oofiware engineering:
Practice and Experience

Proceedings of the Second Software
- Engineering Conference

4-6 June 1984
Nice, France

Optimizing the utilization of human
resources: a framework for research

A. BAILEY, V. BASILI and F. YOUSSEFI
Department of Computer Science, University of Maryland, College Park, MA 20742, U.S.A.

ABSTRACT

With the continuous increase in the size of software development teams, optimizing the utilization of human resources

has become a growing concern in the software community. This paper proposes a model for assessing and improving
human resonrce utilization in software development organizations. The process of setting up these organizations is
described as an iterative process consisting of three steps: developing the structure, establishing the communications flow
and determining the availability of human resources. With appropriate metrics introduced for each of these steps, the model
serves as a framework for recording and periodic assessment of organizational changes throughout the software

development life cycle.

Keywords: software management, software management metrics, human factors.

1. Introduction

Since people develop software, any problem relating to
human resources would have a direct impact on the cost
of software development. In recent years, we have been
witnessing a continuous increase in the size of software
development teams, sometimes in excess of a few
hundred people. The software community has become
more and more aware of the importance of optimizing
utilization of human resources.

For many years, problems of manpower management
have received much attention both in the academic and
managerial literature [Piskor 76]. Management research
studies have indicated that size, technology and environ-
ment have an impact on the organizational structure and
vice versa [Aldrich 72; Child 72; Laurence 76]. These
studies have also shown that each of these factors affects
the organizational efficiency and thus should be given
consideration. Few of these management techniques
have been suggested to improve planning, organizing,
staffing, directing and controlling of human resources
within a software organization. :

The chief programmer team proposed by [Mills 71] and
implemented by [Baker 72|, and the egoless program-
ming team proposed by [Weinberg 71} have been widely
used for organizing teams. Shneiderman discussed the
advantages and disadvantages of these teams [Shneider-
man 80]. Basili and Reiter found relationships between
the size of a programming group and several software
metrics [Basili 79]. Rogers suggested substituting
network analysis field work to understand the effects of
group structures [Rogers 76]. Scott and Simmons con-
cluded in their experiments [Scott 75] that productivity is
affected by the organizational structure and the commun-
ications requirements. The Thayer and Lehman survey
[Thayer 79] demonstrated the necessity for the improve-
ment of planning and communications, delegation of
authority, assignment of responsibility and documenta-
tion of decisions. Furthermore, Mantei investigated' the
effects of various management structures and communi-
cation channels on performing programming tasks [Man-
tei 81).

A major source of insight when analysing the utiliza-
tion of human resources within a software development




OPTIMIZING THE UTILIZATION OF HUMAN RESOURCES g

project is a record of organizational changes throughout
the software development life-cycle. The objective of this
paper is to describe a model which can serve as a
framework for periodic assessment of human resource
utilization. By collecting organizational data at each
phase of the software development life-cycle, the model
can show where changes were made, what kinds of
changes were made and the effects of these changes on
the overall utilization of human resources.

The model provides metrics for recording the history of
organizational changes in terms of goals, structures,
communications flow, resource allocation, etc. to pro-
mote visibility. By monitoring these changes, managers
can determine whether their original organizational plan
was perceived correctly and if not, they can learn where
problem areas and strengths lie, why these conditions
exist and what can be done to improve conditions where
necessary. An entire software organization, or any part
thereof, can be analysed on the basis of the presence or
absence of conditions which contribute to its effective-
ness.

We define the process of setting up a software
development organization and identify the steps entailed
in the process. These steps include: developing the
structure, establishing the communications flow and
determining the availability of human resources. A set of
factors effecting each step and their interrelationships are
defined and built into this model. The model exhibits
certain behaviour which are discussed and an emphasis is
made on its iterative nature. An example is given to
illustrate the model.

2. The process of building a software
development organization

Traditionally, a software organizational manager is
given the responsibility to produce a software product
based upon a set of requirements. He classifies these
requirements into a set of tasks. Each task is then
assigned to a team of individuals who are capable of
performing on that task. For example, the analysis and
design is assigned to software analysts, the coding to
programmers, the quality control to quality assurance
experts, etc. At this point, the manager feels he has done
what he can and hopes that tasks are completed as
scheduled.

The traditional ways of developing software organiza-
tions are in most cases ad hoc. There is often a lack of
structured techniques to design and implement these
organizations. However, upon closer examination, we
believe the process follows certain necessary steps: tasks
are identified, communication flows are established and
availability of human resources is assessed. It is along
these lines that we have developed the effectiveness
model to be used in assessing human resource utilization.

