METRICS OF INTEREST IN AN ADA DEVELOPMENT*

Victor R. Basili
Elizabeth E. Katz

Department of Computer Science
University of Maryland
College Park, MD 20742

Abstract

The emergence of Ada provides the opportunity
and necessity for measurement, analysis, and experi-
mentation in software development. Over the past
several months, we have been studying a software
project developed in Ada. One of the goals of the
study is to identify metrics which are useful for
evaluating and predicting the complexity, quality,
and cost of Ada programs. This paper defines a set
of metries for use with software development in Ada.
The metrics are gathered into six categories:
effort, changes, dimension, language use, data use,
and execution. They are described further using
formula generators, distributions, and formulas.
Examples of each metric, as well as specific uses,
are also included. Finally, our continuing research
in this area is described.

Introduction

Over the past several months, the University of
Maryland and General Electric have been collaborat-
ing on the study of a software development project
written in Ada. The purpose of the study is to gain
insight into how a typical Ada development might
proceed so that we might make recommendations about
training, methodology, data collection, and metrics
to the future Ada users community.

The project we are monitoring involves the
redesign and implementation in Ada of a portion of a
satellite ground control system that was originally
written in FORTRAN. One of the goals of the project
is to investigate how programmers with varied back-
grounds react to Ada; therefore, four team members,
each with a different background, were chosen to
develop the software. The chief programmer is
experienced with the application area but has used
only FORTRAN and assembly language. The backup pro-
grammer, also familiar with the application area,
has used FORTRAN, assembly language, COBOL, PL/I,
LISP, ALGOL, and SNOBOL. The third programmer has a
recent B.S. in computer science and is fluent in
Pascal and other block-structured languages. The
librarian has no previous experience except for a

#This work was supported in part by an Office of
Naval Research Grant #NO0014-92-K-0024 to the
University of Maryland.

Ada 1s a trademark of the Department

of Defense (Ada Joint Program Office)

CH1883-8/83/0000/0022501.00 © 1983 IEEE

brief exposure to FORTRAN. None of the team members
had-any prior exposure to Ada.

The goal of the training program was to give
the programmers the type of instruction in Ada that
might be provided in industry. The training program
lasted one month. It began with twenty-one video-
taped lectures by Ichbiah, Firth, and Barnes.
Although the tapes themselves contain fifteen hours
of material, the team members spent four days watch-
ing them, asking questions, and discussing points of
general interest. The videotapes were followed by
an ‘on-site seminar taught by George W. Cherry of
Language Automation Associates. The six days of
seminar were spread over four weeks to allow the
team members to practice writing, compiling, and
executing Ada programs, to review their class notes
and other reference materials, and to work together
on a 500-line group project.

In addition to the Ada training, the team
members were given a half-day class on methodology
taught by Victor R. Basili of the University of
Maryland. This class was designed to incorporate
software engineering techniques into the environment
and included such topics as chief-programmer teams,
design and code walkthroughs, program librarians,
and structured programming.

After the training was completed, the team used
an Ada-like PDL to design the system from slightly
revised specifications of the existing system. They
were not allowed to look at the existing system so
as to not bias their design. The design and coding
phases of the project occurred between April and
December 1982 with most of the Ada processing done
using the Ada/Ed interpreter.

Case Study Organization

This case study is driven by a set of goals
that were developed to answer the question of why
are we gathering the data. By setting out with a
set of goals, we know why each piece of data is col-
lected and how each piece is supposed to help us
evaluate the project. This approach should also
assure us that we are gathering all of the data that
we need. The goals also provide an organization for
the data collection process. The approach consists
of six steps: 1) the development and categorization
of a set of goals, 2) the development of a set of
questions of interest or hypotheses based upon those
goals that attempt to quantify the abstractions of

the goals, 3) the development of metrics and data
distributions that answer the questions, 4) the
development of forms and other mechanisms for col-
lecting the data, 5) the actual data collection pro-
cess, and 6) the validation and analysis of the
data. A detailed discussion of this approach to
data collection can be found in [Basili & Weiss 82].

The primary goal of this endeavor, to study an
Ada project in order to make recommendations, was
broken down into more specific.goals to guide the
study. These goals are divided into four major
categories: changes and effort goals, Ada and PDL
goals, data collection goals, and metric goals.
Each goal within a category {s associated with a
series of questions whose answers might help meet
that goal. These questions cannot include every
question one might ask, but they are meant to be
rTepresentative of the questions of greatest
interest. A 1list of data sources is listed after
each question to guide the data collection process.
This data might be collected from forms, static
analysis programs, evaluations by various people, or
other sources.

