MONITORING SOFTWARE DEVELOPMENT THROUGH DYNAMIC VARIABLES

Carl W.
Victor R.

Doerflinger

Basili

University of Maryland
Dept. of Computer Science
College Park, MD 20742
(301) u4s54_2002 -

Abstract

This paper describes research con-
ducted by the Software Engineering Labora-
tory (SEL) on the use of .dynamiec variables
as a tool to monitor software development.
The intent of the project is to identify
pProject independent measures which may be
used in a management tool for monitoring
software development.
several FORTRAN projects with similar pro-
files. The staff was experienced in
developing these types of projects. The
projects developed serve similar func-
tions. Because these projects are similar
we believe some underlying relationships
exist that are invariant between the pro-
Jects. These relationships, once well
defined, may be used to compare the
development of different projects to
:determine whether they are evolving the
same way previous projects in this
environment evolved.

Overview

The Software Engineering Laboratory
(SEL) is a joint effort between the
National Aeronautics and Space Administra-
tion (NASA), the Computer Sciences Cor-
poration (CSC), and the University of
Maryland established to study the software
‘development process. To this end, data
has been collected for the last six years.
The data was from attitude determination
and control software developed by CSC, in
FORTRAN, for NASA. Additional information
on the SEL, the data collection effort,
and some of the studies that have been
made may be found in papers from the
Software Engineering Laboratory Series

1,2,3
published by the SEL .

This research was supported by the Na-
tional Aeronautics and Space Administra-
tion grant NSG-5123 to the University of
Maryland. Computer support provided in
part by the facilities of NASA/Goddard
Space Flight Center.

This study . examines.

for the models that had been developed .

The interest in the software develop-
ment process is motivated by a desire to
predict costs and quality of projects
being planned and developed. For several
years, studies have examined the relation-
ships between variables such as effort,

. 4,5
size, lines of code, and documentation .
These studies, for the most part, used
data collected at the end of past .projects
to predict the behavior of similar pro-
Jects in the future. In 1981 the SEL con-
cluded: that many of these factors were too
dependent on the environment to be useful
. 5

Any model which attempts to trace these
relationships should therefore be cali-
brated to the environment being examined.
The meta-model proposed by the SEL is

6

designed for such flexibility .

Another way to isolate out the
environment dependent factors is by com~
paring two internal factors of a project,
thus ignoring all outside influences. : One
approach that is used to monitor software

‘development. examines the time gap between

the initial report of software problems
and the complete resolution of the prob-

lem . Comparing two variables is useful
because it also accentuates problem areas
as they develop, providing relative infor-
mation rather than absolute information.

- Relative information is useful t6 the pro-

Ject manager because it accentuates trends
as the project develops. . If project
environments are similar, then similar:
values should be expected. Because the
project environments in the SEL are simi-
lar, it was felt that this approach could
be further extended to provide managers
Wwith information about how a set of vari-
ables over the course of a project dif-
fered from the same set of variables on
other projects (baselines). The managers
could be alerted to potential problems and
use other variable data and project

knowledge to determine whether the project
was in trouble. -

This methodology is flexible enough
to respond to changing needs. Every time
a project is completed the measures col-
lected during its development may be added
in to calculate a new baseline. In this
changes in the environment, as they occur.

. Baselines might also be developed to
reflect different attributes. For
instance, several projects which had good
productivity might be grouped to form a
productivity baseline. Once baselines are
established, projects in progress may be
compared against them. All measures fal-
ling outside the predetermined tolerance
range are interpreted by the manager.

Methodology

The implementation of this methodol-
ogy is dependent on two factors. The
first factor is the availability of meas-
ures that are project independent and ecan

"also be collected throughout a project’s
development. Variables like programmer
hours and number of computer runs are pro-
ject dependent. By comparing these vari-
ables against each other a set of relative
measures may be generated which is project
independent. For instance, the number of
software changes may vary from project to
project. The project dependent features
shared by each variable will cancel out
when the ratio of software changes per
computer run is taken. The resulting
relative measure is project independent.

The second factor is the need for

.fixed time intervals common to all pro-
Jeets. To normalize for time, project
milestones were used. The time into a
project might be twenty percent into cod-
ing instead of ten weeks into the project,
for instance. .