Communications
flow

3. The effectiveness model

The effectiveness model consists of three components,
each receiving input from the previous component and
providing results to the next. The model itself takes
software goals as inputs and generates a set of effective-
ness indicators as outputs. These indicators can further be
analysed to assess the degree of optimization of human
resource utilization.

To begin with, a set of requirements are derived from
user’s goals and expectations. These goals may include
satisfying certain boundaries on cost and/or schedule,
attaining certain performance criteria such as high
reliability, fast response time or portability, or perform-
ing configuration management of the software.

These requirements are then classified into a set of
tasks which are built into a structure. A possible structure
may consist of tasks such as building the data base, setting
up the communications network and controlling quality
assurance and configuration management.

Each of these tasks will be designated as a node. The
location of these nodes within the structure bears a
relationship to the success of the project. The nodes are a
means of delineating tasks or functions. There often
exists an interdependency among tasks. Sometimes, a
task may need information from another task for
completion. These functional dependencies cause certain
tasks to overlap each other. Naturally, since people have
to work together as a team to get these tasks done, it is
imperative that ease of communication flow be estab-
lished within the structure,

It is only after the structure and communication flow
are investigated that the manager should begin to concern
himself with gathering human resources needed to
complete the tasks.

Figure 1 shows the process. Note that the process is
iterative, i.e. a change in goals would result in a change in
the structure and in turn in a change in the communica-
tions flow, all of which would have a bearing on the
availability of human resources. Furthermore, any
change in either component would affect another com-
ponent so that if availability of human resources changes
and new people are hired into the organization, then the
structure as well as the communications flow has to be
re-analysed and changed accordingly. If the goals of the
software project originally envisioned are revised due to a
large turnover, the circle will be reinitialized with new
goals. The proposed model, being iterative, makes
provision for such changes.

The following example is used throughout the paper to
illustrate the workings of the effectiveness model. An
organization wants to build a network of computer
facilities to serve users at its dozen or so departments in
processing on-line transactions. Each department has its
own computer facility, geographically distant from the

e ———————————

Resource
optimization

Resource
availability



10 PRACTICAL ASPECTS

others. In most cases, transactions processed by each
department are unique to that department and must be
dealt with in a separate analysis and implementation
process. A data base is distributed among the sites of the
network and will be fully replicated, meaning that a
complete copy exists at each site of the network. Since
users make occasional updates to remote copies of the
data base, there are strict requirements for maintaining
consistent copies of the data bases. It is also important to
guard against site failures and build mechanisms for
prompt recovery. In addition, there is a need for quality
cpntrol, general organizational accounting and configura-
tion management.

These are the goals of the example software organiza-
tion. These goals, as they are manifested in the require-
ments document, will be translated to a structure and
then carried through each step of the process in examples
given to illustrate the effectiveness model.

3.1. STRUCTURE

Structure relates to the method by which a software
organization organizes, distributes and manages the
relevant tasks in the production of software. These tasks
are derived from the requirements document and first
grouped together as primary functions. At this time, each
function or task is represented as a circle network;
creating and maintaining the distributed data base, etc.
are examples of primary functions in the illustrative
organization. These functions then need to be broken
down into lower-level functions, i.e. an expansion of
major nodes.

The structure of a software development organization
primarily depends upon the type of project involved.
When the project is a very high-priority, schedule-driven
task, an open loop structure develops where the success
of the project depends solely on the manager’s
experience and the availability of critical resources.
Smaller organizations that are newly formed usually
possess an open loop structure. As the organization
grows to assume larger responsibilities, it faces more
complex and product-oriented communication problems.
Most communication in large organizations is of closed
loop form, one that relies on the team approach where
the balance between cost, schedule and performance
requires the presence of a well-defined organizational
structure. The methodology proposed in this paper
models only closed loop management.