One of the goals of the project is to generate
a set of metrics for the APSE. The goals provide
the purpose, but the metrics, based on the goals,
provide the precision to analyze the data. We plan
to define the metrics and then colleect the data to
show that this approach is worthwhile. The descrip-
tions of the metrics and their definitions are given
later in this paper.

Note that the metric goals are quite different
from the other categories of goals. They interact
and are orthogonal to the other goals. Therefore,
although this paper concerns the metrics in particu-
lar, the complete list of goals is given in Appendix
I. Also note that this set of goals is by no means
static. It changes as new aspects of the project
are discovered. However, the cross-references are
kept up-to~date, and in general, the changes are
additions and revisions for eclarity, rather than
deletions.

The source of much of the effort and change
data is a set of forms that were developed to gather
information about the software development process.
Most of these forms were adapted from the NASA
Software Engineering Laboratory [SEL 82]. They
include a change report form, component status
report (which records effort per component), review
and walkthrough reports, and extensive error
-description reports. Most of these forms are com-
pleted by the programming team and validated by the
monitoring team before their entry into an automated
database. The guestions of the goals and the infor-
mation gathered from the forms are cross-referenced
for traceability. The set of metrics described
later in this paper are also cross-referenced with
the goals and data. The forms, however, are not the
only method of data collection. In addition, we
will use some other tools to examine the code in
detail, to perform data flow analysis, and to exper-
iment with slicing [Weiser 81].

The Metrics Definition Process

The metrics, as described above, prbvide the
precision for the data analysis while the goals pro-
vide the purpose. Just as the goals are not static,
the metrics list changes as we learn more about what
we are studying. This 14ist will not cover all
metrics that people might find necessary, but it is
meant, at this stage, to be one in a series of
iterations which will eventually ©become the
recommended list.

It seems reasonable to pattern the structure of
the metrics on the structure of the goals, but this
structure does not provide the precision needed.
Therefore, a tree structure is developed from the
general concepts underlying the measures into the
details of particular measures, how they might be
collected, and most importantly, how they might be
used. .

At the first level of this metric tree, the
measures are placed in six categories: effort,
changes, dimension, language use, data use, and exe-
cution. .Each node at this level is labeled with a
general name followed by an explanation of what it
is and why it is important. These categories encom-
pass a particular concept that may be measured in
more than one way.

The second level contains one or more of three
elaboration schemes. The first of these is a for-
mula generator. A formula generator is a
parametrized formula which can be used to represent
a variety of similar formulas. This generator
allows a large number of measures of similar form to
be defined implicitly by a general formula. If this
elaboration 1is used, examples of its use will be
given at the third level. The second form of ela-~
boration is by distribution. A general measure
might be described by a variety of distributions
which capture various aspects of the data under
study. Distributions encompass all objects being
studied but separate them into a variety of disjoint
categories. Distributions may be closely related to
the third form of elaboration, the formula. Formu-
las are the most standard of the elaborations used
in this 1ist. A particular measure may be defined
in many different ways by different people. Each
formula is a description of one of those ways. Each
formula may be a tree which provides further ela-
boration if one level is not sufficient. A formula
may be related to a distribution in that only a par-
ticular aspect of the distribution is examined. In
the 1ist below, effort is an example of the use of a

‘formula generator, changes is an example of the use

of distributions, and size is an example of the use
of formulas.

After the elaboration, examples will usually be
given. Then, each measure 1s accompanied by a
series of uses for which the measure might be impor-
tant. Each use is accompanied by a reference to the
literature, where applicable. These references may
be used as an indication of how the measure has been
used in other studies. Further information on other
measures may be found in [Basili 80). Suggestions
are given for how the data might be collected for
the measure, and finally, the measure is cross-
referenced to the goals. 1In this way, the 1list of

measures can be viewed on a variety of individual
levels without losing the perspective of the entire
metrics schene.

The format for the list entries is given below.

name of general measure

explanation: A brief statement about the impor-
tance, use, or problems with this measure.
elaboration: A formula generator, distribution,
and/or formula is described in detail.
derived measures and/or specific examples:
uses/references

i) first use,[reference)

1i) second use,{reference]
how collected:
goals: Which goals does this measure help attain?

