Technical Report TR-1442 September 1984

Structural Coverage of
Functional Testing

Vietor R. Basili
James Ramsey

Department of Computef Science
University of Maryland
at College Park

Abstract

A large, commercially developed FORTRAN program was
modified to produce structural coverage metrics. The
modified program was executed on a set of functionally
generated acceptance tests and a large sample of
operational usage cases. The resulting structural
coverage metrics are combined with fault and error
data to evaluate structural coverage in the SEL
environment.

We can show that in this environment the functionally
generated tests seem to be a good approximation of
operational use. The relative proportions of the
exercised statement subclasses (executable, assign-
ment, CALL, DO, IF, READ, WRITE) changes as the struc-
tural coverage of the program increases. We propose a
method for evaluating if two sets of input data exer-
cise a program in a similar manner.

We also provide evidence that implies that in this
environment, faults revealed in a procedure are
independent of the number of times the procedure is
executed and that it may be reasonable to use pro-
cedure coverage in software models that use statement
coverage. Finally, the evidence suggests that it may
be possible to use structural coverage to aid the
management of the acceptance test process.

This study is funded by NASA grant NSG-5123.

%. Introduction

The goal of this study has been to understand and improve the
acceptance test process in the NASA Goddard Space Flight Center SEL
environment [SEL82a]. Towards this end, an SEL program has been modi-
fied to produce structural coverage metrics. The instrumented program,
the MAL language preprocessor, is a subset of the RADMAS satellite atti-
tude maintenance system [STL82]. It has 68 functions and subroutines,
10k source lines of code and U4k executable statements. The pfogram was
modified to measure both procedure coverage and statement coverage.
Coverage is also computed for the statement subclasses: assignment

statements, CALL, DO, IF, READ, and WRITE.

The modified program was executed on a set of ten functionally gen-
erated acceptance tests and on sixty typical operational usage cases
[csc78]. Error, fault and failure data® were collected from the system

test through operation phases [SEL82b]. Each execution of an acceptance

test or an operational usage case provides a structural coverage statis-
tic. These structural coverage statistics are first examined individu-
ally to understand the static properties of the acceptance test process.
Randomly generated sequences of acceptance tests and operational usage

cases are then examined in an attempt to understand the dynamic proper-
ties of structural growth. Finally the coverage data are combined with

the error, fault and failure data to understand how faults are revealed.

® We have tried to follow the IEEE Standard Glossary of Software En-
gineering Terminology definitions of error, fault and failure: An error
is the "human action that results in software containing a fault." A
fault is "a manifestation of an error." A failure is "a departure of
program operation from program requirements" [IEEE83]. Some of the
sources we cite were written before the standard; their use of error may
differ from the standard.

2. Goals of the Study

The first goal of this study was to characterize structural cover-
age in the SEL environment. The first questibns address the simple,
static properties of structural coverage for the different kinds of
inputs. Question I.D compares two kinds of structural coverage: pro-
cedure and statement coverage. It would be a useful result if we could
show that procedure coverage can be substituted for statement coverage
in sofﬁware models since procedure coverage is easier to measure than
statement coverage. The final question addresses the dynamic properties
of structural coverage: the structural coverage growth of a set of input

cases.

Some testing strategies ([Duran80] and [Dyer82]) and software reli-
ability models [Brooks80] require a method for showing that two sets of
inputs exercise a program in a similar fashion. This motivated goal II:
"Can different input sets be differentiated using structural coverage

metries?" Questions II.A-II.D explore several methods of doing this.

The purpose of the functional tests is to reveal faults in the pro-
gram yet some faults are still revealed in operation. What classes of
faults does functional testing miss? Does operational use exercise the
code differently than the functional tests? How is this related to
structural coverage? This motivated the next goal: "How are faults and
structural coverage related?" Questions III.A - III.D analyze the SEL
error, fault, and failure data with respect to structural coverage

[SEL82b].

Finally in Section IV these ideas are combined to suggest an

improved method of managing acceptance tests.

I. Characterize structural coverage in the SEL environment.

I.A. What is the statement coverage of functional testing? What is
the procedure coverage of functional testing?

I.B. What is the statement coverage of operational use? What is the
procedure coverage of operational use?

I.C. What are the intersection / union of functional testing and
operational use?

I.D. Can procedure coverage be substituted for statement coverage in
software models?

