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ABSTRACT

als of software engineering

One of the basic

o
is the establishment o% useful models and equations’

to predict the cost of any given programminﬁ ro-
ject. Many models have heen proposed over the last
several years, but, hecause of differences in the
data collected, types of projects and environmental
factors among software development sites these
models are not transportable and are oniy valid
within the organization where they were developed.
This result seems reasonable when one considers
that a model developed at a certain environment
will only be able to capture the impact of the fac-
tors which have a variable effect within that
environment. Those factors which are constant at
that environment, and therefore do not cause varia-
tions in the productivity among projects produced
there, may have different or variable effects at
another environment.

This paper presents a model-generation process
which permits the development of a resource estima-
tion model for any particular organization. The
model 1is based on data collected by that organiza-
tion which captures 1ts particular environmental
factors and the differences among its particular
projects. The process provides the capability of
producing a model tallored to. the organization
which can be expected to be more effective than any
model originally developed for another environment.

It is demonstrated here using data collected from
the Software Engineering Laboratory at the
NASA/Goddard Space Flight Center.
INTRODUCTION
Several resource estimation models for a

software-producing environment have been reported
in the literature [1,2,3,4,5,6,7,8,9}, each having
been developed in a different environment, each
having its particular strengths and weaknesses but
with most showing fairly poor characteristics con-
cerning portability to other environments. It is
becoming apparent that it is not generally possible
for one software development environment to use the
algorithms developed at another environment to
predict resource consumption. It is necessary for
each environment to consider its own past produc-
tivity in order to estimate its future productivi-
ties. Traditionally, a good manager can estimate
resource consumption for a programming project
based on his past experience with that particular
environmment. A model should be able to do the
same, and can serve as a useful aid to the manager
in this estimating task.

However, if a manager uses a model developed
at another environment to help him in his estima-
tions, he will usually find that his intuitive
estimates are better than any from the model. It
would be advantageous for his software-development
organization to generate a model of its own by
duplicating the basic steps takenm in the develop~
ment of some outside environment’s estimation
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. appropriate even if they are not
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model. The organization could parallel its own
model”s development with the development of the .
existing model, making decisions along the way with

respect to which factors have an effect on its
software environment, and could mold the newly
emerging model to its specific environment. This
is seen as an additional advantage over those
models which are only “tuned” to the user’s
environment via -a set of specified parameters,
since in the latter case there may be no way to

express certain peculiarities of the new environ-
ment in terms which the model can handle. When one
considers in general how poorly a model from one
environment fits another environment, it seems that
such peculiarities are the rule rather than the
exception. Unfortunately, there have, been few
attempts to reveal the steps taken in generating a
resource estimation model which would be helpful to
any organization wishing to establish a model for
its own use.

This paper is a first attempt by the Software
Engineering Laboratory of the University of Mary-
land at College Park to outline the initial pro-
cedures which we have used to establish this type
of model for our environment. It is hoped that the
framework for the model presented here is general
enough to help another software development organi-
zation produce a model of its own by following a
similar procedure while making decisions which mold
the model to its own environment.

One basic -approach~ will be outlined and
developed here, but several variations will be dis-
cussed. The type of model used is based on earlier
work of Walston and Felix at IBM Federal Systems
Division and Barry Boehm at TRW in that it attempts
to relate project size to effort. Some reasonable
measure is used to express the size of a project,
such -as  lines of source code, executable state-
ments, machine instructions or number of modules,
and, a base-line equation is used to relate this
size to effort. Then, the deviations of the actual
projects from this prediction line are explained by

some set of factors which attempt to describe the
differences among projects 1in the environment.
These factors may include -measures of skill and

experience of the programming team, use of good
programming practices and difficulty of the pro-
Ject.