3.1.1. Factors affecting structure

Factors faffecting structure are the size and grouping
within th¢ project, as well as the flexibility of work
conditions and recording history of changes. All exam-
ples given in the following sections stem from the goais of
our representative organization. These factors are dis-
cussed below.

e Size of the structure. Requirements determine the
complexity of tasks to be accomplished. As tasks
increase in complexity so does the size. of the
organization, resulting in a proportional increase in
the size of the structure. The complexity of a task is
measured in terms of level of effort. As an example,
suppose a requirement for building our communica-
tions network originally calls for transmission of
data using one type of protocol and is later expanded
to many protocols. The node associated with this
task must expand to accommodate the increase in
task complexity which would impact the size of the
overall structure.

e Grouping of the structure. A typical software
organization is composed of tasks that are highly
interdependent. These interdependencies’ have to
be accounted for in the structure. Tasks that are
interdependent should be located closer together,
i.e. as the dependencies of tasks increase, their
distances decrease. For example, the tasks of
building the communications network and the crea-
tion of the distributed data bases are interdepen-
dent, meaning the decisions made regarding
network topology will directly have an impact on
decisions made about the data base. The nodes
associated with these tasks are positioned close
together. Similarly, quality control and aT:counting
tasks are positioned near the top level to best
support the manager. On the other hand, configura-
tion management task requires structural interfaces
on a par with lower levels. The location of each task
as a node within the structure also depends on the
amount of decision-making involved in that task.
The more critical the decision-making, the higher
the level of the node associated with that task.
Figure 2 demonstrates one particular grouping for
our example organization. Note that many more
interdependencies exist, but what is shown serves as
simple grouping to illustrate its rationale in terms of
the degree of communication and decision-making

Org.
manager

Accounting



OPTIMIZING THE UTILIZATION OF HUMAN RESOURCES 1l

responsibilities distributed in the organization.
High-level decision-making tasks are here denoted
by circles. When they overlap, it indicates their
interdependencies. Note that the quality assurance
task is positioned close to the organizational
management task; if not, communication channels
would be long and unnecessarily complicated, which
could result in decision-making delays in critical
periods.

Flexibility of the structure. Thus far, the main issue
of concern has been to build the skeleton of the
organization, its structure. Since a project, as it
proceeds, may go through changes, either due to a
modification of goals or a need for additional human
resources, the structure should allow flexibility for
shifting human resources as required.

If the underlying environment of the structure is
standardized by the parent organization, the struc-
ture itself can be modified with greater ease and
flexibility. A standardized environment refers to
minimizing differences across software teams. Some
factors affecting the flexibility of a structure may be:
availability of tools where some teams have access to
more tools than others, e.g. computing capabilities,
secretarial services, etc.; compensation where only
members of certain teams are given flexitime,
overtime, etc.

In our example organization, suppose the pro-
gramming task is decomposed into teams, each
responsible for one department. Later, a few
departments are merged and personnel have to be
transferred. If the operating environments of these
departments are not standardized, then program-
mers may be reluctant to transfer. With some
planning and expenditures, the effect of these
factors can be minimized resulting in long-term
gains for the software organization.

Tools for recording and measuring structural
changes. The utility of documienting changes in any
system is a well-known premise. The effectiveness
model also takes advantage of documenting or
recording the history of the structural changes of the
software organization. This can be valuable, both
from an internal perspective when managers invol-
ved in the organization evaluate its evolving struc-
ture, and from an external one when evaluation is
made by auditors or administrators. And as far as
evaluating the people involved in the organization is
concerned, such reporting can possibly produce
answers to many intangible questions that are
frequently asked: What happens when experience is
lost when a person is moved from a project? What
happens when a person is moved to a project where
he is not an expert? Who do we reward for a job well
done? If the organizational structure abruptly
changes, how are the people with the best track
record found and called to the rescue?

A recorded history of the structure can provide a
manager with valuable information about how
requirements were met and people’s productivity, as
well as bottlenecks and problem areas. There have
been numerous cases where a task was accomplished
exceptionally well by an individual or a team, but

due to organizational changes at a later stage, this
individual or team was placed at a level where
potentials for performance were under-utilized.
With recorded history of structural changes, it is
possible to optimize human resource utilization.

3.1.2. Metrics for structure

Going back to our example organization, suppose the
tasks to be accomplished 1, 12, ... 8 are | initially
identified as establishing the communication network,
building the distributed data base, etc. as shown in Fig. 2.
All tasks are considered to be of equal complexity, W1.
WT1 is the workload of the organization. The interdepen-
dent tasks are grouped into classes C1, C2 and C3.

WI=W1*(t1+2+3+..+8)

Cl =(11,n)
C2 = ((13, 14), (4, 15), (15, 16), (16, (7))
C3 = (65,18)

The levels in which the nodes are positioned are
determined by the amount of decision-making affecting
the organization. The structure derived is SI (see Fig.
3a). Later, a task #9 is added, complex enough to warrant
a change in the structure (19 has complexity W2). A new
class C4 is formed to indicate that 3 and 9 are
interdependent.