I.E. What are the properties of structural coverage growth?

I1. Differentiate_different input sets using their structural coverage.

ITI.A. Are heavily exercised procedures more likely to contain a
fault?

IT.B. Using Venn diagram?
IX1.C. Using nonparametric statistics?

IT.D. Using number of executions of prime sections of code?

III. Relate errors, faults, failures and structural coverage.

III.A. Are more heavily exercised procedures more likely to contain
a revealed fault?

ITI.B. Are faults related to time to isolate?
III.C. Are faults related to time to understand and implement?
ITI.D. Are faults related to type of error?

IV. Use structural coverage to aid the management of acceptance tests.

IV.A. Can structural coverage be used to suggest new acceptance
tests?

IV.B. Can structural coverage be used to improve reliability models?

Figure 1.

3. Data and Analysis

This section contains a deseription of the data and their analysis

paralleling the outline in figure 1.

3.1. Structural Coverage in the SEL

Question:
What is the statement coverage of functional testing? What is the

procedure coverage of functional testing?

The acceptance tests we used are functional or "black box" tests
[Howden81], [Myers79]. Since exhaustive sampling of the input sub-
domains is impractical, a few sample inputs from a few subdomains are
chosen that the testers feel are likely to reveal faults [CSC78]. There

are 17 acceptance tests.

Table 1 shows the structural coverage of the acceptance tests.

Test 1 exercised 33 out of 68 possible procedures. It exercised 1069 of

the U300 executable statements. 1In total the 17 tests exercised 51 pro-
cedures and 2408 executable statements (Union). There were 778 execut-
able statements that webe exercised by every test case (Intersection).
These numbers are interpretated as percentages of the maximum in table

2.

Please note that we did not measure the structural coverage of
either system or unit tests. Statements which were not exercised during
acceptance test might have been exercised during previous testing.
Structural coverage measures were not available during either system or

unit test. Procedures were not tested with the goal of achieving high

structural coverage.

Question:
What is the statement coverage of operational use? AgpatAis the

procedure coverage of operational use?

We obtained 60 input cases that we claim are representative of SEL
operational usage. These are 60 samples of actual operational usage
cases. This is significantly different from other definitions of opera-
tional usage where typically the input domain is divided into sub-
domains, with each subdomain being assigned a probability of execution.
Input cases are then chosen using the probabilities‘of execution
[Brown75], [Duran78], and [Dyer82]. Our definition of operational usage
lacks both the definition of subdomains and the assignment of probabili-
ties. These probabilities are difficult to compute and verify.
Rigorously derived or othérwise,:these operational usage cases define

how the program was exercised.

The statement and procedure coverage of operational usage is

displayed in tables 3-H4.

Question:
What are the intersection / union of functiopal testing and opera-

tional use?

Table 5 compares the structural coverage of functionally generated
acceptance tests and operational usage. Together they exercised 55 pro-
cedures and and 2768 executable statements. Their intersection (the
statements exercised by both sets of inputs) contains 51 procedures and

2397 executable statements. There are 360 executable statements that

are exercised by operational usage but not by acceptance test; 11 state-
ments that are exercised by acceptance test but not by operational

usage. Table 6 sthp the raw numbers interpreted as percentages.

Some interesting observations can be made. The I/0 statements,
especially the WRITE statements, are less likely to be executed than
most other statement subclasses. This is reasonable considering the
role WRITE statements play in debugging and error condition handling
code. Also, as statement coverage increases, different statements sub-
classes are more likely to be exercised. In table 6 the line labeled
"OpU-A" describes the statements that are executed in operational use
but not in acceptance test. Operational usage exercised 8.4% of the
code that acceptance test never exercised. This 8.u%vis not an even
cross section of the statement subclasses. One would reasonably expect
the 8.4% to be similar for &ifferent statement subclasses but this is

not so. 12.1% of the IF statements are executed; half again as much as
might be expected.

While this is an interesting result in its own right, this also has
some significance to software reliability models. Assuming that state-
ments from different statement subclasses have different likelyhoods of
being a "fault," then this result seems to imply £hat a representative
reliability model should have a hazard function (see [Myers79]) that

varies over time.

Question:
Can procedure coverage be substituted for statement coverage in

software models?