When computing the baselines one
other factor was considered. At any given
interval during development a variable may
measure either the total number of events
that have occurred from the beginning of
development (cumulative) or the number of
of events that have occurred since the
last measured interval (discrete). Since
these approaches may convey different
information it was felt that they both
should be used. _

For simplicity, the baseline for each
relative measure was defined as the aver-
age and standard deviation computed for
the measure at predetermined intervals. A
project’s progress may now be charted by
the software manager. At each interval in
a projects development the relative meas-
ures are compared with their respective

baseline. Any measures outside a standard
deviation are flagged. These measures are
then interpreted by the project manager to
determine how the project is progressing.
A flagged measure may indicate a project
is developing exceptionally well or it may
indicate a problem has been encountered.

The interpretation of a set of
flagged measures is a three step process.
First, the manager must determine the pos-
sible interpretations for each flagged
relative measure using lists of possible
interpretations developed and verified
based on past projects.

Second, the union of the lists of
possible interpretations of each flagged
measure must be taken. The list formed by
this union contains all the possible
interpretations ordered using the number
of times each interpretation is repeated
in the different lists. The larger the
number of overlaps a possible interpreta-
tion has, the greater the probability it
is the correct interpretation.

Third, the manager must analyze the
combined list and determine if a problem
exists. Interpretations with an equal
number of overlaps all have an equal pro-
bability of being the correct interpreta-
tions. 1If none of the possible interpreta-
tions for a given relative measure overlap
then the relative measure should be coén-
sidered separately. ‘

When analyzing the interpretations,
three pieces of information must be con-
sidered; the measurements, the point in
development, and the managers knowledge of
the project. A relative measure may indi-
cate different things depending on the
stage of development. For instance, a}
large amount of computer time per computer
run early in the project may indicate inot
enough unit testing is being done. Per-
sonal knowledge may also give valuabld
insight.

A fundamental assumption for using
this methodology is that similar type pro-
Jects evolve similarly. If a different
type of project was compared to this data-
base, the manager would have to decide
whether the baselines were applicable.
Depending on the type of differences, the
established baselines may or may not be of
any value.

EXAMPLE 1:

Forty percent into coding a software
manager finds that the lines of source
code per software change is higher than
normal. A list previously developed is
examined to determine what the relative
measure might indicate. The possible

intérpreﬁations for a large number of
lines of source code per software change
might be:

good code

easily developed code

influx of transported code
near build or milestone date
computer problems

poor testing approach

If this were the only flagged measure the
manager would then investigate each of the
possibilities. If the value for the measgs-
ure is close to the norm less concern is
needed than if the value is further away.

If in addition to lines of source
code per software change the number of
computer runs per software change was
higher than normal, the manager would also
examine this measure. The possible ’
interpretations for a large number of com-
puter runs per software change might be:

good code)
lots of testing
change backlog

. poor testing approach

The union of the possible interpretations
of these two measures indicates that the
strongest possible interpretations are 1)
good code and 2) a poor testing approach.
The number of possibilities to investigate
is smaller because these are the only =
measures which overlap. The manager must
now examine the testing plan and decide
whether either of these interpretations
reflect what is actually ocecurring in the
project. If these two possible interpre-
tations do not reflect what is happening
on the project, the manager would then
examine the other interpretations.

Baseline Development

To develop a baseline one must first
have variables whose measurements were
taken weekly for several projects. Five
variables in the SEL database were used.
The lines of source code, number of
software changes, and number of computer
runs were collected on the growth history
form. The amount of computer time and
programmer hours were collected on the
resource summary form. Measurement of
these variables started near the beginning
of coding. In this study, nine separate
projects were examined whose_development
was documented, with sufficient data, in
the SEL database. The projects ranged in
size from 51-112K lines of source code
with an average of 75K. No examination
‘was done for the requirements or design
phases.

Once the variables were chosen the

average and standard deviation was com-
puted for each baseline. Some baselines
suffered from limited data points during
the beginning of the coding phase. A cou-
Ple of the projects, in which problems
were known to have existed, were flagged

. @8 soon as data on these projects

appeared, but this was fifty percent of
the way into coding. It is not known how
nmuch earlier they would have appeared, ir

" data existed at the early intervals.

Interpretation of Relative Measures

Once a set of baselines are esta-
blished new projects may be compared to
them and potential problems flagged. : To
interpret these flagged relative measures
a 1list should be developed with each meas-
ures possible interpretations. Each list
must consider the possible interpretations
of the relative measure when it is either
above normal or below normal. What each
component variable actually measures
should also be considered when the dif-
ferent lists are developed.

