
iterations).
To detect nonconformance in Collective Code Ownership two
measures were investigated:

1. Syntactic: Adherence to the activities defined by Pair
Switching.

2. Semantic: Assessment of the project’s truck factor

As for pair switching, we note that the process managers required
that programming pairs were reshuffled at the beginning of each
development day (i.e. each iteration). That means that they partly
enforced the pair switching practice.

1. Pair switching showed a significant amount of violations.
Figure 4 visualizes the pairs working together on story cards for
each of the four iterations in project KlaRa. A paired point in the
figure represents a programmer pair working on one new story
card. The points are ordered along the x axis by time and day.
Points with a cross mark indicate that the same pair worked on
more than one story card consecutively (i.e. a violation against the
process definition). From the second iteration on, violations
indicate that developers did not switch their teammates as they
were supposed to between two story cards. During the second,
third and fourth iteration they generated nine violations against
the practice. For example, SubjectK2 and SubjectK3 worked on
two story cards in a row during the second iteration, and so did
SubjectK4 and SubjectK6 during the same iteration. The graph for
KlaRa further shows that the pairs never change during an
iteration (i.e. one development day): the subjects only switched
their partners at the beginning of each day (which was enforced
by the process managers).

For project Zeit (Figure 4) the pair switching was followed the

first three iterations without violations. Developers did as
instructed and switched with every new story card. Only during
the last iteration, where they worked on a larger amount of story
cards, five violations against the practice could be detected.

Again, the reported conformance from the questionnaire shows a
similar result (Table 9). Only one developer agreed to have
followed the practice all the time.

2. The Truck Factor Analysis gives insight into how well the
code is collectively owned at the end of the projects. For this we
define (to our knowledge for the first time) an analysis technique
that builds upon the data collected through the code repository to
assess the Truck Factor. In the box Truck Factor Metric we give
details on how this analysis can be performed. As pointed out in
Section 3.1 one might not have always a clear understanding what
the expected measures should look like in such cases (i.e. which
truck factor the practice should produce when followed).
Therefore, the data was analyzed with two objectives. The first
objective was to compare the two projects to see if their truck
factors differ. The second objective was to compare the numbers
to three non-XP projects that do not specifically focus on
introducing processes to improve Collective Code Ownership.

Figure 5 shows the according truck factor characteristics for both
XP projects. The worst case (i.e. Min), average case, and best case
(i.e. Max) scenarios for Zeit and KlaRa are plotted. The graph
shows that Zeit has better worst case performance than KlaRa:
assuming a required code coverage of 80% Zeit can lose four out
of seven programmers, where KlaRa can only lose three

Table 8: Questionnaire answers for Continuous
Refactoring

How often did you refactor? Instances Percentage

Never 3 21%

One time 4 29%

Few times 6 43%

With every new story card 1 7%

Table 9: Questionnaire results for Pair Switching

How often did you switch pairs
according to the pair switching
practice?

Instances Percentage

Never 1 7%
Sometimes 3 21%
Often 9 65%
Always 1 7%

Figure 4: Pair-Switching for team KlaRa.

Figure 4: Pair-Switching for team Zeit

developers. The average case performance is almost equal with a
slight advantage for Zeit. Figure 5 also shows the impact of pair
programming: the loss of one programmer can always be covered
by the programmers she/he worked in a pair with. The code
coverage for a truck number of one is in both projects 100% (in
worst, average, and best case). The second question is how these
graphs compare to conventional non-XP projects. The motivation
for this analysis was the theory that if the goal of the XP practice
is reached the collective ownership should be improved compared
to projects not performing such processes. Our non-XP candidates
were a large scale 2 year development project using the Waterfall
lifecycle that we are describing in more detail in [9] and the
development of two research tools developed at the two
participating universities: CodeVizard and HeRa (a requirements
editor mostly developed by one programmer [19]). HeRa was
included to demonstrate what a lower bound Truck Factor could
look like.

Figure 6 shows the worst case scenario for all five projects and
provides the first evidence that the three non-XP projects have
significant lower (i.e. worse) truck factors: the loss of two
developers leads in all three non-XP projects to a loss of at least
40% (and up to 85%) of code knowledge whereas the XP projects
would still preserve 85% (KlaRa) and 92% (Zeit) of knowledge.
In the end of study questionnaire subjects were asked what
percentage of the final system they feel to have worked on and if
they think there are parts that they have worked on alone with
their partner. The results are summarized in Table 10 and Table
11.