WR=W1*(f1+2+.. +18)+W2*9
C4 =(13,18)

The new structure S2 is shown in Fig. 3b.

3.2. Communicartions rLow (Fig. 4)

Once the structure of a software organization is
established, the channels of communication must be
investigated, since the effects of poor communications
flow can be devastating to the organization. Communica-
tions flow can be defined as the transformation of a
request to a response:

Response; = T(Request;)

The request originates at node j and the associated
response is generated by node i. The relationship
between the requesting node j and the responding node i
is characterized by the following coupling:

® vertical: communication involves two nodes from
different levels, i.e. Lj > Li or Lj < Li where L is
the level of nodes i and j.

® lateral: communication involves two nodes at the
same level, i.e. Li = Lj.

® feedback: communication takes place within the
same node, i.e. i = J.

The information communicated in a software organiza-
tion is classified as: task assignments, problem areas,
possible solutions and task completions. These classes of
communication normally display inherent properties of
coupling. Communicating task assignments is usually
assumed to be vertical top-down, e.g. the higher-level
node of design communicates specifications to the
subordinating node of programming. Communicating
problem areas usually displays a vertical bottom-up
coupling. It is important that problems are communi-
cated to higher-level nodes, since the higher a level, the
more visible becomes the impact of a problem to the
organization. Communicating solutions has an inverse



12 PRACTICAL ASPECTS

Fig. 3.—Two examples of structure.

coupling to that of problems, namely vertical top-down.
Communicating task completions is vertical bottom-up as
well as lateral, e.g. configuration manager reports a
successful review up to the organizational manager andto
the analysis team directly involved in the review, see Fig.
2.

There are three types of communication nodes: input
node, output node and intermediate node. An input node
receives a request, an output node transmits a response
whether or not a request is received. An intermediate
node transmits a response to a request it has just
received. An organizational structure is characterized by
a graph, where incoming and outgoing edges denote
communications flow, see Fig. 2. Of course, in reality,
there are many more edges than depicted but the simple
example shows how all nodes are input and output nodes,
and that some nodes, such as the data base node and the
programming nodes, cannot be intermediate nodes.
Intermediate nodes, by nature, are transmitters of
information. Inevitably, information may get more or
less detailed as it is transmitted, but a change in the
content of information is considered to be a transmission
malfunctioning. For example, an organizational manager
may assign a task to the network team, who as an
intermediate node has to pass it down to the data base
team, but somehow the person in charge forgets or
misinterprets the command. So, it is important that these
nodes be good transiators.

Level i
Level j l Node j1 l ‘ Node j2 l Node j '
Level k

LATERAL FEEDBACK

VERTICAL

Fig. 4.—Types of communications flow.

3.2.1. Factors affecting communications flow

Many complex organizations subsist under loss and
inefficient operations because of poorly designed or
ignored communications flow. Once communications
flow of an organization is defined, understanding factors
that affect the flow can be instrumental in evaluating
inefficiencies of the organizations and setting up
measures for improvement.

The factors affecting communications flow are defined
as:

e Authority: who is authorized to assign a task?

e Problem confinement: which problems. fall under
jurisdiction of a task at a certain level?

e Problem refinement: when a problem occurs what is
its final impact to the organization?

In a software organization, there must exist a docu-
ment that defines the lines of authority, so that each
person knows exactly what his assigned tasks are and who
will be notified of task completion. An unnecessary
amount of confusion arises when the lines of authority are
not well defined. What happens as far as communications
flow is concerned is that communication will not adhere
to its predefined patterns of coupling. For example, task
assignment may be lateral rather than vertical top-down
when a member of one programming team tells a member
of another what to do. One task may be assigned
vertically top-down by two output nodes to the same
input node. f

Problem confinement refers to the identification of the
task that has jurisdiction over a particular problem and its
solution. In an organization, we are often witness of such
inefficient communications flow as a person assigned to a
programming task who is put under pressure to solve a
problem dealing with bad design. These mishaps can be
avoided if those who must become involved in solving a
particular problem are identified, as well as those who
must not be burdened with this added responsibility.