A list was developed with possible
interpretations for each relative measure
being examined in the context of the SEL
environment. 1In another environment the
interpretation of these measures might be
different. These lists are subdivided
into two. categories; above and below nore
mal. The above normal category contains
possible interpretations for the relative
measure when it is outside one standard
deviation from the average in the positive
direction. ' The below normal category
refers to interpretations when the measure
is outside one standard deviation from the
mean in the negative direction.

One of the reasons this methodology
works is because of the implicit inter-
dependencies between different relative
measures. To show these interdependencies
more explicitly a cross reference chart

_ has also been provided for each interpre-
: tation to indicate other relative measures
. that can have the same interpretation. A
" number in the cross reference section

indicates the 1ist number of a relative
measure that can have the same interpreta-
tion. The position of the list number in
the lY-quadrant cross reference section
indicates whether both interpretations are
found with above normal values, both with
below normal values, or one with above and
the other with below normal values.

With these lists a set of flagged

v relative measures may be evaluated. When

a relative measure is flagged, its associ-
ated list is examined for possible
interpretations. Overlaps of this list
with the lists of other flagged relative

computer time per run

Sample Baseline

method of measurement: discrete

baseline
1.4

N N
Bt - \\1 .'..".
':.'-. ...:"'. %01“6:’0%
i g] P [
7 O S
e, . '\\ |
S \\\ s. ?:};&o
.ia \\(%;
N .‘."..'.. \ :"'.."' '1«0“1;65"{\%

. ctrig— !

PRe

VOEZADEHEE LHER ARE =Dz

[#]

<

oD

D
0

[N] swarqoad gejnduwoo~-
AyTxe1dwoo mot~-

Boryoeq eBSuvyo-

wedfouad Buyqeagy Jood-

8pod poof-

@3EBp SUOJESTIW JO PIING JEBU=~
°poo pejJodsuedy JO XnIJuf-
Tewaou |

noysq |

|
|
|
|
|
!
|
|
ARl et R Attt e L L LT RNy |
|
|
|
|
|
|

68
6 8
9

- 0o

8 L2
L

(pe3aodsueay Jgo Buyrysey)
peaowsd -Buisq epoo~
suojjedr)ioeds peq-
@pod suoud Joauae- :
$ur3se7 pooF~
Temsou |
| | . saogqe |
Tewdou | TE®JOU { . | 1
#0199 | 3Iaoqe | uogjezeadasguy | ed&y |
80UBIOJOd SEOUD i : 1 §

@po) adounos Jo SuTT Jed seBuEy) SuBMIJOS 3E 35T

- 4
Y
G-~

68lLe
68

|
|
|
|
|
1
|
i
|
|
[
|
|
|
[
“
|
|
I

sweTqodd Joqndwop- {
‘pedoteacp Fuyeq |

®poo eIqe3noexe 8TIFTI- |

suop Bujeq t

Bujyisey sujlyl uo ®I33TT~ |

@3ep SUOIESTIW JO pIIng Jeau-]
epoo pajuodsuesy Jo xnyjui- i
! Tewaou |-
noteq |
suoT3ed1yFoads peqg-~ “
(pajaodsueay Jo Sugysey) |
8pod> Jo TeAOWSJ-]

8uygseq Jo sjo1- i

L3TxeTdwon yByy-]

£31a330npoad Mo~ 1

|

Temaou

®a0qe |
le@mJaou | Te@sou] . : | I
MOTaQ | @aoge {

QJUIJOJRI 504D] i

2POD sounos Jo suy god suny aejndwon sy 38y

{ ue33tuams Juyeq
{ 8pos erqejnoexe oT3ITI-
9 6 €| ouo.dd Joaus epoo-

] suop Sujgeq
{ Buryses auUIT U0 BT33TT[~
9} ®3ep BUO3ESTIW JO pPIIngQ Jeou-
| 8pod pejaodeuvds Jo xnyJuj~-
] Tewdou |
] moteq |
el e Sttt Dl L L T T P
|] (pojaodsuesy Jo Buyyses) 1
€ L] pssomea Sureq epoo- |
i suop Bufeq Buj3se] 3Fjun- i
| Suyrjsey jo sjoy- |
_ nco«uao«uuuonnvqnn ~
_ .
_ _
_ _