4.3 Discussion of XP Conformance Results
The results of the study show that there were many process
conformance violations in the process execution in the studied
environment. Developers especially had problems following the

Test-Driven Development practice and one group did perform
poorly in following Pair Switching.

The results from the end of study questionnaire show that subjects
are aware of not following a particular practice. When they were
asked later why they did not follow Test-Driven Development
they answered that “the implementation of new features to satisfy
customer needs had a higher priority than following the steps of
the process”.

5. Addressing the Research Questions
For the stated research questions of our approach we make
following conclusions:

R1 Feasibility: We were able to translate three XP practices into
our scheme, to collect data non-intrusively with minimal manual
effort, and formulate and detect violations against these. For most
of the semantic violations thresholds and measures were found
and tailored during the execution of the processes. Semantic
violations seem to be harder to define upfront. The study
produced a set of conformance rules (Tables 2-4) that might be
adapted for other studies.

R2 Correctness: The perceived conformance of the subjects fits
the measured one to some extent. For two practices we could find
a significant amount of violations and subjects admitted to have
not followed the practice all times.

R3 Steering: Subjects of team Zeit were advised to improve their
conformance to Test-Driven Development one time before
iteration 3. The impact is visible in the conformance level (Table
5). The number of violations was lowered, but they still occurred
after that.

Table 10: End of study questionnaire answers for
Collective Code Ownership: question 2

Are there parts you have worked
on alone (with your partner)?

Instances Percentage

Yes 6 43%
No 8 57%

Table 11: Questionnaire answers for Collective Code
Ownership: question 1

How much percent of the system
have you been working on?

Instances Percentage

<25 % 1 7%
25-50% 5 36%
>50-75% 5 36%
>75%, <100% 2 14%
100% 1 7%

Figure 5: Truck Factor Chart for Zeit and KlaRa

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"
#!!"

!" #" $" %" &" '" (")"

!"
#
$%
&%
&'
()
*+

"(
)*
,"
-$
'"
(./

0(

12#3"-(*4(#%55%&'(+","6*7"-5(

,-./"0.1" ,-./"234" ,-./"056"

78595"0.1" 78595"234" 78595"056"
Figure 6: Worst case scenarios for 5 different projects

including the two XP projects (Zeit, KlaRa).

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"
#!!"

!" #" $" %" &" '" (")" *" +" #!"

!"
#
$%
&%
&'
()
*+

"(
)*
,"
-$
'"
(8

%&
(./

0(

12#3"-(*4(#%55%&'(+","6*7"-5(
,-./" 78595" :5/-;<588" =>?-@.A5;?" B-95"

R4 Rule Improvement: Our study shows that we could improve
and adjust the rules to the environment and practices. For all the
rules we did not have a good understanding of the semantic levels
before the study but were able to derive measures and thresholds
during the execution. Further we were able to catch some special
cases (i.e. Java interface classes) to improve the automated
detection of violations.

R5 Quality Mapping: So far we were unable to find relationships
between the adherence to a process and the resulting quality
attributes of the product. However, the truck factor analysis gave
insight into how a practice can help to reduce risks in a project.
The KlaRa team violated the Pair Switching practice more often
than Zeit and achieved a lower worst case Truck Factor. The
major finding related to the truck factor risk is that the XP
practices Pair Programming and Pair Switching seem indeed to be
linked to a better truck factor when compared to conventional
non-XP projects. Future investigation is needed to understand if
process nonconformance results in lower quality products.

6. DISCUSSION OF VALIDITY
The study presented has internal and external threats to validity.
Since the work’s main contribution is considered the generic
approach to detect conformance violations we will focus on

discussing threats that are introduced by the approach itself (and
not the threats related to drawing conclusions about the
applicability of the inspected XP practices in other environments).
The major internal threat is the correctness of the measured data,
especially the manually collected data. Subjects might have not
accurately reported having performed refactoring activities, or
about having switched their pair programming partners. Evidence
that this was not the case can be found in the post study
questionnaire data: if developers would have intentionally lied in
order to improve conformance then it is likely that they would
have done the same when filling in the questionnaire. Further the
data extracted for Test-Driven Development from the repository
has some limitation in time resolution. Since the detection can
only check the test-first order at check in time, developers might
have still developed test cases after the implementation but
checked in both files together at the same time into the Subversion
repository. Therefore, we might miss violations in those cases (in
other words: the conformance to the practice could be even
lower).