Several abbreviations are used to represent the
various forms and methods used to gather data. They
are:

AN: analysis of the programs

CRF: change request form

CSF: component summary form

CSR: component status report

EDF: error description form

IDC: individual document change report
P: programming team members

Q: subjective questionnaire

REV: review and walkthrough form

RSF: resource summary Form

EFFORT
EXPLANATION: Effort can be categorized by the
phase of the project, it can be associated with a
particular activity within the project, and it can
be associated with a particular part of the pro-
gram.
ELABORATION: One method of representing the
numerous effort measures is through a formula gen-
erator. eff is similar to a procedure which takes
four parameters: time units, personnel units, ac-
tivity units, and program units. It represents
the effort in time units for personnel to perform
the activity for the program. Another way to view
the representation is as a sum as in the equation
below
eff(time, personnel, activity, program) =
SUM over activity(program) by personnel in time
units. One might think of time, personnel, ac-
tivity, and program as enumerated types and of eff
as a procedure that computes various combinations
of the members of the types. The types are de-
fined as:
time: minutes, hours, weeks, months, years
personnel: programmer, librarian, support staff,
reviewers, all
activity: requirements, design, coding, testing,
maintenance, training, reviewing, making
changes, meetings, forms, methodology, 1librari-
an, other, all
program: module, subsystem, system
The all-encompassing personnel designation is
"all." A particular programmer can be specified by
*programmer (name)," and all programmers is written
"programmer{all).® Sometimes a particular activi-
ty, such as a review, involves more than one per-

son. - If these people can be described as a class;
such as "reviewers(exec)," they can be used as a
personnel designation. The all-encompassing ac-
tivity is "all.” When some activities overlap, the
overlap only counts once in "all." The all-
encompassing program i{s "system." When module or a
subsystem is a parameter, it is written
mod(module name)® or "sub(subsystem name). If
Just the type name is given, one of the members of
the type should be used. This 1is an important
shorthand for time units in particular.
EXAMPLES:
total programmer effort in months =
eff(time: months, personnel: programmer(all),
activity: all, program: system)
programmer effort for design of the system =
eff(time: time, personnel: programmer(all),
activity: design, program: system)
effort to review exec module =
eff(time: time, personnel: reviewers(exec),
- activity: review, program: mod(exec))
¥ total programmer effort spent in design =
eff(time: time, personnel: programmer{all),
activity: design, program: system)
/ eff(time: time, personnel: programmer(all),
activity: all, program: system)
USES
general references for the measure: [Walston &
Felix 77], [Putnam 78], [Belady & Lehman 76)
If examining by phase activity,
i) determining where time was spent
ii) pinpointing milestones
If examining by programmer activity, such as
training, methodology, or making changes,
iii) determining the importance of that activity
iv) pinpointing which activities might need im-
provement -
v) comparison with other projects
vi) prediction of future effort
vii) estimate cost
HOW COLLECTED: CSR, CRF, IDC, EDF, RSF.
GoALS:I.1, I.2, I.6, II.6

CHANGES
EXPLANATION: Changes can be described by a variety

of distributions and their associated formulas.
Changes are studied to determine where improve-
ments may be made in the methodology so that fewer
changes occur and to determine which types of
changes are the most costly so that they can be
avoided. The study of the change data can also
point out abnormalities in the project.
ELABORATION: Each of these distributions has a
number of categories which describe the change in
a particular manner. A graph of the distribution
would show how many changes were of each category
such that the total graphed would equal the total
number of changes. A distribution is referred to
as a type, and a category within the type is
called a mem. There are two similar notations for
changes and errors. The notation chg(type, mem,
program, activity) is used to represent the number
of mem changes using the distribution type made to
the program during activity. For example, the
number of planned -enhancements made to exec
throughout the project would be written as
chg(purpose, planned, mod(exec), all). The number
of clerical errors made in exec throughout the
project would be written as err{kind, clerical,
mod{exec), all).

The change types and their members are:

purpose of change: error correction, planned
enhancement, implementation of requirements
change, improvement of clarity, maintainability,
or documentation, insertion or deletion of debug
code, optimization of time, space, or aceuracy,
and other. [SEL 82)

how need for change determined: during a walk-
. through, planned, requirements changed, while

making another change, or testing. [SEL 82]

The error types and their members are:

kind of error: requirements misinterpreted,
functional specification incorrect or misinter-
preted, design error, misunderstanding of exter-
nal environment (not language), error in use of
PDL, error in use of programming language, error
in use of compiler, clerical error, other.
abstract error categories: initialization, con-
trol structure, interface, data, computation.
(Basili & Perricone 82)

omission or commission: Errors of commission are
present as a result of an incorrect executable
statement. Errors of omission result from for-
getting to include some entity within a module.
[Basili & Perricone 82)

how the error was discovered: design reading,
design walkthrough, code reading, code walk-
through, talks with other programmers, reading
documentation, system error messages, project
specific error messages, trace, dump, inspection
of output, pre-acceptance test runs, acceptance
testing, Ada’s run time checking, other.