£33A1300poad mor-
£31x91duod yIyy-
Tewaou
\ | saoqe |
TewJou | [ewmwJou { . | |
moyeq | @aaoqe | uotzejeuadasquy | ed&y |
P0USJIDJOU FEOID] |]

9po) eounos Jo @uy] Jeod owyl Jejndwod iz IS

- —® -

Fam

efueyy edemjjog aed SJInoy JewuwesBody ~ § 3811

: e3ueyD 2aeM3Jo§ J3d emyTY 403nduo) ~ g 3877
uny Jejnduwoy Jed sunoy JewmeaSoug - L as11

uny aeindwo) aed seBuey) 8JEM3JOS = 9 3IFI1

uny Jsjndmop aed ewyl Jejndmon - § 1811

epo) @odnos Jo sujq Jed sanof JswweaFoag - y ISTT
®p0) 8o4nog Jo Buy] Jed soFuwy) euemzjos - £ 3F[7
epo) 9o4nog Jo 9uyl} aed smyl vsjandwmod - 2 1811

®po) @oddanog Jo suyT Jed suny-Jendwo)d - { 357

IpoUTHEXY EOINSEIH SATIBIOY

i z 1| Buyysey Jo s3o01~
96K € opod suoud Joaae-
PexTJ Buteq ca0aus Lsee-
Tewaou
MOTaq

i

{

I

|

. |
R R g e O e T T T ST
|

i

I

I

|

1

|

|

|

(] @jew o3 paey seBueyo-

ki 9381081 03 pJaey seBueyo-

| ©poo pejuodsueay A{jueved

| ©3 epew Buyleq suofrjeojJjipom~

i A37xatdwoo yByy-

{ TewJaou |

1 | saoqe |

T{eddo | TeWJOU] . ; |]
MOT8Q | eA0q®] uoyjejsadaaguy | edky |
POUIIOIBI £E0JD] . 1 |

i
I
]
|
{
1
|
i
|
|
t
|
|
|
i
i

uny aeindwoy Jsd Fanoy JewweaSoud 3. 3ISTT

e e e > o e e = e e - e o

] 6 L) 1 punog Suyeq SJI0J4d8 AFwe- |
i { 8 2l uo Fujod Fuygeey 3yun- §
i i] : Tesgou |
| | i molsq |
i e e |
I | pejse] Buyegq {
| i g suy3fTI08te punoq @4qndmoo- |
i 6 8l 2l 9 4 £ 2pod vuoud Jouas~ |
1] : Ataes pejuuss 1
|] 9] Burgsey uoTjeaBejuyl ¥ weyshE- |
| { TewJIOU |
f] oaoqge |
| tewmgou | tewaou i 1 |
| mnoreq | saoge | uofjejeadaequy . | sd3 |
1 90UBGJUIJOUd EROJD] : { i

uny J9yndwoy aod suYl 203ndwo)d :§ 36T

]] £l 8otrxoeq sBueyo- |
I] 68 £ weafoad Fur3ise; Jsood=~ [}
I 1| 2 il 8uy3eay Jo sj07~ |
I | 68 El @pod pood- {
| | | temaou |
| | | noteq |
e e R et et
| 68 ni i |
| €2 tl | @38p S2UOYGITIW JO PIINQ JBBU~]
| 6 g8-L 2} S n €| 8poo suoud Jaoduae~-]
{ f i £A1aee pejuess |
| 1 G| Puyr3ssy uoyrjeadejuy 3 wWevhs- i
| 6 gl €1 futqseq poos- 4
]]] Teswaou |
1 | { onroqe |
| Tewaou | tewmaou | } |
i HOI9q | eaoqe H uotjejoadaeruy | edfq
i GOUSUBJOL EEOUD | . |]
uny Jeqndwoy Jod ¢oBueyy saemgjog 19 18317
e ——, . —————— - \
i €l | £31x01dwod MOy~ |
| 6 8¢ 2t} 9] ®3®p euUO3SSTTIW JO PIIRG Jdveu- {
| €2 1) | 9poo psjaodsurd3 Jo xnijuy~ |
| { | 1euJgou |
“ “ “ . moteq |
I | et} £37AT30npoad Moy~ “
| I 6 Li ojew 03 paey sefueyo-]
f | 6 8 L} #3¥1067 03 puaey seFusyo~ |
|] i (pejaodsuray Jo mcaunoov |
t | €2l peAouwas Sujeq spoo- |
[! €2t Suoyjed1 i08ds peq- !
H 6 ¢ L 2| 96 ¢ 2poo euoud soduae-~ 1
| I 68 L2l £31xetdwoo ysyy-)
i | I Tewaou 4
| l | oaoqe |
| Ttlesdou | yewmaou { |]
] Mo1eq | eaoqe] =0aamuwnnnou=a | 8d&q |
] BOUSJIRJOI £80J4D | | }