Several of the alternatives
during our

became apparent
study and these are mentioned when
examined further
here. Although some of the details and ideas used
in this study may not pertain to other environ-
ments, it is hoped that enough possibilities are
given to show the general idea of how the technique



we used can be applied. The study now involves
complete data on eighteen projects and sub-projects

but was begun when we had complete data on only
five projects. 1t is hoped that the presentation
of our work will save other investigators who are

some time or at least provide a
for their own study.

developing a model
point of departure

Background

There exist many cost estimation models rang-
from highly theoretical ones, such as Putnam”s
the Walston

ing
model [1], to empirical ones, such as
and TFelix [2] and the Boehm model [3]. An empiri-
cal model uses data from previous projects to
evaluate the current project and derives the basic
formulae from analysis of the particular data base
available. A theoretical model, on the other hand,
uses formulae based upon global assumptions, such
as the rate at which people solve problems, the
number of problems available for solution at a
given point 1in time, etc. The work in this paper
is empirical and is based predominantly on the work
of Walston and Felix, and Barry Boehm.

The Software Engineering Laboratory (SEL) has
worked to validate some of the basic relationships
proposed by Walston and Felix which dealt with the
factors that affect the software development pro-
cess. One result of their study was an index com-
puted with twenty-nine factors they judged to have
a significant effect on their software development
environment. As part of their study, they proposed
an effort equation which was of the form

E = 5.2*L'91 where E is the total effort
months and L is the size in thousands of 1lines of
delivered source code. Data from SEL was used to
show that although the exact equation proposed by
Walston and Felix could not be derived, the basic
relationship between lines of code and effort could
be substantiated by an equation which lay within
one standard error of estimate for the IBM equa-
tion, and 1in a justifiable direction {10}. Barry
Boehm has proposed a model that uses a similar
standard effort equation and adjusts the inftial
estimates by a set of sixteen multipliers which are
selected according to values assigned to their
corresponding attributes. In attempting to fit an
early version of this model, but with the SEL data,
it was found that because of differing environ-
ments, a different baseline equation was needed, as
well as a different set of environmental parameters
or attributes. Many of the attributes found in the
TRW environment are already accounted for in the
SEL baseline equations, and several of the attri-
butes in the SEL model which accounted for changes
in productivity were not accounted for in the Boehm
model, presumably because they had little effect in
the TRW environment. Based upon this assumption
and our experience with the IBM and TRW models, the
meta model proposed in this paper was devised.

in man-

The SEL Environment

The Software Fngineering Laboratory was organ-
ized in August, 1976. Beginning in November, 1976,
most new software tasks that were assigned by the
System Development Section of NASA/Goddard Space
Flight Center began submitting data on development
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progress to our data base. These programs are
mostly ground support routines for various space-
craft projects. This usually consists of attitude
orbit determinations, telemetry decommutation and
other control functions. The software that is pro-
duced generally takes from six months to two years
to produce, 1is written by two to ten programmers
most of whom are working on several such projects
simultaneously, and requires from six man-months to

ten man-years of effort. Projects are supervised
by NASA/GSFC employees -and personnel are either
NASA personnel or outside contractors (Computer

Sciences Corporation).

The development facility consists of two pri-
mary hardware systems: a pair of $/360"s and a
PDP-11/70. During development of software systems
users can expect turn-around time to vary from one
or two hours for small, half-minute jobs, to one
day for medium jobs (3 to 5 minutes, less that
600K), to several days for longer and larger jobs.
The primary language used is FORTRAN although there
is some application of assembler language.

THE META-MODEL

The meta-model described here is of the
ad justed base-line type such as those proposed by
Walston and Felix and Barry Boehm. Therefore, the
basic approach 1is a two-step process. First, the
effort expended for the average project is
expressed as a function of some measure of size
and, second, each project”s deviation from this
average 1s explained through the systematic use of
a set of environmental attributes known for each
project. The remainder of this paper will describe
this process and will follow the format:

1) Compute the background equation

2) Analyze the factors available to explain
the difference between actual effort and
effort as predicted by the background
equation

3) Use this model to predict the effort

for the new project

The Background Equation

The background or base~line relationship

between effort and size forms the basis for the
local model. It is found by fitting some choice of
curve through the scatter plot of effort versus

size data. By definition, then, it should be able
to predict the effort required to complete an aver-
age project, given its size. This average effort
value as a function of size alone has been termed
the “"standard effort” throughout this paper. This
section deals with:

1.1) Picking and defining measures of size
and effort ’

1.2) Selecting the form of the base-line
equation

1.3) Calculating an initial base-line

for use in the model

In any given environment the decision of what
size measure to use would have to depend initially
upon what data is available. In our case, it was



decided that size could be measured easily by lines
of source code or by modules and that effort could
be expressed in man-months. Consideration should
also be given to the ease with which each measure
can be estimated when the model is used to predict
the effort required for future projects. The upper
management in our programming environment was of
the opinion that source lines with comments was the

easier of the two readily available measures to
predict. Also, it was decided that, based upon the
data available and the ultimate use of the model,

project effort would be defined to be measured from
the beginning of the design phase through accep-
tance testing and to include programming, manage-
ment and support hours.

In our data base, the total number of lines
and modules as well as the number of new lines and

new modules were available for the 18 projects and
sub-projects. Initially, we expressed effort in
terms of each of the four size measures mentioned

ahove. To do this, we used three forms of equa-
tions to fit the data, using hoth the raw data and
logarithms of the data, which provided functions we
hoped would express the basic relationship between
size and effort that exists in our environment.
The forms of the three types of equations were:

E = effort S = gize
E=a*S + b (1)
E=a*gh (2)
E=axsh + c (3)
Some difficulties were encountered when
attempting to fit a conventional least-squares

regression line through the raw data. One probable
reason for this is that a correlation between the
deviations from the prediction line and the size of
the project could not easily be eliminated
(heteroscedasticity). Rather than using a least~
squares 1line with a single, arithmetic standard
error of estimate which would be consistently large
with respect to small projects and often too small
when applying the equation to 1large projects, we
opted for a prediction 1line which minimized the
ratio between the predicted values for effort and
each actual data point. In this way, the standard
error is multiplicative and can be thought of as a
percent error whose absolute magnitude increases as
the project size increases. If, however, equations
of the second or third form are derived by fitting
a least-squares line through the logarithms of the
data, the standard error automatically becomes mul-
tiplicative when converted back to 1linear coordi-
nates.

The third form shown above was the most suc~
cessful for us. It was in the form of an exponen-
tial fit but included a constant which removed the
constraint that the prediction line pass through
the origin. This line was not found by converting
to logarithms but by an algorithm that selected the
values which minimized the standard error of esti-
mate when expressed as a ratio. The theory behind
the implementation of this multiplicative standard
error of estimate is described later. Although the
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~considering only the total lines or

size of our data base was

not large enough to

firmly support using this fit -rather than a

straight line, we are using it here primarily as an

illustration, and therefore felt justified in
retaining it.

Turning back to the measurement of size, it

was noted that neither the equations based upon
size in terms of new lines of code or new modules
nor those based upon total lines of code or total
modules captured the intuitive sense of the amount
of work required for each project. It was felt
that although using previously-written code was
easier than generating new code, the integration
effort was still significant and should be
accounted for. After examining the background
relationships discussed above, another more satis-
fying measurement for size was derived. Instead of
only the new

lines to determine the size of a project, an algo~

rithm to combine these sizes into one measure was
selected. . It was found that by computing the
effective size in lines to be equal to the total

number of new lines written plus 20% of any old
lines used in the project, a base-line relationship
of lower standard error could be derived. This new
size measure will be called "developed 1lines” in
this paper. The same technique was applied to
numbers of modules and resulted in a measure of
"developed modules.” Other proportions of new and
old sizes were tried as well as an algorithm which
computed developed size based on a graduated mix-
ture of new and old code where larger projects
counted a higher percentage of their re-used code
in the developed size. Often, these equations did
produce slightly better background relationships,
but the improvement in standard error was judged
not to be worth the added complexity. It was hoped
that as long as some reasonable algorithm was
selected which captured the size as measured by
both the amount of new product as well as old pro-
duct, most of the remaining differences among the
projects should be explainable by the varying
environmental attributes.