USES
1) to predict the effect of future changes [Be-
lady & Lehman 76} ‘
i1) to estimate the reliability of the program
[Weiss 81], [Endres 75]
111) to determine which methods of error detec-
tion are most useful
iv) to determine where further instruction may
be needed

HOW COLLECTED: CRF

GOALS: I.2, I.3, I.4, 1.5, I.6, II.3, II.6

DIMENSIONS

EXPLANATION: Dimensions include all measures of
how big the project will be or is. It may be used
to predict effort both from the staffing and dura-
tion standpoints. It may also be used as a meas-
ure of complexity. One other use of this measure
is to define the object over which other measures
will be made, e.g. errors per lines of source.
ELABORATION: The definitions below are vi?ied;
therefore, a brief description is given before
each of them. Note that the Halstead measures
under the "Use of Ada" heading are also measures
of dimension.

lines: A line is a series of characters ter-
minated by a carriage return. Several types of
lines are defined as follows:
lines of source: A line of source is a line in
the delivered product.
comment lines: A comment line is a series of
characters between a "--" and a carriage re-

Program and activity are defined as in effort. As turn.

a notation for the data as a distribution, DIST is PDL lines: A PDL line is a line, within a PDL
similar to mathematical summation. Instead of ad- module, which is neither blank nor starts with
ding the terms, however, a set of ordered pairs is a Meat,

created. Each pair consists of the index and the Ada lines: A Ada line is a line, within a Ada
value of the term evaluated at that index. The : module, which is neither blank nor starts with
firat example below shows the use of DIST. a M.t

statemenés: A statement is an entity of the
language which serves a particular purpose. A

EXAMPLES statement may extend over several lines, and
changes distributed by purpose: more than one statement may occur on a line.
DIST for all i in purpose chg(type: purpose, Several types of statements are defined as fol-
mem: i, program: system, activity: all) lows:
number of clarity changes in module exec: executable statements: An executable statement
chg(type: purpose, mem: improve clarity, is a simple or compound statement which would
program: mod(exec), activity: all) cause an action or holds the place for an ac-
number of error corrections during design tion which takes place at run time. If a com-
chg(type: purpose, mem: error, putation must be done at run time in a de-
program: system, activity: design) claration, the declaration should be counted
number of changes found in walkthroughs: as an executable statement. An initialization
—Héhg(t;SE: need, mem: w;Ikthroughs, option 1is executable even though the compiler
program: system, activity: all) may be able to perform the initialization at
number of requirements changes during testing: compile time. A null statement is executable.
chg(type: purpose, mem: requirements change, Extra words, such as "end loop," are not
program: all, activity: testing) counted as separate statements.
number of errors discovered by design reading: declaration statements: A declaration state-
err(type: discovered, menm: design reading, ment 1is a statement which describes the type
program: system, activity: all) or representation of some program entity such
number of errors occurring during testing: as a type, a variable, or a procedure.
SUM all i in kind of err(type: kind, mem: i, statement nesting Statement nesting is a measure
program: system, activity: testing) of how deeply nested the statements of the pro-
number of errors of commission in module exec: gram are nested. In Ada, the following state-
err(type: com/om, mem: commission, ments may be nested within one another: accept,
program: mod(exec), activity: all) block, case, if, 1loop, and select. Unnested
distribution of errors in exec by kind of error: statements have a nesting level of one. If a
DIST for all i in kind of err(type: kind, nestable statement has level n, then statements
mem: i, program: mod(exec), activity: all) nested within it have level n+1. Two aspects of

this measure are of particular interest.

- average statement nesting: ¢ This measure is the
sun of the statement pesting at each statement
divided by the total number of statements.
maximym statement esting This measure is the
‘maximum value of statement nesting within the
program unit. '

g ogram units Program units can be a module, a

B subsystem, or the entire program. Entire program

and module will probably be used most often.

A module in Ada is either a subprogram, a
package, or a task. In other languages, other
program entities may be defined as modules.

A subsystem 1s a set of related modules within
the program. If subsystem is used in a meas-
ure, it should be defined precisely before
use.

Entire program is the union of all the modules
or of all the gubsystems.