Statement coverage is easy to measure but it is costly in terms of
execution time; procedure coverage is much cheaper to measure. Showing
that procedure coverage could be substituted for statement coverage in
software models would be a useful result. We have not tried to substi-
tute procedure coverage for statement coverage in software models to
demonstrate our hypothesis, but rather we have discovered a result that

seems to support this possibility.

Each execution of the instrumented program produced both a pro-
cedure coverage statistic and seven statement coverage statistics (the
number of assignment statements, executable statements, CALLs, DOs, IFs,
READs, and WRITEs exercised). Plots 1-14 show procedure coverage versus
the different kinds of statement coverage for both operational usage and
acceptance test. The plots seem to be linear. This is unremarkable;
the more procedures that are exercised, the more statemenﬁs are exer-
cised. - What is interesting is the tightness of the linear fit. 1In the
limited range we examined, the values are never more than +200 state-
ments from the estimate for acceptance test and +300 statements for the

operational usage cases.

Question:

What are the properties of structural coverage growth?

For a set of input cases, structural coverage monotonically
increases with the execution of each new input case (bound above by the
number of reachable statements). This section examines the growth of

structural coverage. It is important for two reasons:

(1) It provides a way to see if two sets of input cases exercise the

program the same way. This provides a way to compare the

equivalence of operational use and acceptance testing.

(2) It provides useful data for the reliability models. Assuming that
increased coverage implies a higher failure rate, then anything we
learn about the growth of structural coverage can be applied to the

calculation of the reliability models’ hazard functions.

With 17 acceptance tests and 60 operational usage cases, there are
clearly too many sequences to exhaustively examine. In a personal com-
munication, Amrit Goel proposed a solution: examine the structural cov-
erage of a large, but manageable number of sequences. Plots 15-16 show
the structural coverage growth of 100 permutations of both acceptance
tests and operational usage, with median and quartiles superimposed.
Note that the acceptance test plots must all end at the point (17,

2408).

A variety of models were fitted to the structural coverage growth

data in an attempt to learn more about structural coverage growth. A

good mathematical model of structural coverage growth would provide
insight into structural growth. Models were fitted to the first half of
a sequence to evaluate their usefulness as predictors and to the entire
sequence to evaluate their ability to characterize structural coverage
growth. Plots of the residuals were examined visually to estimate good-

ness of fit.

The best fit was obtained using Goel and Okumoto’s NHPP model
[Goel80b]. The NHPP model was originally defined as a reliability
model. Given a history of faults revealed over time, it predicts the

number of faults revealed by time t. It is being used here as a model

of structural coverage growth. Restated in terms of structural coverage

growth, the model is:

m(t) = a(1-e~Pt)
where m(t) is the number of statements executed after test t. a
predicts the maximum number of statements to be executed. b defines the
steepness of the curve. @Given m(1) through m(tmax), a and b can be cal-

culated. Note the following properties:

m(0) =0
m{tpay) = SCltyay)
lim m(t) =a

t=>00

maximum statement coverage

It is the best of the models attempted, but its results are imper-
fect even when a variety of data transformations are applied. Plots
17-24 show some of the fitted models and their residuals. This remains

an area of future research.

In summary, we have used structural coverage to provide insight
into how functional acceptance test and operational usage exercise a
program’s code; to suggest results that effect reliability models; to
suggest a relationship between procedure coverage and statement cover-

age; and to move toward understanding statement coverage growth.

3.2. Comparison of Inputs Using Structural Coverage Metrics

Does functional testing have the same coverage profile as opera-
tional usage, or more generally, can structural coverage be used to com-
pare two sets of program inputs? This question is interesting for two

reagons:

(1) Some testing models require input sets that are "representative" of
operational usage [Brown75]. Structural coverage could provide a

way of measuring this.

(2) Many reliability models, when using past failure data to predict
failure rate or number of failures, assume that the past inputs are
similar to the present inputs. Structural coverage could provide a

method for confirming this.

Question:

Can the Venn diagram technique be used to differentiate input sets?

In section 3.1 we compared functional test sets with operational
usage using a Venn diagram technique (tables 5-6). We used this to show
differences in the way operational usage exercised the program. Could
this be extended to other input sets? For example, it seems plausible

that tests generated with the goal of high branch coverage would execute

different code than tests generated by test mutation on arithmetic
expressions [DeMillo78] or that boundary value functional tests would
exercise different sections of code than statistical predictions of

operational usage. We hypothesize that the code in the different sec-
tions of the Venn diagram would reflect the properties of the two sets

of tests.