At this point, the three base-line
based on the computed sizes
only, were:

equations,
of developed lines

E = effort in man-months of programming and

management time

DL = number of developed lines of source code
with comments (new lines with comments
plus 20% of re-used lines)

. Equation: *Standard error of estimate:

E = 1.36*DL + 1.62 1.269 (4)
(3)

(6)

E = 1.86%pL*93 1.297

E = 0.73%pL1.16 + 3 5 1.250
* Note that these are multiplicative fac-
tors. The predicted value given by the
equation is multiplied and divided by this
factor to get the range for one standard
error of estimate. All standard errors of
estimate (s.e.e.) in this paper are of this
type.
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Figure 1 shows how the exponential fit with
constant for developed 1lines falls between those
for new lines and total lines, hopefully doing a
better job than either of the other two in relating
a project”s size to the resources consumed during
its development. The remainder of this paper will
deal entirely with this computed measure of size
since it was our most successful expression for
work output for a given project.

Figure 2 shows these three background predic-
tion equations superimposed on the data points. It
was decided to use equation 3, above, as the base-
line throughout the remainder of the model genera-
tion since it achieved the best fit to the data
points and suggested the intuitively satisfying
fact that a project requires a minimum overhead
effort (the Y-intercept of the function). Equation
- one, a straight line, does as well statistically,
and could well have been adopted for simplicity.
Since this is meant to be an 1llustration, however,
and it was felt that the non-linear relationship
between size and effort was more common outside of
our environment, equation three was adopted for use
in this study. The remaining errors of estimation
appear as the vertical distances between each point
and the line. It is these distances in the form of
ratios which we would like to explain in terms of
the environmental attributes.

Project Factors

The next step in determining a model 1is
collect data about the programming environment of
each project which captures the probable reasons
why some projects took more effort and thereby con-
sumed more resources than others when normalized
for size. This data could include such factors as
methodologies used during design and development,
experience of the customer and of the programmers,
managerial control during development, number of
changes imposed during the development and type and
complexity of the project. It is assumed that the
correct application of information such as this can
assist in explaining the variations observed among
projects in terms of their productivities. The
steps described in this section include:

to

2.1) Choosing a set of factors

2.2) Grouping and compressing this data

2.3) Isolating the important factors
and groups

2.4) 1Incorporating the factors by

performing a multiple regression to
predict the deviations of the points
from the computed base-line

In all, close to one hundred environmental
attributes were examined as possible contributors
to the variations among the productivities of the
projects. Table 1 shows a list of these factors as
well as some others which we did not use. Thirty-
six of the factors were those used by Walston and
Felix, sixteen were used by Boehm and 30 others
were suggested by our environment. Although we did
not use all these factors, they are included to
provide additfonal ideas for other investigators.
It should be noted that it {is not necessary to
consider any factors which are constant for the set
of projects currently in the data-base since the
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influence of this factor will already be contained
in the base-line relationship. If, however, a
future project is rated differently in one of these
categories, it may be necessary to reinstate it
into the model.

The process of selecting attributes to use is
largely a matter of what information is available.
Since many of the projects we studied were com~
pleted when this investigation began, it was neces-
sary to rely on project management for the informa-
tion required. The inclusion of past projects was
justified in order to establish as large a data-
base as possible, however, it made it necessary to
be particularly careful about. the consistency
between the ratings for current projects and those
for projects already completed. To maintain the
integrity of the values of these attributes, all
ratings produced by the vendor’s management were
examined by the customer”s management and also by
us. In this way we hoped to avoid the temptation
to adjust ratings to reflect the known ultimate
success of past projects.

Many of the attributes required no special
work to assign a value, such as "Team Size" or
"Percent Code: I/0,” but most required imposing a
scale of some kind. We decided that an exact scale

was not possible or even necessary so a six-point
subjective rating was used. This format was chosen
by the managers who would be making the ratings

since 1t conformed well with the information they
had already collected about many of the attributes.
Most of the factors, then, are rated on a scale
from O to 5 with 5 being the most of that particu—-
lar attribute (whether it is "good” or "bad”). The
most important point is that we tried to remain
consistent in our ratings from project to project.
The need for this was particularly noticeable when
rating earlier projects in terms of development
methodology. For instance, what may have been
thought of as a "4" rating in "Formal Training” for
a project which began coding over a year ago may
actually be a "3" or even a "2" when compared with
the increased sophistication of more recent pro-
jects. We found it necessary to re-scale a few of
the attributes because of this consideration.

