EVALUATING AND COMPARING SOFTWARE METRICS IN

THE SOFTWARE ENGINEERING LABORATORY*

I. Introduction

There has appeared in the literature
a great number of metrics that attempt to
measure the effort or complexity in develop-
ing and understanding software(1). There
have also been several attempts to in-
dependently validate these measures on data
from different organizations gathered by
different people(2)., These metrics have
many purposes, They can be used to evaluate
the software development process or the
software product. They can be used to
estimate the cost and quality of the pro-
duct. They can also be used during
development and evolution of the software
to monitor the stability and guality of
the product,

Among the most popular metrics have
been the software science metrics of Hal-
stead, and the cyclomatic complexity
metric of McCabe, One question is whether
these metries actually measure such things
as effort and complexity. One measure of
effort may be the time required to produce
a product, One measure of complexity
might be the number of errors made during
the development of a product. A second
question is how these metrics compare with
standard size measures, such as the number
of source lines or the number of executable
statements, i.e., do they do a better job
of predicting the effort or the number of
errors? Lastly, how do these metrics relate
to each other?

One simple way of checking the re-
lationship between errors or effort and
the various metrics is to examine the plots
of variables against one another and corre-
lations between the various variables, This
provides us with a first look at attempting
to shed some light on the questions posed
and the relationships that may hold,

One of the goals of the Software
Engineering Laboratory(3) has been to pro-
vide an experimental data base to be used
for examining such relationships and pro-
viding insights into attempting to answer
such questions. The Software Engineering
Laboratory is a joint wventure between the
University of Maryland, NASA/Goddard Space

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the titl’c ot: the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

€198t ACM 0-89791-038-9 /81/0003/0095 $00.75
95

Victor R. Basili and Tsai-Yun Phillips
Department of Computer Science
University of Maryland

College Park, MD., 20742

Flight Center, and Computer Sciences
Corporation,

The software being analyzed is
ground support software for satellites.
The systems in this paper consist of
50,000 to 110,000 lines of source code.
The source code is predominantly FORTRAN,
Anywhere from 10 to 60 percent of the
code is reused from previous systems,
There are between 200 and 500 modules
in each system where a module is defined
as a FORTRAN subroutine. The average
staff size ranges from 5 to 8 people,
including the support personnel,

IT. The Data

Data is collected in the Software
Engineering Laboratory that deals with
many aspects of the development process
and product, Among the data collected is
the effort to design, code and test the
various components of the systems as well
as the errors committed during development.
The data collected is analyzed to provide
insights into software development and to
study the effect of various factors on the
process and product.

One standard problem in data of this
kind is its validity. Unlike the typical
controlled experiments where the projects
tend to be smaller and the data collection
process dominates the development process,
the major effort here is the software
development process, and the data collectors
must effect minimal interference to the
developers.

This creates potential problems with
the validity of the data, For example,
suppose we are interested in the effort
expended on a particular module and one
programmer forgets to turn in his weekly
effort report. This can cause erroneous
data for all modules the programmer may
have worked on that week, Another problem

¥Researcn supported in part by National
Aeronautics and Space Administration grant
NSG-5123% to the University of Maryland.
Computer time supported in part through the
facilities of the Computer Science Center
of the University of Maryland.

is how does a programmer report time on
the integration testing of three modules?
Does he charge the time to the parent
module of all three, even though that
module may be a small driver module?
Clearly that is easier for him to do
than to divide the time between all
three modules he has worked on,

How does one count errors? pn
error that is limited to one module is
easy to cred¢it. But what about apn
error that required the analysis of ten
modules to determine that it effects
changes in three modules? Does one
associate the error with all ten modules
or the three modules?
one third of the error with each of the
three modules or a full error with all
three? It is clear that the larger the
system the more complicated the associa-
tion. All this assumes that all the
errors were reported, It is common for
programmers not to report clerical errors
because the time to fill out the error
report form might take longer than the
time to fix the error,

In a commercial program development
environment, the errors are not seeded
so they are not known to the analysis
beforehand, The programmers are not
watched with respect to the time they
put in and report; the full development
process may -take a year, A elzss of
problems not expected in the controlled
development environment is common here
and can create problems with obtaining
valid results.,