Question:
Can input sets be differentiated using nonparametric tests of

structural coverage?

Acceptance test and operational usage were statistically compared

10

using both the Mann-Whitney and Kruskal-Wallis tests*. The proposed
hypotheses were: "For each of the structural coverage classes (pro-
cedures, executable statements, assignment statements...) the population
represented by the 60 operational usage cases is similar to the popula-

tion represented by the acceptance test cases."

Table 7 shows the Kruskal-Wallis H statistic. It shows the result
of the test (reject or fail to reject) and the appropriate significance
level for each statement class. Table 8 shows the results for the
Mann-Whitney U statistic. The column "low U" shows which population had

the lower central tendency.

The tests failed to reject the hypotheses for all statement types
except READs. Since there are so few READ statements, a small, random
difference in the tests could falsely manipulate the statistic. The

other statement classes are less susceptible to small changes and
represent a better population to examine.

The tests fail to reject the hypotheses that the two populations
are similar, meaning that in this case, operational use and acceptance

test cannot be distinguished by their structural coverage numbers.

Question:
Can the number of executions of prime sections of code be used to

differentiate input sets?

* The Mann-Whitney and Kruskal-Wallis tests were chosen because they
are nonparametric tests; they make no assumptions about the distribu-
tioms of source populations. The Mann-Whitney test is most sensitive to
differences in "location (central tendency)." The Kruskal-Wallis test is
sensitive to differences in "location or dispersion or skewness."
[Siegel56].

11

Are statements executed as thoroughly by acceptance test as they
are by operational usage? For each statement in the program, it is pos-
sible to count how many times it was exercised by a particular accep-
tance test or operational usage case. (This differs from the number of
times it was executed). If acceptance test and operational usage are
similar, then the percentage of acceptance test cases that executed a
statement should be similar to the percentage of operational usage

cases.

The two percentages were calculated for each prime section of code.
The plotted data are shown in scatter plot 25. The regression line has

slope 0.921 and intercept 0.032. The r square value is 0.863.

Since the plot does not show any imbalance, one could conclude that
acceptance test and operational usage exercise the code equally
thoroughly. It is a future goal of this research to replace this empir-

ical judgement by a statistical test.

To summarize, we proposed three methods for comparing sets of pro-
gram inputs: Venn diagram comparison of executed statements, statistical
comparison, and thoroughness of execution of prime sections code. These
methods may be able to differentiate input sets, é result that would be

N

useful for understanding reliability models and some feéting strategies.

3.3. Error, Faults, and Failures and Structural Coverage

The SEL has been collecting data on software development for 7
years [SEL82a]l. Error, fault and failure data are collected using the
"Change Report From" or CRF (see figure 2). A CRF is filed whenever a

change, enhancement or fault repair is made to a subroutine or data

12

file. This study examines the fields "time to isolate the error," "the

time to umderstand and implement," and the section "type of error#*."

There were eight faults found during operation. Each fault could
be repaired by changing code in one procedure. OneAprocedure contained

two faults. With these data, we can address these questions:

Question:
Were heavily exercised sections of code more likely to contain

faults?

These data are shown in table 9. A mark is entered for each of the
68 subroutines. The vertical axis describes the number of times the
subroutine was exercised in operational usage. The subroutines that

contained the faults are marked with "%»,

“Half of the procedures were exercised by more than 90% of the

operational usage cases. About half of the revealed faults occurred in

this group of procedures (3 of 8). With these data we reject the
hypothesis that more heavily exercised subroutines are more likely to

contain a revealed fault.

Tables 10-12 show faults categorized by time to isolate, time to

understand, and number of times the procedure was exercised.

Question;

Is procedure coverage related to time to isolate?

* Time to isolate the error is classified as taking: less than one
hour, one hour to one day, greater than one day, never found. Time to
understand and implement the change is classified as taking: less than
one hour, one hour to one day, one day to three days, or greater than
three days. Faults are categorized as originating in the: requirements,
functional specification, design (either involving data or expression),
external environment, use of language, clerical or other.

13

Time to isolate the change seems to be independent of procedure

coverage.

Question:

Is procedure coverage related to time to understand and implement?

Increased usage seems to be associated with longer time to under-
stand and implement a change. This might be explained by suggesting
that the lightly exercised procedures contain fairly simple code while
the heavily exercised code is, by necessity,’more complicatedland

requires more time to modify.