®poy sounog jJo Ul aed fJanoy LDEEELMOL& iy 3811

List 8: Computer Time per Software Change

croas reference
above | below
normal | normal

1

1 1
{ ~good code I
| -poor testing program {
1 ~high complexity [
| -changes hard to isolate |
1 -unit testing !
| «compute bound algorithms I
1 being tested |
|

I

|

|

|

1

-good testing
-error prone code

!

|

: -near build or milestone date
1

.. L T U,
cross refersnce
above | :below
normal | . normal

-good code
] ' -poor testing progranm
f ~changes hard to isolate
| ~changes hard to make

I -good testing

1 -near build or milestone date
I -easy changes

! -transported code being

t modified

! -error prone code

measures form the new 1ist of what these
relative measures together might indicate.
The more overlaps a particular interpreta-
tion has, the greater the chance it is the
correct interpretation. 1Interpretations
with the same number of overlaps must be
considered equally. The more relative
measures flagged the more serious the
problem may be. It is up to the manager
to determine whether the deviation is good
or bad. ’

Monitoring a Software Project'g Development

Once the baselines have been
developed and the lists of possible .
interpretations have been put together a
software manager may monitor the actual
development of a project. Example 1
demonstrated how a single interval may be
interpreted. The following discussion
will trace the development of an actual
project. During the actual use of this
methodology, influence would be exerted to
correct problems as soon as they are iden-
tified. With this study, we must be con-
tent to study a projects evolution,
without hindrance, and see at what points-
problems could of been detected.

Project twenty* was chosen for this

- examination because data existed
throughout the projects development. 1In
most respects project twenty was an aver-

) age project. The project did have a lower
than normal productivity rate. The lower
rate may be partially explained by the
fact the management was less experienced
when compared to other projects. The pro-
ject also suffered from some delayed
staffing. Changes in staffing will be

noted when thé different time intervals
are discussed.

The tables on the following page show
which relative measures were flagged when
project twenty was compared to the base-~
lines for each stage of development. The
numerical values represent how many stan-
dard deviations each flagged relative
measure was from the baseline. The base-
line for each relative measure was calcu-
lated using all nine projects.

Start of Coding:

At the start of coding only one rela-
tive measure is flagged. The smaller than
normal number of software changes per line
of source code using the discrete approach
refleects work done during the design
phase. The lists designed in the previous

"section were directed towards code prbduc-
tion and testing and do not apply to this
time interval when using the discrete
approach. This measure may indicate good

. specifications or lots of PDL being gen-
erated. The manager might want to examine
this measure later if it constantly
repeated. Since it is the only measure
flagged at this time it will be ignored.

* The numbering convention used is an
extension of the one first used by Bailey
: 6
and Basili .

«1||1||||t|||1|||||||t:|||:||||||0||||||||||+||||+||||+|t||+||||+||||+|||1+l|h|+|||t+||||+|||
i sBueyo/emyy Jaajndwoo (s ¢ } 21l |
lllllllllllllllll|lIllllllllllIlllllllllllll+|lll+llll+llll+llll+llll+Illl+lll|+llll+llll+lll
und/sJnoy Jswweadoad qs (>	2'1l																																																													
		t									l		t			l		1			t				xll							:	+		1	+			s+t			+		v	+	ll	+			n+		l	+o			+				+		
9dJdnos Jo EdUTT/3WT] Jegndwod (s L	0°e i*e L*r g1 201																																																													
eodnos Jo sa2ujl1/so8uByS QS 1<	K2 0°2 0°¢ L*L Skt																																																													
®0JnoE jJo souUTT/E0BuUBYD (S LD	Lt																																																													
804n0s Jo saUTI/suUnd as 1<	Ly : g1 g°l A																																																													
®ounos jo saujg/sanoy JsumeaFouad as L<	g2 o°2 (4]} gLt L°*L. 0°t																																																													
				;'lllllvullunllvlcnlllxl			J:							l		+				+				f				+				+1l		+	l		+			1+				+				+	a													
.	3dooe sLs sAs 8p0d ©pPOO 8pOD 9p0OD 8pod 2poo																																																													
§9JnEeoW OATieIOI		pue jam3s g0g5 3aeys 309 %09 %06 10 %02 3A4e3s																																																												
_ e e e e e e 1																																																														