The data discussed in this paper
is extracted from several sources.
First, there is effort data which is
taken from a form called the Components
Status Report., This form is filled
out each week by the programmers on the
project. They report the time they
spend on each component in the system
broken down into the basic phases of
design, code and test, as well as any
other time they spend on work related
to the project, e.g., documentation,
meetings, ete,

A component is defined as any named
object in the system. A component could
be a FORTRAN subroutine, a COMMON block
or set of subroutines that makes up a
subsystem. The effort data analyzed in
this paper is extracted from the Com-
ponent Status Reports,

Another form, filled out weekly Dby
the project management, is the Resource
Form., This form represents accounting
data and records all time charged to the
project for various project personnel,
It is not broken down by activity. This
data is used in section IV of this paper
to validate the effort data on the com-
ponents,

96

Does one associate

:

- gistd@ of only the executable FORTRAN

- ~"and in combinations,
° design, coding, and testing phases., In

RS metrics computed on the
. #ﬂ.¢£P§éziri§25ca1cu1ated automatically
nggggg§ogram called SAP(9) which was
’dz;:lgped specifically for the Software
’Ihéiﬁéerihz Laboratory by Computer
‘ sciences Corporation. Data collected
by the SAP program consists of various
rgg}tﬁaie'science metrics, such as the
TﬂaliféadrE metric used here, the number
“of. decisions (similar to the McCabe
* éyclomatic complexity metric), the numbep
of source statements, the number of ex-
ecutable statements and the number of
‘eall statements, These metrics are
" computed at the component level, The
number of source lines consists of the
.otal number of lines in the source text,
ineluding comments and data statements,
The “aumber of executable statements con-

I € xcluding comments and data
:t:zgggggg,ssch as C%MMON declarations,
Typically, the number of executable
statements is about 50 percent to 60
percent of the total number of source
s

ot odd A XA P ’ .
The error count discussed here is

collected from a form called the Change
Report Form which is filled out each
‘time a change is made to_the system,
Thése reports are normally not filled
‘out until testing has begun. The error
count consists of only those changes
which have been classified as errors.
-Nonerror changes are not discussed in this
‘paper, -

o T

|

'IIT. A First Pass

“ """ Ve began by examining four projects
which we shall call A,I,P and S, For
each of these projects we considered the
aspects of the development separately
These phases are

considering all available components, A

- had 111 components, I had 55 components,
- P had 229 components, and S had 118 conm-

ponents for which we had some effort data
and a software science E measure, It

. turned out that the union of coding and

* . testing, as well as total effort, gave
- us the best results:

Project Design Code Test Design & Design & Code & Test Total
Codé Test

A .4563 L4700 4212 L4775 .S5444 .6380 .6599

1 -.0503 .0322 ,0094% .0931 .0942 .0977 .0500

P -3817 .4316 .3946 .4301 L4296 L4296 .4660

S .3658 .3957 .4015 L4157 .4688 .4688 .5459

The lowest correlation between effort

and the E metric were in project I, As

it turns out, project I had the most reused
code from previous projects, That is,
modules from previous projects were taken
wholly or slightly modified for the use

in SystemI., Since this factor was obvious-
1y affecting the relationshid, we class-
ified all the modules studied ag either
newly developed, modified, or old, We

then recalculated the relationship between
effort and the E metric using only newly
developed components., The results are
given below for total effort only,

Project # of Components

Total
A 101 .6774
I 31 4162
P 178 .6230
§ 106 .4580

The correlations here are higher, as
expected, because of the better data,

We were interested in whether other
measures, such as lines of source code and
executable statements, provided better
relationships as well as the relationship
between metric E and these other measures,
We were also interested in whether other
factors affected the correlations. For
example, what effect would a division of
the modules by such factors as size, com-
Plexity and testing level have?

First, a study of all 416 components
across the four systems yielded the follow-
ing correlations:

Executable
E Source Lines Statements
. 7497 .8031
tual Effort .6384 .5795 -4949

97

Next, division of the components
by the amount of the time spent in
development effort showed better
correlations for those projects in
which more time was spent. The division
by the number of lines, however, did
not show a clear trend, This provided
us with the idea that some of the effort
data might be missing at the component
level and, therefore, we should eliminate
those components for which the effort
data was not good enough. The results
of this validation are reported in the
next section.