After a set of environmental factors is
selected and the data collected, it is necessary to
consider the number of these attributes versus the
number of projects in the data base. It is not
statistically sound to use a large group of factors
to predict a variable with relatively few data
points. Unless a very large number of projects is
being used, 1t will probably be necessary to con-
dense the information contained in the whole set of
factors into just a few new factors. This can be
accomplished entirely intuitively, based on experi-
ence, or with the help of a correlation matrix or
factor analysis routines. Although there 1is no
absolute rule as to how many factors should be used
to predict a given number of points, a rule of
thumb might be to allow up to ten or fifteen per-
cent of the number of data points. Strictly speak-

ing, the adjusted r-squared values or the F-values
should be observed as factors are added to the
prediction equation via a wmultiple regression

routine (described below) to avoid the mistake of
using too many factors.
In our environment, we had data on 71 attri-

butes which we suspected could affect the ultimate



[Walston and Felix: Boehm: I
| Required fault freedom |
| Customer experience Data base size |
] Customer participation in definition Product complexity !
! Customer interface complexity Adaptation from existing software |
| Development location Execution time constraint ]
| Percent programmers in design Main storage constraint |
| Programmer qualifications Virtual machine volatility |
| Programmer experience with machine Computer response time |
] Programmer experience with language Analyst capability |
| Programmer experience with application Applications experience |
| Worked together on same type of problem Programmer Capability |
| Customer originated program design changes Virtual machine experience ]
| Hardware under development Programming language experience |
| Development environment closed . Modern programming practices |
| Development environment open with request Use of software tools |
! Development environment open Required development Schedule |
! Development environment RJE |
| Development environment TSO SEL: |
] Percent code structured Program design language (development and design) |
| Percent code used code review Formal design review |
| Percent code used top-down Tree charts |
| Percent code by chief-programmer teams Design formalisms |
! Complexity of application processing Design/decision notes !
] Complexity of p.ogram flow Walk-through: design |
| Complexity of internal communication Walk-through: code |
| Complexity of external communication Code reading |
| Complexity of data~base structure Top-down design |
} Percent code non-math and I/0 Top-down code |
] Percent code math and computational Structured code |
| Percent code CPU and 1/0 control Librarian |
! Percent code fallback and recovery Chief Programmer Teams |
! Percent code other Formal Training |
] Proportion code real time of interactive Formal test plans |
| Design constraints: main storage Unit development folders !
| Design constraints: timing Formal documentation |
| Design constraints: I/O capability Heavy management involvement and control |
| Unclassified Iterative enhancement |
| Individual decisions |
| Timely specs and no changes !
] Team size |
! On schedule |
| TSO development ]
[ Overall |
| Reusable code |
! Percent programmer effort |
[ Percent management effort |
! Amount documentation |
I Staff size |
! Table 1 |
! . e _ L e . I
productivity of a project, but only 18 projects for original attributes. The groups and their consti-

which to see the results. We found it necessary,
therefore, to perform such a compression of the
data. Our next step, then, was to examine the
attributes and group into categories those which we
felt would have a similar effect on the project.
As an aid to selecting potential groupings for
analysis, a correlation matrix for all the attri-
butes was studied. 1t was hoped that meaningful
groups could be formed which would retain an intui-
tive sense of positive or negative contribution to
the project”s productivity. By studying the poten-
tial categorizations of the factors, and how they
performed in potential models to predict developed
lines, we settled upon three groups using 21 of the
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tuent attributes were:

Total Methodology
Tree Charts
Top Down Design
Design Formalisms
Formal Documentation
Code Reading
Chief Programmer Teams
Formal Test Plans
Unit Development Folders
Formal Training



Cumulative Complexity
Customer Interface Complexity
Customer~Initiated Design Changes
Application Process Complexity
Program Flow Complexity
Internal Commuunication Complexity
External Communication Complexity
Data Base Complexity