. T WioUu WOXJ SUOTJETASD PJIBPUEZE JO Jdaqunu |

lIlllllllllllllllIlllllllIllllllllllllllllllllllllllllllllIllllll'lllIllllllllllllll]lllllll

©39J0ETpP :juUOWIJNSESW JO poyzouw

Illlllllllllllllll!lllllllIllllllll!llllllll+|lll+l|l|+lll|+lll|+l|ll+llll+llll+ll|l+|lll+lll
| una/ssanoy JomweaBouad qg > | [L 2% P*1 |
llllllllllllllllllllllllllllll|ll|l|ll|lllll+llll+llll+|ll4+ll|l+lll|+llll+llll+Illl+|lll+lll
| 904n0s JO SAUTT/5WT3 Jojndwoo (g 1<] 2L S'L gt |
| 90J4nos jo sauyi/sund (s L< | 1*1 |
| @%uanos jo souyi/sanoy asmmeaFouad as < | €1 |
||il11||||||||||||l||||||||'|t||||||||||||||+||||+|l||+|nn|+||||+||:|+||||+||||+t|p|+||||+||:
| . | 3dooe she. shs ©pOO BpoOD 8pod 8pod 8pod ®poo|
| §94NEEOW BdATFRTOL - | pus jue3s g0 juaels $08 %09 ¥0S 0% gfo2 jaels|
| . o e e e e e e e e
| | wJou wouag BUOT3RTASD pJepUR]E JO Jequnhu |

l'llIlllllllll|l|lll|llllllllllllllllll'llllllllllllllllllllllllllllllllll|lllll|l|lllllllll|

SATJETNUND :juUOWEUNSERW JO poyjom

02 :398foud

C8

20% Coding:

The flagged relative measures found
using the discrete approach at this point
represent the work done from the start of
coding until twenty percent of the way
through coding. The list of possible
interpretations for the flagged relative
measures, generated from the lists made
previously for the individual relative
measure, would look like:

overlaps interpretation

bad specifications

code removed

low productivity

high complexity

error prone code

lots of testing

good testing

changes hard to isolate
changes hard to make
unit testing being done
easy errors being found

- LN NDWW

.The strongest interpretations are bad.
specifications and code being removed. If
the actual history is examined one finds
that during this period there were a lot
of specifications being changed. This
resulted in code which was to be modified
being discarded and new code being writ-
ten. During the early period lots of PDL
was being produced but very little new
executable code. The list of possible
interpretations does show that low produc-
tivity is also a strong possibility.

40% Coding:

The flagged relative measures which
appear using the cumulative approach, from
this time period on, are stronger indica-
tors than the ones used in the first cou-
ple of intervals because the average is
computed using more data points. The use
of the discrete approach for the interval
of twenty to forty percent is still depen-
dent on three data points. The list of
possible interpretations for this time
period is:

overlaps interpretation

low productivity

high complexity

error prone code

bad specifications

code being removed
changes hard to isolate
changes hard to make
lots of testing

unit testing being done
good testing

easy errors

- e a2 s

The number of possibilities is larger with
this set of possible interpretations.

Five interpretations are slightly stronger
than the others. During the actual
development, the first release of the pro-
Ject was made. The amount of code actu-
ally written was also lower than normal
during this period. The use of the
discrete approach gives a stronger feeling
that code is not being written. Tran-
sported code tends to be installed in

" large blocks which can be isolated using

the discrete approach.

50% Coding:

The relative measures flagged during
this period are the same as the ones
flagged at the twenty percent coding
interval. The deviation from the norm for
this interval is larger. The larger devi-
ation may indicate a more serious problem.
The problem may of been just as serious
earlier but without the extra data points,
that are now available, it could not be
determined. " The possible interpretations
may be taken from the list developed ear-

“lier. Bad specifications and code removal

were not factors during this period. The
next three highest priority interpreta-
tions were; high complexity, error prone
code, and low productivity. 1In addition
to this the manager should be concerned
with the continued appearance of the rela-~
tive measure, programmer hours per com-
puter run, as seen using the cumulative
approach. This may indicate a lot of
testing going on. This in conjunction
Wwith error prone code as a possible
interpretation may indicate trouble. - Dure
ing actual development this period was
spent developing code for the second
release. The project manager felt that

. code was still not being developed quickly

enough during this period.