Question:

Is procedure coverage related to type of error?

Table 12 lists the faults classified by type and procedure coverage
in operational usage. There are too few faults to reveal any interest-

ing patterns.

In summary, we have tried to relate statement coverage to: "time to
isolate an error," "time to understand an error," and "type of error."
The data begins to suggest a relationship between "time to understand an
error™ and structural coverage. There were too few errors to make any
firm statements about "time to isolate an error" gnd "type of error."

This remains a promising area of study.

4. Structural Coverage and the Management of Acceptance Tests

Combined with failure data, structural coverage could aid the
design of acceptance tests. Imagine a manager in charge of designing

acceptance tests for a group of similar projects or for various releases

1

of a single project. With the failure data from the previous project or
release and the structural coverage of both the acceptance and opera-
tional usage cases he can suggest new acceptance tests for the next
release. He could require tests to exercise unexercised sections of
code. He could require new acceptance tests to explain the code missed
by acceptance test but exercised in operational usage. If he is using a
testing methodology or reliability model that requires inputs that are

representative of operational usage, he can use these data to 'select

more representative tests.

We see structural coverage being used by a manager in an iterative

fashion:

(1) Gather structural coverage data on acceptance tests and release the

project.
(2) Gather structural coverage data and failure data onioperational
usage. Use these data to adjust reliability models.

(3) Use structural coverage data to: suggest new tests and evaluate how

the o0ld tests were created.

(4) Restart the cycle with the new acceptance tests.

5. Conclusions and Criticisms
We conclude:

(1) We may be able to compare sets of inputs using statistical tests
and Venn diagram techniques. This would be useful for examining

some testing methods and reliability models.

15

(2)

The structural coverage growth of different statement subclasses

grows at different rates. This insight might be of interest to

reliability model developers.

The data seem to imply:

(1)

(2)

(3)

(M

(2)

(3)

(4)

Faults are independent of number of executions. We can (in our
environment) reject the hypothesis that heavily exercised pro-

cedures are more likely to contain more revealed faults.
Procedure coverage may be used for statement coverage.
Management of the acceptance test process is possible.

This study can be criticized on a number of points:

There are too few faults to make any forceful statements about

errors, faults, failures and structural coverage. (But then again

we cannot fault NASA/GSFC for having programs with too few faults.)

While the data suggests that it may be possible to differentiate
test sets using structural coverage, we have never provided an

example that shows that it can!

This study does not address the order in which the functional tests
were used, the order of the operational usage cases or which opera-

tional usage cases revealed the faults.

The study did not produce a good model of structural coverage

growth.

These points will be addressed when the study is replicated in the

summer and fall of 1984. The program being studied is DERBY [CSC83], a

large (300 routines, 50k source lines of code), satellite simulator.

16

The new project is larger and should have more faults. With the new
project, we will gather more thorough information on the order of system
tests, acceptance tests, operational usage cases, plus the exact input
that reveals a failure. The results of this new study should answer

many of the questions raised by this study.

6. Acknowledgments

We would like to thank Frank McGarry, Dr. Gerald Page, and Dr.
Amrit Goel for their help in the production of this paper, Dr. David
Hutchens for a clear-eyed review, and the University of Maryland’s

Software Engineering group for providing a fertile intellectual environ-

ment.

7. References

fBasili81]
Basili, Victor R. and David M. Weiss, Evaluation of a software re-
quirements document by analysis of change data, Proceedings of the
Fifth International Conference on Software Engineering, San Dlego,
CA, pp. 314-323, March 9-12, 1981.

[Basili82]
Basili, Victor R. and David M. Weiss, A Methodology for Collecting
Valid Software Engineering Data, TR-1235, Computer Science Techni-
cal Report Series, December 1982.

[Brooks80]
Brooks, W. D. and R. W. Motley, Analysis of Discrete Software Reli-
ability Models, RADC TR 80-84, RADC, April 1980.

[Brown75]
Brown, J. R. and M. Lipow, Testing for software reliability,
Proceedings of the International Conference on Reliable Software,
Los Angeles, CA, pp. 518-527, April 1975.

17

[csc78]

Acceptance Test Methods, TM-78/6296, Computer Sciences Corporation,
October 1978.