Cumulative Experience
Programmer Qualifications
Programmer Experience with Machine
Programmer Experience with Language
Programmer Experience with Application
Team Previously Worked Together

We were particularly interested in using a
methodology category due to the findings of Basili
and Reiter {11] which implied improvement in the

development process due to the use of a specific
discipline. The methodology category was selected
to closely coincide with the principles of the

methodology used in the experiment. The complexity
category was included to account for some of the
known negative influences on productivity. The
cumulative rating for each of these categories was
merely a sum of the ratings of its constituents
(each adjusted to a 0 to 5 scale). Although it was
necessary to reduce the number of attributes used
in the statistical investigation in this manner in
order to give more meaningful results, the simple
sumnming of various attributes loses some of the
information which could be reflected in these
categories. This is because even though one of the
constituent attributes may be much more important
than another, an unweighted sum will destroy this
difference. One solution to this type of dilemma
is to have many more data points, as mentioned
before, and to use the attributes independently.
Another would be to determine the relative effects
of each attribute and to weight thenm accordingly.
Without the necessary criteria for either of these
solutions, however, we were forced to continue 1in
this direction and to accept this trade~off.

Incorporating the Factors

The purpose of the attribute analysis is to
explain the deviations displayed by each project
from the derived background equation and, ulti-
mately, to yield a prediction process where the
attributes can be used to determine how far a pro-
ject will "miss” the background equation, if at
all.

The next step, then, 1is to compute these
differences which must be predicted. A quantity
based on the ratio between the actual effort
expended and the amount predicted by the background
equation was used as a target for the prediction.

In this way, when the model is in use, the back-
ground equation can be applied to determine the
standard effort (the amount needed if the project

behaved as an average of the previous projects in
the data-base). Then, the attributes will be used
to yield a ratio between this rough estimate and a
hopefully more accurate expected value of the
effort required.
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The SPSS [12] forward multiple regression
routine was used to generate an equation which
could best predict each of the project”s ratio of

error. The actual ratio was converted to a linear
scale with zero meaning the actual data point fell
on the base 1line. This was accomplished by sub~
tracting one from all ratios greater than one and
adding one to the negative reciprocals of those
ratios which were less than one. For instance, 1if
a project”s standard effort was predicted to be 100
man-months and it actually required 150 man-months,
this ratio would be 1.5. Subtracting one makes
this project”s target value 0.5. If however it had
needed only 66.7 man-months, its ratio would be
+667 which is less than one. Adding one to the
negative reciprocal of this number gives a target
value of -0.5. The assumption is that this scale
tends to be symmetrical in that the first project
had as many negative factors impact its produc-
tivity as the second project had positive.

In. the first pass at using the multiple
regression routine, we were using five attribute
groups. Since the data base was not very large, we
were cautious about assigning any useful signifi-
cance to the results. We therefore recondensed the
attribute data into the three groups shown above.
The results of this attempt are described in a
later section.

Variations on the Model

We noticed that it was possible to combine the
two processes of first isolating a background equa~-
tion and then applying the environmental attributes
to explain deviations from - that equation into a
single procedure. To do this, a measure of size
was 1included as a factor with the set of environ-
mental attributes and the whole group was used to
predict effort. As expected, size was always
chosen first by the forward routine, since it
correlated the best with effort for each project.
This single process lacked the intuitively satisfy-
ing intermediate stage which related to a base~line
relationship as a half-way point in the model”s
results, but it streamlined the model somewhat.

In order to preserve the possibility of an
exponential relationship between size and effort,
this method was used with the logarithms of the
size and effort values. The output of the regres-
sion analysis would be of the form,

log(Effort) = A*log(Size) + B*attrl +

C*attr2 + ... + X (7)
This would convert to,
* *

Effort = SizeA * 10(B attrl+C*attr2+...+K) (8)
assuming, here, that log base 10 was used in the
conversion.