60% Coding:

Only one relative measure is shown at
this interval. The number of programmer
hours per computer run using the cumula-
tive approach is lower than normal for the
third consecutive time. This should con=-
cern the manager because when examining
the list for this measure one finds:

error prone code
lots of testing
easy errors being fixed

Since the occurrence of this measure is
persistent it may indicate that the prob-
lem was corrected but not enough effort
was expended to completely compensate for
the past problems.. It might also indicate

~the problem still exists. During the

actual project it was found that while a
lot of code was written, it had not been
throughly tested. Release two was made

during this period which could explain a
heavy test load. Two additional staff

members were added to the project during
this phase to aid in coding and testing.

(o]
n
Q
o
a
[
I
.

The eighty percent coding interval
does not show any measures outside the
normal bounds. The addition of two staff
members during the sixty percent coding
phase, as well as the addition of a senior
staff member during this phase, appears to
have adjusted the project back along the
lines of normal development. To fully
compensate for the earlier problems one
might expect some of the measures to swing
in the other direction away from the aver-
age. The fact this over correction did
not occur might explain the problems
encountered in the next section.

Sfart>g£ System and Integration Teéting:

- The flagged relative measures at this
time period reflect the build up of effort
for the third and final release. The list
of possible interpretations for the col-
lective set of flagged measures looks
like:

overlaps interpretation

high complexity

bad specifications

code being removed

error prone. code

low productivity

lots of testing

changes hard to isolate

unit testing being done

good code

poor testing

changes hard to make

good testing

compute bound algorithms
being run

easy errors being fixed

-t ek 2 DWW

Since the code did have a past history of
poor testing an unusually large build up
of testing should be expected. The two
interpretations that apply most to this
situation are lots of testing and error
prone code.

50% System and Integration Testing:

Only one relative measure is flagged
at this interval. This measure was
flagged using the cumulative approach. An
examination of the measure at the previous
interval shows a very high value. A slow

drop off from this high measure is to be.
expected when using the cumulative
approach. An examination of possible
interpretations that would apply for this
period of development include:

high complexity

lots of testing

unit testing being done
testing code being removed

A lot of testing is certainly indicated by
past history.

Start Acceptance Testing:

The relative measures flagged at this
interval reflects the build up in testing
before the start of acceptance testing.
The list of possible interpretations looks
like:

overlaps ‘interpretation

bad specifications

code being removed

high complexity

low productivity

error prone code

lots of testing

changes hard to isolate
changes hard to make
unit testing being done
good testing

- - NN WWw

Since little code was being developed dur-
ing the testing period, a large amount of
testing with errors being found is the
most ‘reasonable interpretation of these
flagged measures. The early history of
poor testing may be seen here with errors
being uncovered late.

End Acceptance Testing:

The two flagged relative measures at
the end of acceptance testing reflect the
clean up effort being made on the code.

‘An average amount of computer time and an

average number of computer runs indicates
that the acceptance testing is going well.
The project was behind schedule due to the
earlier problems encountered. Clean up
was done during the acceptance testing
phase in an attempt to get the project out
the door as soon as possible.

As seen in this example, the problems
that occur during a projects development
are reflected in the values calculated for
the relative measures. The methodology
preposed can be used to monitor projects.
The number of possible interpretations
increases with each new flagged relative
measure. The ordering of the measures by

the number of overlaps provides an easy
method of sorting the possible interpreta-
tions by priority. Another method of
sorting the possible interpretations could
include a factor that considers both the
number of overlaps and the probability of
a given interpretation being the cause at
a given interval. The weighting of

interpretations for a given interval could

be calculated using the pattern of
occurrence of the different interpreta-
tions which have appeared during the same
interval in past projects.

An Alternate Approach

Flagged relative measures might also
be interpreted using a decision support
system. The data for the various relative

measures would be stored in a knowledge
- base along with a set of production rules.
To evaluate a project the values for each
relative measure would be entered into the
system. The knowledge base would compare
the relative measures to their respective
baselines, determine which relative meas-
ures were outside the norm, and interpret
these relative measures using the produc-
tion rules. A list of possible interpre-
tations ordered by probability would be
generated as a result.