The separation of components by
complexity was based upon an evaluation
of the complexity of the particular
component by the programmer, Components
were rated as hard, moderate or easy,

In general, higher correlations between
effort and all other variables grew as
the subjective complexity rating grew,

The results of separating the com-
ponents by various subsystems that were
common across the projects, as well as
by various testing levels (such as tree
chart subsystem levels), seemed incon-
clusive, These variations will be ex~
amined again in light of the data
validation discussed in the next section,

IV, A Second Pass

Because the correlations between
effort and the various size metrics were
better for those components with greater
effort, we became concerned that the
results might be due to poor reporting
of effort data, To check this, we
proposed a validation check on the data,
providing each component with a validity
rating., For each programmer on a project,
we examined both the total time reported
on the Component Status Report, as well
as the total time charged to the project.
We then placed components into categories
depending upon the percent of time reported
by the programmer on the Component Status
Report compared to the percent of time
charged to the project, and gave the
components an accuracy rating. For example,
if all the programmers working on com-
ponent X reported at least 90 percent of
their total resource time on the Component
Status Report, then X is in the 2 90
percent category,

Besides examining the E metric, the
source lines and executable statement
counts, we also analyzed the cyclomatic
metric and the number of calls contained
within a component, The correlation

between actual effort and these complex-
ity metrics is given in table 1(2) ana
(b{ for those projects with greatep than
90 percent accuracy and greater than

84 percent accuyacy. Figures 1,2,3

and 4 provide plots of the data points
at the 84 percent and
levels for source lines and the E metrie”
with effort,

The correlations between the v
factors appear to be better on the arious
validity rated data than on the full
data and appears to do better as the 90
percent validity rated level than at the
84 pereent validity rated data, For
this reason, we believe that the valid-
ity rated data is more reliable than the
earlier data,

Since complexity is also meant to
measure the number of errors associated -
with the development of a broject, we
compared the various complexity measures,
including the total effort required for
development with the number of errors,

90 percent accuracy

A uestion is whether we cap

'féai"ﬁgg zgegcgount for the actual effo
gﬁ"érroi count using the metrics discugg,
“so. far,. In an attempt to study this
g“b'rﬁblel;f’ile applied a forward multiple
-pegression analysis using the other
“hetrics to account for effort. Using
“the data for effort at the 84 percent
yalidity level, we came up with the
"fo11lowing order: executable statements

XQT); number of errors (ERR), E metrie
2E)",""c&cloma’cic complexity (CC) and
“gsource lines. The number of calls was
“héver included. Table 2 shows the
“amount of variation explained (R°) as
‘each new factor is included in the
‘equation, Based on a .05 level of
‘significance in using the last variable
frcluded, the regression equation
%éhérafggd was

CFESi m 19.9%XQT & 107.5%ERR - 1.2%R
SRR T 9477 6o + 25015

An error was associated with g component 'Dependent Variable . . . Effort
if it was isolated to that component or *variables R%
the component was one of several involved
in the error, Table 1 also gives the . Executable Statements .6358
correlations between the error count and “Ertor Count 6792
the various complexity metrics. Figures e .
5,6, and 7 provide plots of the data - .7110
points at the 84 percent accuracy level ok
for the actual effort, source lines -?}Eﬁlomtic Complexity +74571
and Halstead's E metric compared with - Source Lines .74966
the error count,
) Table 2
Pearson Correlation Coefficie;xtsr’{ .
> 90Z Reported Programmers
Effort Error Halstead XQT Source -, M Calls
Effort 1.0000% ,6346% .6612*% .7974% 7583'* .6033%
Error -6346*% 1.0000% .5432% .5837*% .5576% - -4861%
Halstead .6612* ,5432% 1.0000% .9160%* .8818%
XQT «7974% 5837% .9160*% 1.0000% .8258%
Source .7583% .5576% .8706*% ,9513% ‘ .8726%
McCabe -1 .7399% .5592% .8906% ,9777% .8110%*
Calls .6033% ,4861%* .8818*% ,8258* 1.0000%*
cases = 37 (data points)
* ~ significance = .001
Table 1(a)