A third template for a model was tried which
attempted to eliminate nearly all of the reliance

on the actual numerical values of our attribute
ratings in order to legitimize some of our statist-
ical analyses. Only two of the attribute groups
mentioned before were considered, "Complexity” and
"Methodology." Each of these two ratings were
transformed into two new ratings of binary values
resulting in four new attributes, "High Methodol-



ogy,” “Low Methodology,” "High Complexity,” and
"Low Complexity.” The transformation was accom=
plished as follows: 1if a project?s rating fell in
the upper third of all projects, the value of the
“High" binary attribute of that type was assigned a
1 while the value of the "Low" attribute for that
type was assigned a 0. 1If the value fell in the
middle third, both binary values were assigned a 0.
If the value fell in the 1low third, the "Low”
attribute was assigned a 1 while the "High" was
assigned a 0. This reduced our assumptions about
the data to the lowest level for statistical
analysis. For 1illustration, call the four new
binary attribhutes HM, LM, HC, LC for high and 1low
methodology and high and low complexity. The
result of the multiple regression analysis, then,
would be in the form,

Effort = Sizeh * 10(BYHMFCHLMEDXHCHEXLCHK) (g

Since the chance that any chosen attribute value
will be O for a particular project is about 2/3,
most of those terms on the right will drop out when
the model 1is actually applied to a given project.
Although we did not expect to achieve the same

accuracy from this method, the simplicity of it was
appealing.

APPLYING THE MODEL

As an 1llustration of the results obtained
thus far for our environment, this section deals
with the actual values of the data we used and the
models we <generated. It should serve as a useful
guide and a summary of the steps we chose to fol-
low. In order to include an illustration of the
functioning of the completed model, one project,
the most recently completed project, will be
removed from the analysis while a new model 1is
developed. This project will then be treated as a
new data point in order to test and illustrate the
performance of the model. Typically, the use of
the model will involve the following steps:

3.1)
3.2)
3.3)
3.4)°

Estimate size of new project

Use base-line to get standard effort

Estimate necessary factor values

Compute difference this project should

exhibit

3.5) Apply that difference to standard effort
Appendix 1 shows

sub-projects

the eighteen projects and
currently in our data-base with the
measures of size previously discussed. As stated
above, developed size is all of the newly-written
lines or modules plus 20% of the re-used lines or
modules, depending on which size measure is being
used. The developed size 1is what we chose to
predict with the models generated. We also chose,
as a baseline, the exponential equation with the
constant term. The following illustration shows
the development of the model with the first seven-
teen points in the data base. The base-line rela-
tionship between developed lines of code and effort
was:

1.17

E = .72 * DL + 3.4 (s.e.e.=1.25) (10)

The remaining information used about the
jects 1is shown in the appendix. The remaining
error ratios from this line to each project’s
actual effort were computed and listed. These are
the values which should be explained by the multi-
ple regression analysis. When the model is in use,
then, an error ratio can be derived by wusing the
multiple regression equation which can then be
applied to the base-line equation to provide what

pro-

should be an even better estimate of effort than
the base~line alone. As discussed, the three main
categories of environmental attributes shown are

the result of distilling many attributes.

The equations computed by the SPSS forward
multiple regression routine which attempt to
express the list of error ratios as functions of
various of the attributes provided are:

ER = Effort ratio (converted to linear scale)
METH = Methodology

CMPLX = Complexity

(11)

(12)

ER = -.036 * METH + 1.0

ER = -.036 * METH + .006 * CMPLX + .86

~ To apply the model to the unused, eighteenth point,
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the base-line equation is first used to establish
the standard effort. Since the estimated size of
the project was 101,000 lines, this standard effort
value was 163 man-months with a range for one stan-
dard error of from 130 to 204 man-months. When the
additional attributes are used to compute the error
ratio as given by the multiple regression equa-~
tions, the results (for each of the above equa-
tions) are:

ER = -0.224
ER = -0.166

Converting these numbers back to multiplicative
factors means dividing the standard effort by 1.224
and by 1.166, respectively. When these ratios -are
applied to the standard effort value, the revised
effort values are found to be 133 man-months with a
range for one standard error from 115 to 154 man-
months for the first equation, and 140 man-months
with a range for one standard error of from 121 to
162 man-months for the second equation. The actual
effort for the project is known to have been 138
man-months.