Considering external validity we used methods of automatic and
manual data collection that are applicable as well in industrial
environments that use version control systems. Further the
presented approach was shown to be capable of adapting three

TRUCK FACTOR METRIC: The truck factor has been defined by the eXtreme Programming Community as: “The number of people
on your team that have to be hit with a truck before the project is in serious trouble” [17]. A high truck factor is desirable since it lowers
the risk of project failure when losing personnel. Collective Code Ownership is the XP practice which helps in avoiding a low truck
factor [10], situations where a small set of programmers owns a large part of the code base exclusively. To our knowledge, this measure
has been proposed informally only so far and we are the first to derive this number by using information about code ownership from a
code repository. The key idea of our analysis is that a source component (e.g. a Java file) in the repository is collectively owned by the
developers who worked on that component. For the purpose of simplicity one can assume that all developers who edited the file have
knowledge about it. More sophisticated methods to assign ownership have been proposed [23][24].
The table on the right side exemplifies a toy system with three
developers (A,B,C) and three components (File 1, File 2, File 3).
After extracting which developers modified which components
from the code repository data we can generate different scenarios
where we assume that a certain subset of developers has been
“hit by a truck”. For each component we can decide if the
remaining developers have knowledge about it (light cells with
“+” sign) or not (dark cells with “-“ sign). A coverage number
covx(n) then describes the percentage of the components that
would still be known by the remaining developers if n
developers are absent. There are three types of coverage
numbers: (1) the minimum (x = min), i.e. the worst case, is the
remaining coverage when the set of developers with the most
exclusive knowledge leaves, (2) the average (x = avg) coverage,
and (3) maximum (x = max), i.e. the best case, is the coverage
when the set of developers with the least exclusive knowledge
leaves. The three coverage curves can be plotted as shown in the
lower figure on the right to visualize the truck factor
characteristics of a project. To define the truck factor (i.e. a
single number) the manager has to define a target threshold for
code coverage. The truck factor can then be read from the chart
by finding the intersection of the coverage number with one of
the three curves. Typically, a project manager who wants to
lower the risk of a project would be most interested in the worst
case (i.e. x = min) curve since it shows the developers that are
least dispensable.

Example analysis with 3 files and 3 developers

Truck factor characteristics: x-axis shows the number of missing

developers

Therefore, we define the truck factor as: tfx, c = max {n | covx(n) ! c}
For example, the worst case 60% coverage truck factor of our example would be: tfmin, 60% = max {n | covmin(n) ! 60%} = 1

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"
#!!"

!" #" $" %"!"
#
$%
&%
&'
()
*+

"(
)*
,"
-$
'"
(./

0(

9-2):(12#3"-;(&2#3"-(*4(#%55%&'(+","6*7"-5(

0.1" 234" 056"

different XP practices (and with [9] two different non XP
processes). Still the question remains unanswered to how many it
can be applied of the wide range of processes, practices,
techniques, and methods already proposed in the software
engineering literature.

7. CONCLUSION
In this paper we presented a step by step approach to investigate
conformance issues in process execution. We tested the ideas in
an XP classroom study and illustrated that it is possible to find
conformance violations using minimally intrusive methods.
Further, we provide evidence that this can be done remotely by an
independent research group. Our findings suggest that
nonconformance is indeed an issue present when teaching new
processes to developers, and that it should be assessed to better
understand applicability and effectiveness of such processes. As
part of the presented approach, we provide a common template to
facilitate knowledge transfer across software projects and studies.

Last, we have learned useful lessons during the execution of our
model. The biggest challenge was to find definitions for the XP
practices that contained enough detail. In all cases, we had to
define and iterate the semantic properties ourselves. Further, we
had to define the truck factor as a measurable metric.

We have started to work with an industrial partner to investigate
nonconformance in a long term study. Future work will focus on
actively tailoring our templates and the partner’s processes to
improve conformance and investigate the relationships between
conformance and product quality (R5).

8. ACKNOWLEDGEMENTS
This research was supported by NSF grant CCF 0916699,
“Measuring and Monitoring Technical Debt “.

9. REFERENCES
[1] Roethlisberger, Fritz J., and W. J. Dickson. Management and

the Worker. Harvard University Press, 1939.