USES

i) characterize the project
i1i) measure how much memory the program will
need [Halstead 77]
1i1) comparison with other projects
iv) as a predictor of effort [Walston &
Felix 77], [Freburger & Basili 79]
v) as a predictor of cost {Belady & Lehman 76],
[Freburger & Basili 79], [Basili & Reiter 79]
vi) as a measure of complexity [Halstead 77],
[McCabe 761, [Basili & Reiter 79)
vii) as the common denominator for measurements
of number of errors, changes, and such per lines
of source

HOW COLLECTED: ™wc" on the Vax, instrumented
language processor, by hand
GOALS: II.h, 1Iv.3, IV.2.

tasking .
number” of tasks served by this task

number of potential custemers
number of active customers: Both the average
and maximum measures could be studied.
number of statements between entry and rendez-
vous: ~This is a measure of the a amount of
shared code.
number of tasks working in parallel: This is a
measure of the amount of concurrency in the
program.

exception handling
number of unique exception handlers
number of programmer-defined exceptions
total number of exception handlers
average number of exception handlers per pro-
gram unit

CONSTRUCT DISTRIBUTIONS

elaboration: Just as changes are described by
distributions, this measure uses a variety of
distributions to describe how each programmer
and the team as a whole uses Ada. In addition,
one of the distributions is a distribution of
the others and describes which constructs were
involved in errors. Here, a construct is a
module, statement, or other syntactic entity.
Some features, as defined above, might also be
considered constructs. Constructs may also be
grouped together for other distributions. The
notation for the distributions is Ada(type, con-
struct, programmer) where type is one of the
distributions, construct is one or all of the
constructs in the distribution, and programmer
is the one or all of the programmers.

Some types and their elements are:

THE USE OF ADA

“TEXPLANATION: Because Ada is a new language which
will be used extensively, one would like to know
how it will be used in order to better train one’s
programmers. Few people are using Ada today, and
no one is sure of how it will be used in the fu-
ture. Some people have claimed that Ada has. too
many features and that no one will use all of
them. Others claim that all of the features of
Ada are necessary. Still others claim that pro-
grammers with different backgrounds will use dif-
ferent subsets of Ada’s features. The following
subset of metrics applies to Ada specifically.
These measures might show how Ada is being used,
and where training might focus to obtain the best
results.

ELABORATION: The measures of the use of Ada can be
organized into three groups: measures of the use
of Ada features, various distributions of the use
of Ada constructs, and Halstead measures. Each of
these groups is described below with an elabora-
tion and examples.

module: subprogram, package, task

statement: declaration, executable
declaration: exception, number, object, packe-
age, pragma, renaming, subprogram, subtype,
task, type

executable: abort, accept, assign, block,

case, code, delay, exit, goto, if, loop, null,
pragma, proc-call, raise, return, select
error: other types are the elements and can be
further specified.

examples:

distribution of executable statements:
DIST for all i in executable Ada(type:
executable, construct: i, programmer: all)
distribution of errors in declarations:
DIST for all i in declaration Ada(type:
error, construct: i, programmer: all)
distribution of module by type:
DIST for all i in module Ada(type: module,
construct: i, programmer: all)

HALSTEAD MEASURES

THE USE OF ADA FEATURES

elaboration: A feature of Ada is a semantic en-
tity which captures a specific concept of the
language. Examples of Ada features are tasking,
exception handling, and overloading. Unfor-
tunately, the use of some of these features can-
not be measured. The following measures are ex-
amples of how one might quantify the use of some
of Ada’s features.

elaboration: Halstead’s software science meas-
ures are derived from the counts of operators
and operands as defined below. Only the execut-
able statements of the program are analyzed for
these measures. See the definition of execut-
able statement in "lines of code." Note that
these definitions are specific to Ada because
the Halstead measures deal with the detalled use
of the language. An in-depth description of
each of these measures is given in [Hal-
stead 77].

operator: An operator 1s a syntactic element
which acts upon a syntactic object. The verbi-
age of control statements is reduced to a single
operator. Grouping operators, such as
parentheses, a counted as a unit. Attributes
are considered operators; for example, "a’range"
would be the operand "a" and the operator
®‘range”. A complete list of the operators for
Ada is given in Appendix II. ;
operand: An operand is a data object which {is
manipulated by operators. For example, “name.a"
i{s two operands with operator ".". For counts
of unique operands, each subpart of a data
structure will be counted as a unique entity.
derived measures
ni: number of unique operators
: number of unique operands
N1: total usage of all operators
N2: total usage of all operands
Vocabulary: n = n1 + n2
Length: N = N1 + N2
Expected length:
H° = n1 log2 n1 + n2 log2 n2
Yolume, a measure of program size,
V=Nlog2n
Potential volume, the most succinet form of
the program where n2% is the number of dif-
ferent 1/0 parameters,
VR = (2 + n2%) log2 (2 + n2%)
Program level: L = V#/V
USES
1) to aid in future training
ii) to determine where follow up training is
needed
HOW COLLECTED: instrumented language processor,
EDF
GOALS: I.4, II, IV.2