OPTIMIZING THE UTILIZATION OF HUMAN RESOURCES 13

An organization becomes aware of the impact of a
problem through problem refinement. A problem is
refined when it is translated up through the level of an
organization; at each level its solution and impact become
more visible. Many organizations suffer because prob-
lems are not reported up, either due to fear of reprisal or
underestimation of the problem's impact by a lower-level
team that is inadequately equipped to make such a
judgement. It is important to establish communications
flow to force all problems to be reported up by enforcing
correct patterns of coupling for communicating prob-
lems.

As communication is passed down to lower-level
nodes, it gets more detailed. As it is passed back up again,
it gets less detailed. The reason for this is that higher-level
nodes deal with cost and schedule problems, and lower-
level nodes deal with performance problems. For manag-
ers, technical issues get translated into issues pertaining
to resources; what is needed to get the task done? For
lower-level nodes, requirements are eventually detailed
into how to do them.

To ensure that the least amount of information is lost
due to translation, the following measures can be
adopted. First, parallel communication lines are estab-
lished to reduce noise in translation. In the example
organization of Fig. 2, configuration and quality control
managers are two separate paths with alternative feed-
backs to the top. Second, a two-level review process is
established where problems are reported up two levels
for solution approval. This allows auditing of a solution
given by a team that is either distorting the truth or is
zealous about a solution that is truly inadequate. For
example, if problems occur in the design task, the
analysis and quality control experts are notified (sce Fig.
2). Those problems without a satisfactory solution will
proceed up in levels until solved plus one level. The
propagation of solutions to the extra level prevents an
inadequate solution, given say by quality assurance,
being accepted as a final one. The two-level review
process minimizes the chance of optimistic middle
managers overlooking potential problems.

When structure changes, communications flow can be
affected in two ways: as nodes are expanded or com-
pressed, the nature of communications flow remains the
same but the quantity changes. as new nodes are added or
deleted, there is a change in both the nature and quantity
of communications flow.

3.2.2. Metrics for communications flow

Communications flow can be evaluated by recording
instances of communication, CFi. Given a structure Si
with T1, ... Tn, an instance of a communication CFi can
be defined as:

Response; = T(Request))
where i and j are two different nodes. The transformation
can be said to be the requirements imposed on a request.
The communication flow CF is vertical if Li # Lj, it is
lateral if Li = Lj, and it is feedback if i = j. where Li and
Lj are levels of nodes i and j.
The overall communications flow then would be:

CF = CFl, CP2, ...

3.3. AVAILABILITY OF HUMAN RESOURCES

Often, a software organization having received a large
contract begins a hiring binge. At this time, it appears
that securing people to realize the objectives set forth in
the contract is the best way to proceed. However, if the
structure and communications flow are aiready.designed,

- as presented here in the effectiveness model, then

optimum human resource utilization can be realized by
employing people most competent to do the required
tasks.

Each person has unique talents. There must exist a
match between these talents and the skills required to
perform the assigned tasks. Deciding whether or not
match exists becomes much easier if tasks are clearly
identified, and requirements for decision-making and
communication skills are known for each task.

The effectiveness model proposes a mechanism to
evaluate each available person’s skills based upon the
requirements of the software project. Skills can be
assessed throughout common methods such as interviews
and questionnaires. But, since the structure of the
organization is now well defined, the questions asked are
much more goal-oriented, enabling the organization to
assign people to tasks where they will be utilized
optimally.

3.3.1. Metrics for resource availability

For tasks T = T1, T2, ... Tn, we have available a set of
people P and for each person we define

Pi— (%al * T1) + ... + (%an * Tn)

where Piis the sum of percentages of tasks each person is
skilled and willing to do. Availability of resources is:

A=pl+p2+ ..+ pm
In the example organization, suppose:

pl = (%20 * 11) + (%80 * 12)
P2 = (%40 * 2) + (%60 * 17)

where T1 is establishing communications network, T2 is
creating the data base and 77 is programming (see Fig.
3a). Notice that % 120 of 72 must be regarded as % 100 of
T2 with an extra %20 of effort to be utilized elsewhere. If
A < WT, then there is a lack of manpower to do the task.

4. The nature of the process

Through many years of experience and observation,
the authors conclude that the process of developing a
software organization follows certain principles. The
results of the effectiveness model will be evaluated based
upon these principles. The model proposed here makes
the following assumptions:

® The process is iterative. The process is iterative for
two reasons: there are always changes in the
organization either relating to goals, structures,
communication flows or availabilify of resources:
and since software development has a cycle, new
tasks have to be accomplished resulting in expan-
sions of nodes within the structure, the communica-
tions flow has to be re-established incorporating
these new tasks and, finally, the availability of
people with new skills to complete these tasks has to




14 PRACTICAL ASPECTS

be assessed. In both cases, the change of one
component would affect another.