[2] Quality systems - Model for quality assurance in design,
development, production, installation and servicing.
International Organization for Standardization, 1993.

[3] Information Technology - Software life cycle processes.
International Organization for Standardization, 1995.

[4] Lanubile, F. and Visaggio, G., “Evaluating Defect Detection
Techniques for Software Requirements Inspections”, ISERN
Report no. 00-08, 2000.

[5] Cook, J. E. and Wolf, A. L. 1998. Discovering models of
software processes from event-based data. ACM Trans.
Softw. Eng. Methodol. 7, 3 (Jul. 1998), 215-249.

[6] Cook, J. E. and Wolf, A. L. Software process validation:
quantitatively measuring the correspondence of a process to a
model. ACM Trans. S. E. Meth. 8, 2 (Apr. 1999), 147-176.

[7] Huo, M., Zhang, H., and Jeffery, R. 2006. An exploratory
study of process enactment as input to software process
improvement. In Proceedings of the 2006 international
Workshop on Software Quality .WoSQ '06. ACM, New
York, NY, 39-44.

[8] S. Sørumgård. “Verification of Process Conformance in
Empirical Studies of Software Development”. Ph.D. thesis,
Norwegian University of Science and Technology, 1997.

[9] Zazworka, N. Basili,V.R., and Shull. F. “Tool Supported
Detection and Judgment of Nonconformance in Process
Execution” in Proceedings of ESEM 2009, 312-223,
October 16-15, 2009

[10] Kent Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley 1999

[11] Ken Schwaber and Mike Beedle, Agile Software
Development with Scrum, Pearson Education 2001

[12] Mike Cohn, Agile Estimation and Planning, Prentice Hall
2007

[13] Krebs, William (2002): Turning the Knobs: A Coaching
Pattern for XP through Agile Metrics.Springer, Lecture
Notes on Computer Science 2418, 60-69

[14] Basili, V. R. 1992 Software Modeling and Measurement: the
Goal/Question/Metric Paradigm. Technical Report.
University of Maryland at College Park.

[15] Basili, V., Caldiera, G., and Rombach, D. Experience
Factory. Encyclopedia of Software Engineering Volume
1:469-476, Marciniak, J. ed. John Wiley & Sons, 1994

[16] Stapel, K., D. Lübke, and E. Knauss: Best Practices in
eXtreme Programming Course Design. in Proceedings of
30th International Conference on Software Engineering.
2008. Leipzig, Germany,769-776.

[17] Truck Factor Definition:
http://www.agileadvice.com/archives/2005/05/truck_factor.h
tml, retrieved June 26th, 2010

[18] Tadao Murata, “Petri Nets: Properties, Analysis and
Applications”, in: Proceedings of the IEEE, vol. 77, no. 4,
April 1989

[19] Knauss, Eric.; Lübke, Daniel; Meyer, Sebastian, “Feedback-
Driven Requirements Engineering: The Heuristic
Requirements Assistant”, ICSE'09, Formal Research
Demonstrations Track, 2009, 587 - 590

[20] Cugola, G., Di Nitto, E., Ghezzi, C., and Mantione, M. 1995.
How to deal with deviations during process model
enactment. In Proceedings of the 17th international
Conference on Software Engineering. ICSE '95. ACM, New
York, NY, 265-273.

[21] Sean Thompson, Torab Torabi, Purva Joshi, "A Framework
to Detect Deviations During Process Enactment," Computer
and Information Science, ACIS International Conference on,
pp. 1066-1073, 6th IEEE/ACIS International Conference on
Computer and Information Science (ICIS 2007), 2007.

[22] Marinescu, Radu; Lanza, Michelle (2006). Object-Oriented
Metrics in Practice. Springer.

[23] Anvik, J., Hiew, L., and Murphy, G. C. 2006. Who should
fix this bug?. In Proceedings of the 28th international
Conference on Software Engineering (Shanghai, China, May
20 - 28, 2006). ICSE '06. ACM, New York, NY, 361-370.

[24] Hattori, L. and Lanza, M. 2009. Mining the history of
synchronous changes to refine code ownership. In
Proceedings of the 2009 6th IEEE international Working
Conference on Mining Software Repositories (May 16 - 17,
2009). MSR. IEEE Computer Society, Washington, DC, 141-
150