R P gl

‘deatson Correlation Coefficients

AN 5 847 Reported Programmers)
Effort = - %T‘“ — XQT Source McCabe -1 Calls

Effort 1.0000* .5094% .6025% .3261% .6666%
Error .6227% J4289% L4891* .3045% .6431%
Balstead ,g719% _8301% .7565% .6540% .8044%
Q1 -5094% 1.0000% .8061% .9116% .7703%
Source .6025% .8061*% 1.0000% .6533% .7759%
McCabe =1 ,3261% ,3048# : J9116% .6533% 1.0000% .5990%
Calls .6666% _6431% .80 .7703% . T759% .5990% 1.0000%
cases = 116 (data poj_ncs)

* ~ significance 2z .001

Table 1(b)
There has been some work done in iso- (5) Curtis, Sheppard, & Milliman, "Third-

lating the individual brogrammers, ..There
is some evidence that a better correlation
exists between the effort or error count

of an individual brogrammer and a particular
complexity metric, Some work will also

be done in examining specific error classes
and complexity

Further validation of the data needs
To be done in examining some>6f .the out-
lying points, For example,”a“point with
a2 high number of source lines but low effort
rating might be a COMMON block and there-
fore eliminated from the study of control

flow components.

V. Conclusion

There is hope in using ctommercially-
obtained data rather than experimentally-
obtained data to validate complexity metrics,
It is possible to systematically’clean up
the data and study the relationships and
accountability do exist between various
complexity metrics, effort and.error .
counts, The results tend €5 Fet better as
the data used appears to be:moreiTreliable,

References

(1) Halstead, M,, Elements 0f Boftware Sci-
ence, Elsevier North-Holland,-New York,
1977. k N

(2) McCabe, T.J., "A Compléxity Measure,n

IEEE Transactions on Software Fngineer-
ing, » 2y 508-320.7

wprogram”Cofitrol ‘Com-
) gi££?§§ﬁ;Jg¥géeeding§ of the "Worksho
on Quantitafive Sof%ware HoHEI}rjﬁ;;-E
PBeliabilit Complexit ana Uos%, —
IEEE Computer §ocie¥y,qtc¥,wT§7§:

4) Chen, E.T., "Program Complexity and
“ Prggfammer’Productivity:fflEEE Trans-
actions on Software Ep %neef , May

99

(6)

(7)
(8)

(9)

Time Charm: Stronger Prediction of
Programmer Performance by Software

Complexity Metriecs," Proceedings of

the Fourth International Conference

on Software gineering, {9, pp.

35 -3 Oo

Feuer and Fowlkes, "Some Results from
an Empirical Study of Computer Software,"
Proceedings of the Fourth Internmational
Conference on Software Engineering,
1979, pp. 351-355,

Basili, V,, "Tutorial on Models and
Metrics for Software« Management and

Engineering," IEEE Computer Society,
IEEE Catalog No, EHO-167-7, 1980,

Basili and Zelkowitz, "Analyzing Medium
Scale Software Developments," Thitd
International Conference on Software
Engineering, Atlanta, Georgia, May 1978,
O'Neil, E., "The Static Source Code
Analyzer's Users Guide," CSC TM-78/
6045, 1978.

T0000* :9duedTyTUS)g
0g9e* :(,¥) @aenbs y
ST09° :(w) N:Oﬂuwﬁwuuoo

T8A9T Loeanooe iy8

83Ul 9danog T @an¥1g

0geo22t 09°%01t 02°%686 GE°Cla 0r°gge Qu®r99 ny*ees u2eeLy 0a've62 0r°igg 00°99

l.llll»llllollllollll.'llloll!'ollliollllo!lllollllollllQlicl¢al|l‘0 Pom—ay
LT Y Yy l'llollll.llllollll.