® The process is sequential. There is always a
sequence to managing for effectiveness, i.e. there is
an order in which the effectiveness of various steps
must be attended, beginning with the identification
of goals and proceeding with each step of the process
in order. Effectiveness analysis will provide an
examination of an organization to determine
whether or not it is being managed in a proper
sequence. If not, it will indicate areas in which
effectiveness is being ‘short-circuited’ and will make
recommendations for consideration.

® The process is dynamically balanced. Effectiveness
organizations are characterized by a balance
between the degree of well-defined structure, com-
munications flow and availability of resources.
Furthermore, the balance must be dynamic as
opposed to static, i.e. the managers must work
continuously to create conditions for productive
movement.

5. The results of the analysis

The results of this model can be formulated as:

R1 = (WT(t1), CF(r1), A(e1))
R2 = (WT(12), CF(12), A(22))
R3 = (WT(13), CF(13), A(13))

where R1, R2 and R3 are results taken by measuring the
components WT, CF and A at various points in time ¢1,
2,13, ... tn. Time may be chosen by: phases of a software
project beginning with the requirements phase and
ending with maintenance; any change in the three phases
of the process; and any predefined time period such as
quarterly or semiannually. The results obtained at
various times can then be compared in order to assess
overall effectiveness.

6. Conclusion

This paper summarized a model for developing and
evaluating a software organization’s effectiveness in
terms of its human resources. It promotes recording of
the history of the organization as it evolves, indicating
possible problem areas and strengths. For the first time,
managers can use this recorded evidence to compare how
software business was first conducted when the organiza-
tion was created with how it does business now, and they
can learn from any mistakes made in the past.

This model is based upon many years of observations
and represents only one viewpoint. There may be many
equally valid viewpoints. This representation is specific-
ally designed to support objective metrication and as such
could be used to measure the total organizational
structure, communications flow and resource availability
in comparative analyses. It is a baseline for further
detailed examination of the various aspects of a software
organization with respect to its effectiveness.

REFERENCES

[Aldrich 72] H. B. ALbricH: Technology and organizational
structure: A reexamination of the findings of the Aston
group; Administrative Science Quarterly, 17, 2641,
1972.

[Baker 72} F. T. BAKER: Chief programmer team management of
production programming; IBM Systems Journal, 1,
57-73, 1972.

[Basili 79] V. R. BasiLi and R. W. REITER, Jr: The investigation
of human factors in software development; Computer,
12, 21-38, Dec. 1979.

{Child 72] J. ChriLp and R. MansrELD: Technology, size and
organizational structure; Sociology, 6, 369-393, 1972.

fLaurence 76] P. R. Laurence and J. W. Lorsch: Organization
and Environment; 1976, Harvard University Press.

[Mantei 81] M. Mantet: The effect of programming team
structures on programming tasks; Communications of
the ACM, 106-113, Mar. 1981.

[Mills 71) H. D. MiLis: Chief programmer teams: principles and
procedures; IBM Rep. FSC, 71-5108, IBM FSD,
Gaithersburg, MD, U.S.A., 1971.

[Piskor 76] G. Piskor: Bibliographic survey of quantitative
approaches to manpower planning; Working Paper
833-76, Sloan School of Management, NIT, 1976.

[Rogers 76] E. M. Rocers and R. AGrawaLa-RoGErs: Com-
munication in Organizations; 1976, Free Press, New
York.

[Scott 75] R. F. Scorr and D. B. SiMMoNs: Predicting
programming group productivity ~ a communications
model; IEEE Transactions on Software Engineering,
1 (4), 411414, Dec. 1975.

[Shneiderman 80] B. SuNEIDERMAN: Software Psychology;
1980, Winthrop, Cambridge, Mass.

[Thayer 79] R. H. Tuaver and J. H. LeHMaN: Software
engineering project management: a Survey concerning
U.S. aerospace industry management of software
development projects; IEEE Tutorial on Software
Management, 340-354, 1979.

[Weinberg 71] G. WEeINBErG: The Psychology of Computer
Programming; 1971, Van Nostrand Reinhold, New
York.