DATA USE
EXPLANATION: A program can be described by its use
of data as well as by its use of the language. By
measuring the use of data within the program, one
can determine the complexity of that program and,
therefore, the effort required to develop or
understand it. Here, complexity refers to the ex-
tent of the use of global variables, the extent of
coupling between program units, and the amount of
information that must be remembered while examin-
ing the program.
ELABORATION: Data usage can be measured in many
ways, but these measures fall into three
categories. Each category presents a different
view of the data. Each of these views is ela-
borated below with examples of precise measures.
However, the precise measures are very detailed;
therefore, a reference to the literature is given
for each of them.
UNIT-DATA
The first view i3 by measures which quantify the
use by a program unit of the data available to
it. One needs to examine the global and 1local
data as well as the unit itself to make these
measures.
example:
unit-global usage pair: A unit-global usage
pair (p,r) i3 an instance of a global variable
"r® being used by a unit "p." Precise measures
of interest here are possible pairs and actual

pairs. [Basili & Turner 75]

27

UNIT-UNIT VIA DATA
The second view of the data is by measures which
quantify the communication between program un-
its. To determine these measures, one must ex-
amine the various program units and the data
they share.
example:
data bindings: A unit-global-unit data binding
is a triple (p,r,q) which represents the oc-
currence of the following three conditions: 1)
unit p modifies global wvariable r, 2) variable
r is accessed by unit g, and 3) p and q are
distinet units. Precise measures are possible
data bindings and actual data bindings.
[Stevens, Myers, & Constantine TU], [Basili &
Turner 75], [Yau & Collofello 80], [Basili &
Hutchens 80], [Henry & Kafura 81]
LOCAL
The following measures quantify the use of the
data within a program unit. One need only exam-
ine the unit itself to determine these measures.
example
span: The number of statements between two
consecutive textual references to the same
identifier is called the span of the variable.
[Elshoff 76]
average live variables per statement: A 1live
variable is one that has a value which will be
used later in the measured unit. For example,
if x is assigned the value 10 which is used 5
lines later, x is live across those 5 1lines.
If 4its value is no longer needed, it will no
longer be live. Records will be a problem
here, i.e. parts may be live while other parts
are dead. We might want to count 1) only the
lowest level items as well as 2) all records
with some part live as live. [Dunsmore & Gan-
non 80]
USES:
Each of the references listed above give uses
for their measures
1) to estimate the use of global in the program
ii) to estimate the information exchanged in the
progran.
4ii) to estimate the effort required to under-
stand the program.
HOW COLLECTED: data flow analyzer, slicer, other
language processors
GOALS: IV.4

EXECUTION

EXPLANATION: The execution of the program has been
‘measured since programming began. Although the
time to execute and the space used to execute are
still important, other aspects of the execution
are also of concern to the software developer.
One aspect is that of testing. How can one be
sure that all faults have been removed from the
code? What types of testing will reveal the most
faults with the least effort? These questions are
difficult to answer, but the measures below quan-
tify some of the characteristics of the executing
program.

ELABORATION: The measures below are divided into
two categories: time/space and structured testing.
They are described briefly before the detail.

time/space: Time and space measures quantify how
efficiently a program performs its task. These
measures are highly variable depending on the
type of program and any restrictions on the en-
vironment. Time can be measured in mil-
liseconds, hours, or days depending upon one’s
interests and program. Size can be measured by
looking at stack space, static data space,
dynamic data space, program space, and others
items of interest for one’s needs.
structured testing: Structural testing methods
select test data which cause specific state-
ments, branches, paths, or features to .be exe-
cuted. Statements and features are” defined
above. Branches are refinements of statements,
where a control statement has one or more
branches emanating from it. Paths are combina-
tions of the branches. In general, a program
with a loop has an infinite number of paths
through that loop. Measures of particular in-
terest here are:
coverage: If every construct is executed by at
least one test in the set, the program is
covered.
counts: Each time that a construct is executed
by a test in the set, the count for that con-
struct is incremented by one.
USES:
i) to locate faults in the program [Howden 81)
i1i) to determine whether the program can perform
the required task within the bounds of its en-
vironment and requirements
ii) to determine whether further testing 1is
necessary [Howden 81]
HOW COLLECTED: instrumented code, support environ-
ment
GOALS: IV