"The difference between a decision
support system and the approach presented
in this paper is the method of interpret-
ing the flagged relative measures. Each
production rule in the decision support
system is the logical disjunction of
several flagged measures which yields a
given interpretation. Each production
rule is assigned a confidence rating which
is then used to rate the possible
interpretations. The 1lists for the rela-
tive measures provided earlier in the
paper may be easily converted to produc-
tion rules using the c¢ross reference sec-
tion. To develop the production rules for
an interpretation one must generate the
various combinations of relative measures
which might reasonably imply the interpre-
tation. Some relative measures may not
imply a particular interpretation unless
they are found in conjunction with another
relative measure. Once the production
rules are known and a knowledge base con-
structed a decision support system may be
built. For an example of a domain
independent decision support system see

8

Reggia and Perricone .

"Summary

The methodology presented in this
paper showed that invariant relationships
exist for similar projects. New projects
may be compared to the baselines of these

invariant relationships to determine when
projects are getting off track.

The ability of the manager to inter-
pret the measures that fall outside the
norm is dependent on the amount of infore
mation the underlying variables convey.
The manager must decide what attributes
are to be measured (e.g. productivity) and
pick variables that are closely related to

"~ them and are also measurable throughout

the project. As an example, a variable
like lines of code may be too general when
measuring productivity. Measuring the
newly developed code, either source code
or executable code, would be more informa-
tive since these variables are more
directly related to effort. How applica-
ble an interpretation is for the period
currently being examined should also be
considered when ordering the list. The
variables the manager finally decides on
are then combined to form relative meas-
ures.

One method of interpreting a relative
measure 1s by associating lists of possi~-
ble interpretations with it. When a rela=-
tive measure appears outside the norm, the
list of possible interpretations is con-
sidered. If more than one relative meas-
ure is outside the norm the lists are com-
bined. The more times a possible
interpretation is repeated in the lists,
the greater the probability it is the
cause. How applicable an interpretation
is for the period being examined should
also be considered when ordering the list.
The manager must investigate the suggested
causes to determine the real one.

.~

Conclusion

The ability to monitor a projects
development and detect problems as they
develop may be feasible. The methodology
proposed showed favorable results when
examining a past case.

The use of baselines and lists of
interpretations for comparing projects
provides an easy method for monitoring
software development. Both the baselines
and the lists of interpretations may be
updated as new projects are developed. As.
more knowledge is gleaned the accuracy of
this system should improve and provide a
valuable tool for the manager.

Acknowledgements

The authors would like to thank Dr.
Jerry Page of Computer Sciences Corpora-
tion and Frank McGarry of NASA/Goddard
Space Flight Center for their insight and
advice.) ’ .

[11

[2]

(3]

(4]

[51

{63

{73

[81

[91]

References

Card, David, Frank McGarry, Jerry
Page, Suellen Eslinger, and Victor
Basili, The Software Engineering
Laboratory, SEL-81-104, Software
Engineering Laboratory Series, God~
dard Space Flight Center, February
1982.

Church, Victor, David Card, Frank
McGarry, Jerry Page, and Victor
Basili, Guide To Data Collection,
SEL-81-101, Software Engineering
Laboratory Series, Goddard Space
Flight Center, August 1982.

SEL,, Collected Software Engineering
Papers: Volume 1, SEL-82-00%,
Software Engineering Laboratory
Series, Goddard Space Flight Center,
July 1982.

Walston, C. E. and C. P. Felix, A
Method of Programming Measurement and
Estimation, IBM Systems Journal,
January 1977. .

Basili, Victor R. and Karl Freburger,
Programming Measurement and Estima-
tion in the Software Engineering
Laboratory, Journal of Systems and
Software, 1981,

Bailey, John W. and Victor R. Basili,
A Meta-Model for Software Development
Resource Expenditures, Proceedings,
Fifth International Conference on
Software Engineering, September 1981.

The Role of Measurements in Program-
ming Technology, Lecture presented
at University of Maryland, November
15, 1982,)

Reggia, James and Barry Perricone,

KMS Manual, TR-1136, Department of

Mathematics, University of Maryland
Baltimore County, January 1982.

Minsky, M. L., A Framework for the
Representation of Knowledge, The

Psychology of Computer Vision, pp.
211-280, MeGraw Hill, New York, 1975.