+
{
1 1 2 -
“ . R A0 I R LB
ve
I -cc v 2 v Nnnu M “o ¢ . “
ve
m . | v 2 . . 2 m
I e v [.
! I v 2 . “
m L) . T 1
.]
I . i
I * m
+ .
! +
~-ncauu-;--«nn--cuncuo:uo»-un-u-u-n---nnuna---uanu-o-nc--»-n--a-a-au-vnunan-naou---- v {
! i T R
I

! _
_
I

)
I
I
[
]
{
{
[

-
——
——

06°97

076511

0a°21¢2

0L 922¢

07°658 9

(LA X £ 1

07°70,y

08°52¢¢

02°¢gyy

GY*0244

0c*onaut

110333 Tenide

100

OFa39 - 1

00°089Y

-olll'olltlolltlollllolllloll

ogcz12y

00°9Yy2eg

00°942¢

e rrcnlecnejuccalennatenns § wmmed o

00°8082

r4 OHSMﬁh

00°09£2

02281

T10000°
SISy
6T1L9°

0u°y09%1 00°9¢56

R e B LR i g O

$20uBdLJTuUdyg
“ANxv oaenbs g
:(4) uorawroaaon
13497 4d8andoe yug

Q0°g9y 00°

£ LI 414
[(X X1] £ $9

[4

oollllollllollllollllolltlvICIIOlllloDlllollltollllollllolillollll.

+

frvanjracn focany

L Y LT Ty

00°99

0y et

0ge2122

02°9a2¢

09°65€Y

00°LL¢

0%°*90$9

08°648¢

0z°i¢98

09928

oo°coeot

310339 Ten3de

101

10000° $92uBdT JTUSTg
T5¢L8° :«5 aaenbs y
€8SL° (W) Ll =15 CEETY

T249T Lowvanooe %06

83Ur] 9d1nog ¢ 9an81j

0y rte 00°87@ ou*29s vut92zy 00°06¢ ou°yos ou°sty 00°25¢ Qupye 0099y 0032

ollllollllollllo‘l!lollllollllolllloll!lollllollllollllollllQllllollllolilloclllollilollllolll0¢lll|o M

N 1 v+ 00°92)
| ! H

H “ . ' . m

1 * . v t

i . M + 09022y

1 i . v 1

~ — 1 u [’ v "

' | * . : d¥oEL:

1 i .) 1 <

I I [X} 1

~ ~ v o _

! | ! 025161
nuv.i!.-uu:n-.ilnu:ca..a..n--..--..---u.i..o-nuuuo--oc'n..aa-.iun-cn-.c-o:-ncoano!.----nn-..cn-cu!.ns..u: [
! . A " :
: :] . i . ¢yt § S
|] i = -
! “ : " .
3 4 ¢t 009t a
! . i . “ p
! 1 i rt
! | I. b oureane

| ! | |
-----------------------------:---m------------------.-..----.-----m---------------------------------- N

i I | { Oatanzz

| | | |

t { ! 1

H i b0 2492

! m m i

i’ I i .

“. " “ LA £92 4

i |] !

! | . | ! ooutnee
.olnnlolnauouuln.oo|:¢|nllovuloolnulo||l|.||oco|nl|.0|l|¢i|-volaltocoulop0|0ouloaonillocult.unllollc'o.

OF1I9| - g
Oy s9¢s1 Jd5°3091 ou*2s2t US*Séu
+

e e R T P-Suh PPN 3.4

T0000° :92uBdTITUTES

v 2andfg

] Qu‘°osfo N$°¢8¢ Ouv°927
[}

b Al S L Y B e X 21Ty S - 5.4-SSN

Tey” uamxv ?aenbs y
c199° : () uorieyeiio)
19497 LoBanode ¥og

0S°e9y Qu°itg 0s°9s4 00°

llllQIIIIOIIOIollllQllllollllollllo-

[}
]
]
]
]
-
[3
1]
[}
[]
(]
[
[
)
(]
]
1]
)
]
]
[}
U

gu*924

0r*229

08 1L

nzZ*sion

N2°11x1

0044041

07°9061

og*one?