[csc83] ,
ERBS Dynamics Simulator User’s Guide and System Description, SD- -
8376044, Computer Sciences Corporation, August 1983.

[DeMillo78]
DeMillo, Richard A., Richard J. Lipton, and Frederick G. Sayward,
Hints on test data selection: Help for the practicing programmer,
Computer, pp. 34-41, April 1978.

[Duran78] :
Duran, Joe W. and John J. Wiorkowski, Towards models for proba-
bilistic program correctness, Proceedings of the ACM Software Qual-
ity Assurance Workshop, pp. 39-44, 1978.

[Duran80]
Duran, Joe W. and John J. Wiorkowski, Quantifying software validity
by sampling, IEEE Transactions on Reliability R-29, 2, pp. 141-144,
June 1980.

[Duran81]
Duran, Joe W. and Simon Ntafos, A report on random testing,
Proceedings of the Fifth International Conference on Software En-
gineering, pp. 179-183, March 1981.

[Dyer82]
Dyer, M. and Harlan D. Mills, Developing electronic systems with
certifiable reliability, Proceedings of the Conference on Electron-
ic Systems Effectiveness and Life Cycle Costing, NATO Advanced
Study Series, Springer-Verlag, Summer 1982.

[Goel80a]
Goel, Amrit L., Software error detection model with applications,
Journal of Systems and Software 1, 3, pp. 243-249, 1980.

[Goel80b]
Goel, Amrit L. and K. Okumoto, A Time Dependent Error Detection
Rate Model for Software Performance Assessment with Applications,
annual report to RADC, Department of Industrial Engineering and
Operations Research, Syracuse University, Syracuse, New York, March
1980.

[GoodenoughT75]
Goodenough, John B. and Susan L. Gerhart, Toward a theory of test
data selection, IEEE Transactions on Software Engineering, pp.
156-173, June 1975.

18

[Howden81]
Howden, William E., A Survey of Dynamic Analysis Methods, Tutorial:
Software Testing & Validation Techniques, 2nd Ed., ed. E. Miller
and W. E. Howden, pp. 209-231, 1981.

[IEEE83]
IEEE Standard Glossary of Software Engineering Terminology, IEEE
Std 729-1983, IEEE Inc., February 1983.

[Musa80]
Musa, John D., Software reliability measurement, Journal of Systems
and Software 1, 3, pp. 223-241, 1980.

[Myers79]
Myers, G. J., The Art of Software Testing, John Wiley & Sons, New
York, 1979.

[SEL82a]
The Software Engineering Laboratory, SEL-81-104, Software Engineer-
ing Laboratory Series, February 1982.

[SEL82Db]
Guide to Data Collection, SEL-81-101, Software Engineering Labora-
tory Series, August 1982.

[Siegel56]
Siegel, Sidney, Nonparametric Statistics for the Behavioral Sci-
ences, McGraw-Hill Book Company, Inc., New York, 1956.

[3TL82]
Research and Development Mission Analysis System (RADMAS) System
Deseription, STL-82-005, Systems Technology Laboratory Series, July
1982.

[Stucki?7]
Stucki, Leon G., New Directions in Automated Tools for Improving
Software Quality, pp. 80-111 in Current Trends in Programming
Methodology, Vol II: Program Validation, ed. Raymond T. Yeh,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977.

19

NUMBER

CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

SECTION A - IDENTIFICATION
REASON: Why was the change made? :

DESCRIPTION: What change was made?

EFFECT: What components {or documents) are. changed? {include version)

EFFORT: What additional components {or documents) were examined in determining what change was reeded?

(Month DOay Year)

Need for change determined on
Changestartedon

What was the effort in person time required to understand and implement the change?

w1 hour or less, w1 hOUr t0 1 day,] d3y to 3 days, e QTR than 3 days

SECTION B - TYPE OF CHANGE (How is this change best characterized?)

Q8 Error correction O insertion/deletion of debug code
O Planned enhancement O Optimization of time/space/accuracy
D Impiementation of requirements change W {0 Adaptation to environment change
O improvement of clarity, maintainability, or documentation 0 Other (Explain in E)
O Improvement of user services
‘Nas more than one component affected by the change? Yes No
FOR ERROR CORRECTIONS ONLY .
SECTION C - TYPE OF ERROR (How is this error best characterized?)
O Requirements incorrect or misinterpreted O Misunderstanding of external environment, except language
O Functional specifications incorrect or misinterpreted] Error in use of programming language/compil
Design error, invoiving several companents O Clerical error
Error in the design or implementation of a single component O Other (Explain in E)
FOR DESIGN OR IMPLEMENTATION ERRORS ONLY
if the error was in design or implementation:
The error was a mistaken assumption about the value or structure of data
The error was a mistake in control logic or computation of an expression
580-2 (6/78)

Figure 2.