Once any new project is added to the data
base, at least the generation of the base-line
relationship and the multiple regression analysis
of the error ratios should be repeated. It may
also be necessary to examine the factor groupings
to see if they could be modified to increase the
accuracy of the model or to include a previously
unimportant attribute. .

For our data, when this

eighteenth point is

added to the data base, the base-line equation
becomes:
E=.73 * pLl'16 4+ 3.5 (s.e.e.=1.25) (13)

while the equations to predict the error ratio from
the attributes become:-



ER = -.035 * METH + .98 (s.e.e.=1.16) (14)

ER = -.036 * METIl + .009 * CMPLX + .80
(s.e.e.=1.15) (15)
It should be remembered that the original
choice of factors from the entire set, and the

groupings of these factors, was done with regard to
predicting size as measured by developed lines and
was not so specifically tuned to predicting
developed modules. It is reasonable to expect,
then, that the results of the models generated to
predict effort from the number of developed modules
using these attribute groupings will be less accu~
rate than those using the number of developed
lines. If the objective had been to generate a
model specifically suited to predicting modules,
various adjustments would have been made during the
early part of the model”s development. Also, it is
advisable to review the model each time a new pro-
ject is completed and its data is added to the data
base. In this way the model can be refined and
kept up-to-date, and will be able to take into
account changes in the overall programming environ-
ment.

Although we are not reporting here the actual
values and equations generated in the development
of the other forms of this basic model (described
under “"Variations on the Model,” above) it became
apparent that none of the model types 1is by far
better than the rest, especially considering the
fact that they all have differing amounts of sta-
tistical significance. In terms of a purely inves-
tigative study, all of them should probably be

examined further. As more environmental informa-
tion is added to the data-base, it may be possible
to reorganize the constituent groups involved in

the environmental attributes and to produce better
categories. Also, when several more projects are
completed, it may be possible to justifiably expand
the size of the set of variables used to predict
the expected value in the multiple regression
routine giving the potential for greater accuracy.

CONCLUSIONS

There is reason to believe that the techniques
outlined here and used in our laboratory have
potential in terms of producing a useful model
which is specifically developed for use at any par-
ticular environment. The main difficulty seems to
be in determining which environmental attributes
really capture the reason for the differences in
productivity among the projects. The use of too
few of these attributes will mean less of the vari-
ation can possibly be explained,. while the use of
too many makes the analysis statistically meaning-
less. We found that it was necessary to stop
including factors with the multiple regression
analysis when the r-squared value indicated that we
had explained no more than half of the variations
among the error ratios. This would seem to indi-
cate that there were considerably more influences
upon the productivities of the projects than we
managed to isolate. Simplifying the original idea
for the model, however, which reduced the emphasis
on the quality of the data did not weaken the accu-
racy of the model beyond useful proportions. This
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is particularly important when so much of the data
which is essential to build the model is subjective
and consequently non-linear.
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96.

79.

90.

39.

98.

18.

10.

28.

98.

15.

23.

138.

t

.8

0

Total

Lines

111.9

55.2

50.9

75.4

75.4

89.5

14.9

14.3

32.8

85.4

10.2

14.8

110.3

New
Lines

84.7

44.0

45.3

49.3

20.1

12.2

9.6

18.7

2.5

4.2

7.4

98.4

Appendix 1

Developed Predicted

Lines

90.2

46.2

100.8

Standard
Effort

138.7
65.8
66.2
79.0
42.9

100.1
17.5

14.7

8.2
118.8
13.7
17.1

157.4

116

Effort Ratio Method-
Standard/
Actual

1

1

1.

.835

459

.194

150

.924

.982

.082

.704

977

.128

.220°

.640
.957
.025
.831
.138
.398

.879

ology

30
20
19
20
35
29
26
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26
19
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28
29
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27
27

34

Complex-
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21
21
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25
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27
18
23
18
19
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21
23

33

Exper-—
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16
14
16
16
18
14
16
21
20
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12
16
20
i4
16
16
18
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