Conclusions

Currently, we are analyzing the data gathered
for this project. Some of the measures described
above can be obtained easily from the data. Others
may not be made until an instrumented Ada compiler
is available. These are not the only measures that
can be taken. However, the 1ist above is represen-
tative of what we are collecting. The 1list of
metrics is growing, and suggestions for further
measures should be addressed to the authors.

Acknowledgement

The authors wish to thank John Bailey, John
Gannon, Elizabeth Kreusi, Sylvia Sheppard, and Mar-
vin Zelkowitz for their work with this study and
their comments on this paper.

Aggendii 1
GOALS FOR THE ADA PROJECT

The purpose of the goals is to direct the study
of the Ada project. The goals are divided into five
sections: Changes and Resources, Ada and PDL/Ada,
Data Collection, and Metrics. In the complete list,
each goal has a series of questions following it
which will aid in the attainment of that goal. Each
question has a letter or series of letters following
it wvhich indicates where, the information to answer
that question will be found. Space considerations
limit the size of this appendix. Complete copies of
the list of goals may be obtained from the authors.

I. phanges and Resources

1: Characterize the effort in the project.
2: Characterize the changes.

3: Characterize the errors.

U: Characterize Ada errors.

5: Characterize the other errors.

6: Characterize the non-error changes.

II. Ada and PDL/Ada

II.1: Evaluate the effect of using an Ada-like PDL
with respect to the goals of a PDL.

I1I.2: Determine which subsets of Ada features are
used naturally.

I1.3: Determine the effect of using an Ada-like PDL
when Ada is the language of implementation.

II.4: Determine how Ada works for this application.

1I.5: Characterize the programmers and associate
their backgrounds with their use of Ada.

I1.6: Determine whether there are aspects of Ada
that contribute positively to the design
and programming environment.

III. Data Collection

1IX.1: Evaluate the data collection and validation
process.

IV. Metrics

I
I

Select a set of static metrics for the APSE.
Develop a set of size metrics for the APSE.
Develop a set of control metrics for the APSE.
Develop a set of data metrics for the APSE.
Select a set of dynamic metrics for the APSE.
Develop a set of test coverage metrics for
the APSE.
IV.7: Develop a set of execution statistics for
the APSE.
IV.8: Select a set of software development process
metrics for the APSE.
IV.9: Determine the effectiveness of the predictive
power of certain measures during development.
IV.10: Develop a subjective evaluation system for
evaluation of program and design character-
istics that are not practically or easily
measured in other ways.
IV.11: Provide a data base for future Ada projects
to be used to predict some properties of
those projects.

i e o]

5 se as oo se oo

1
2
-3
.ll
5
.6

I
I
I
I

" label,

Appendix II
THE HALSTEAD OPERATORS FOR ADA

The following list contains all of the unique
operators we are counting for the Halstead measures.
A full definition of each operator is omitted for
space considerations.

abort, accept, access, all,: ampersand, and,
andthen, array, assign, assign-init, at, bar, bar-
exception, begin-token, block, body,. box, case,
case~-variant, char, colon, colon-mode, colon-named,
colon-renames, comma, constant, dash, dash-unary,
declare, delay, delta, digits, do, dot, dot-dot,
dot-entryname, dot-select-comp , else, else-in-
select, elsif, end, entry, equal, exception,
exception-decl, exit, for, for-use, function,
function-generic, function-spec, generic, goto,
greater, greater-eq, id, if, in, in-out, in-set, is,
left, left-label, less, less-eq, limited,
loop, mod, new, new-generic-package, not, not-eq,
not-in, null-token, number, of, or, or-in-select,
orelse, others, others-exception, out, package,
package-body, package-renames, param-generiec,
paren-entryname, paren-expr, paren-funccall, paren-
generic, paren-index, paren-list, paren-range,
paren-subunit, pdl-brace, plus, plus-unary, pragma,
private, procedure, procedure-generic, procedure-
spec, quote, quote-attribute, quote~qualified,
raise, range, record, rem, renames, return, reverse,
right, right-label, select, semi, separate, slash,
star, star-star, string, subtype, task, task-body,
task-is, task-renames, terminate, then, type, type-
generic, type-incomplete, use, when, when-in-case,
when-in-exception, when-in-exit, when-in-select,
when-in-variant, while, with, with-generic, xor, and
yields

References
[Basili 80) V.R. Basili, Tutorial on Models and

Metrics for Software Management and Engineering,
IEEE Computer Society Press, 1980.