02°¢u92

LA ¥4

20°0sL¢

310333 Tenide

103

T0000* {90uBdIJTUSTG
LL8¢e" nawxv aaenbs y
Lee9: {(¥4) uorawyaaioy

134971 LoBanooe iye

310333 Ten3oy ¢ san3rq
00°0080F 0v°92¢6 02°5$9¢ Oy*6252 0Y°90$7 00°£€YS G *6SEY n2°9682¢ 03c2122 ay*esiy 0J° 9%
ollnl.llln~»|0|o||v|otllloanlloltonollllolllloollaollllolllnovlalollll.lllloltl|oll|lollao.nlttovl||..
+ ! 2e 2 TTYCLIT ¢ Gy
. “ 2% wve Zes(SOl2aC20
» v . . o 222vver v 20 922
[3 - 'Y fo*
L I
. .
. [IDRR]
. ve
.
m 0d3°y v
e e R T U I babainn bl DT P TR S
i 8
{ o0°@ o
I o
!]
4 + 00°ot t1
1 1 H
] {
i | 2
' T LEFD ©
H t No°vi
¢ 00°vt
MR AT
¢t 04°)2

[}
.“'|000|lll¢lll|olllloll!lollllollllollllollllollllollllolllt0'!!0ollllollllollv|ollllollll¢lll|ollllo-
0E°§9208 Q68416 0s* 9188 01°¢y02 0L°696¢ Ug* 943y [T 3EH Cs*s922 0L*9229¢ Q2 ¢u9

413 (350Hdv) 443 (nioq) 10 uvynuidtlyss
€08 A0h ¢t = 31ve Nolryi4)) INYNON 1M

£ 39vd u8 AON ¢ KOISSI¥DIY V418NN

104

T10000° $20uUBdT JTusyg
c6ge” "Awmv aaenbs y
068%° {(4) uoraeyazaocy

19491 Lowanooe %8

§3Ul] 92anog 9 °aIn3drg

00°0221 09°70414 02°686 08°¢49 0%°8se 00°xvy e?2°42s 0221y £8°9¢62 0y*1 00°yo

e T TP b A N P ...-.....!.n...anolnuuu...uuu.nou-.nuan.ua-iunuu.----.---..:.c...-u-o. H

’ . 1 [} _- TS v ? a2eh¢eefZ 12 2 20 4 0y’
m v v St T v e wENsZE e2ve2 fv ee)

Ie P4 . cm 2o svevr o, 2 vee 22 o ‘

¢+ ~ ¢ Ng*?
f {

{ . v I o v . . 1

i] 1

! ’ fee Y oouey
1 1 {

]] 1 .] . 1

I I | v
{ I L
m|..|||||||..ul'olcli....|nc|||oo|o|||..ucolllloluullnnnﬁlluauuvilvannlta |rnollllnuonlnllarauunoluulnu....nl_

'

1
— * m OQu*4

|] |
i i i
{ _ ~ _. Jurat
i I | i
! | I ! oosen
| | | |
! “ " " [GrAR]]
| | | !
: i | b oouey
| | | |
I] i i
i] | [0utst
| | i !
M [n -_ “ L R)

$10113 jo 1aqunu
105

10000° {92uBdTJTUSTS
82sT" «Awﬁv @avnbs y
820s° :(¥) uoriera1I0)
19427 £ovanoow yug

OTAIH - 4 7 9andtd

R N T LY ollll0|l0lOOII.-.I!I!OOIIlollllollllo‘lllollllol!ll‘l!lloltll.llllﬁlilloilllo .

ac“onoq no°aLey mm“mmmm Ou®2¢¢ 0UL°*v042 Qu*u9? 0L 2Lad 0909y Qu®vfeo 00°897 (41004
H “ “ . L3 n.~¢em ou*
— [LR ST 3} nn::—
ls . . . s 2o 791261
. ¢ 0I°¢
. . [} ~_
1
.] L |
¢ DOy
i
.] » e]
1
: ’ “ oGy
L] H IV
remceconmncnnao - cnw em- (RO, - [PR
I
]
. + Qu*?
1 1
I | |
: | $oouea
! | | |
| _ | P
HECAE
m m-- SR S c————— ——— cemee]
u _ ~ ._ [t 1A 2
| | | |
_ _ _ -
i ! I p oo
|] | |
]] “] e
+ i ¢ Qu'n
! ! ! |
i | i {
[y . 1 1 ¢ 0u*n?
..-u-:.-c--.nnn...nonnoauunoucunoluon.alun.avuu.ttnn.ullloncna.luol.||oton-o...|c!..|c|...|c.iolnnuoa!....

$10112 JO I9qunu
106