[Basili & Hutchens 80] V.R. Basili and D.H.
Hutchens, ™A Study of a Family of Structural Com-
plexity Metrics,™ Proc. ACM-NBS Nineteenth Annual
Technical Symposium: Pathways to System Integrity,
Gaithersburg, MD. June 1980, pp. 13-15.

{Basili & Perricone 82] V.R. Basili and B.T. Perri-
cone, "Software Errors and Complexity: An Empiri-
cal Investigation,™ University of Maryland Techni-
cal Report TR-1195, 1982,

[Basili & Reiter 79] V.R. Basili and R.W. Reiter,
"An Investigation of Human Factors in Software
Development," Computer, Dec. 1979, pp. 21-38.

{Basili & Turner 75] V.R. Basili and A.J. Turner,
"Iterative Enhancement: A Practical Technique for
Software Development,” IEEE Trans. Software Eng.,
Vol. SE-1, No. 4, Dec. 1975, pp. 390-396.

[Basili & Weiss 82] V.R. Basili and D.M. Weiss, "A
Methodology for Collecting Valid Software
Engineering Data,"™ University of Maryland Techni-
cal Report TR-1235, Dec. 1982,

[Belady & Lehman 76] L.A. Belady and M.M. Lehman, "A
Model of Large Program Development,"™ IBM Systems
Journal, Vol. 15, No. 3, 1976, pp. 225-252.

{Dunsmore & Gannon 80) H.E. Dunsmore & J.D. Gannon,
"Analysis of the Effects of Programming Factors on
Programming Effort," The Journal of Systems and
Software Vol. 1, 1980, pp. 265-273. -

[Elshoff 76] J.L. Elshoff, ®"An Analysis of some
Commercial PL/1 Programs,” IEEE Trans. Software
- Eng., Vol. SE-2, No. 2, 1976, pp. 113-120.

[Endres 75] A. Endres, ™An Analysis of Errors and
Their Causes in Systems Programs,” IEEE Trans.
Software Eng., Vol. SE-1 , No. 2 , June 1975, pp pp.
140-~149.

[Freburger & Basili 79] "The Software Engineering
Lab: Relationship Equations," University of Mary-
land Technical Report TR-764, May 1979.

[Halstead 77] M. Halstead, Elements of Software Sci-
ence, Elsevier Computer Science Library, 1977.

[Henry & Kafura 81] S. Henry and D. Kafura,
"Software Quality Metrics Based on Interconnec-
tivity," Journal of Systems and Software, Vol. 2,
No. 2, 1981, pp. 121-131.

(Howden 81] W.E. Howden, "A Survey of Dynamic
Analysis Methods," in Tutorial on Software Testing
and Validation Techniques, 2nd ed., ed. E. Miller
and W. Howden, IEEE Computer Society Press, 1981.

[McCabe 76] T.J. McCabe, "A Complexity Measure,"
1EEE Trans. Software Eng., Vol. SE-2, No. 4, 1976,
pp. 308-320.

[Putnam 78] L. Putnam, "A General Empirical Solution
to the Macro Software Sizing and Estimating Prob-
lem," IEEE Trans. Software Eng., Vol. SE-4, No. 4,
1978, pp. 345-361.

[SEL 82] Software Engineering Laboratory, SEL-81-
104, The Software Engineering Laboratory, NASA
Goddard Space Flight Center, February 1982.

[Stevens, Myers, & Constantine T74] W.P. Stevens,
G.J. Myers and L.L. Constantine, "Structural
Design,” IBM Systems Journal, Vol. 13, No. 2,
1974, pp. 115-139.

{Walston & Felix T7] C. Walston and C. Felix, "A
Method of Programming Measurement and Estimation,”
IBM Systems Journal, Vol. 16, No. 1, 1977, pp.
5473,

{Weiser 81] M.D. Weiser "Program Slicing," Proc.
Fifth International Conference on Software
Engineering, San Diego, California, March 9-12,
1981, pp. 439-u49,

{Yau & Collofello 80] S.S. Yau and J.S. Collofello,

"Some Stability Measures for Software Mainte-
nance", IEEE Trans. Software Eng., Vol. SE-6, No.
6, 1980, pp 545-552.