FOR ERROR CORRECTIONS ONLY
SECTION D - VALIDATION AND REPAIR

What ictivities were used to validate the program, detect the efror, and find its cause?

Activities Activities Activities Activities
Used for Successful Tried to Successful
Program in Detscting Find in Finding

Validation Error Symptoms Cause Cause

Pre-accaptance test runs

| Acceptance testing

; Post-aceeptance use

| Inspection of output

Code reading by programmer

Code reading by other persan

;Talks with other programmers

1 N
1 Speciak debug code

'Systamns error messages

i Project specific error messages

| Reading documentation

(Trace '

! Dump

i Crosgeference/attribute list

: Proof techniique

| Other {Explain in E)

What was the time used to isolate the cause?

—-.0ne hour or less,oOne hoﬁr to one day, ._____more than one day, never found
If never found, was a workaround used? Yes No {Explain in E)
Was this arror related to a previous change?
Yes {Change Report #/Date) e _No Can't tell

When did the errar enter the system?

——requirements _.._functional specs _.._design ___coding and test ____other —Can't tel!

SECTION E - ADDITIONAL INFORMATION

Plaase give any information that may be helpful in categorizing the error or change, and understanding its cause and its
ramifications,

tlame: Authorized: Date:

Plot 1. Assignment Statement Coverage vs Procedure Coverage for 17

Acceptance Tests.

¥
»
¥
*
#*

e o it v e s e

st

(M}

I’}

Qi

[t }

[al}

i}

-t

<)

-4

i)

1000
o
(x]

L U Bt CNIZ

700

&0

C o

Fr

0. 970
0. 983

significance test.

T square
correlation

= -3&44. 122
= 21 842

intercept
T statistic

27. 059
= 31.191

slope =
std err

Use T(15) for

There are 17 data points.

P~

CALL Statement Coverage vs Procedure Coverage for 17 Acce

tance Tests.

Plot 2.

3583 aduedTytubrs 4oy (gY)L asn ‘sjured ejep /] ade adayy
EE& O = UOIZEId4U0D CZZ 0T = ITISTIEIS | BEC BT = 443 P3s

€8 0 = ssenbs 4 8.0 PGT- = 3dazxaequr vy L = adoys
¥ 4
(<1-3 c4 Ok =243 os o2 as =3+ ot < 0
-0
' oG
i
I
S
P
- 00t
¢
E .\.. ’
s
‘.\‘
¢\.‘-
.
s
.\.\
{ r
i. .k. oy
{ L Nz
i s
] »
{ 1 #*
) z .
! 1
! T
| B
{ .
i
: !
T, - m ulut
- "
i b 1
] |
] i
i |
i i
i i
i 1
1 ! -
0se

€) Betra N

‘asa) eduedrgrubis uo4 (GT)L asn | ‘sjurod egep 4| ade asayy
066 'C = UDT3IEeId4400 BE. IT = IT3SIIOYS | LI b = 443 p3s
E06 O = aaenbs a v?L bE- = 3desaajur &0 8 = 3adols

at

uw
-+
f)
T
i
3]
()
A3
W
'}
o
o]
i
4
Ul
<

>0

ge for 17 Accep-

01

o2

ot

o
A
-

Do Statement Coverage vs Procedure Covera

tance Tests.

3

Plot 3.

g

L)

(]
o
=

ge for 17

Executable Statement Coverage vs Procedure Covera

Acceptance Tests.

Plot 4,

‘3583 ejuedrytublirs uoy (gr)L @sn "sjutod ejep 4] oue auayy
. GB6 0 = UOTAEIALLO0D FG. BF = ITISTIEAS | ZOF BF = 448 pas
2Lb6 0 = aaendbs 4 €41 BblL- = 3dadudjur £/G6 '9¢ = adots

£71134 4
s =13 Qb

i
L]
o
)
i
Iy
(m
2]
i
4
Q
-
L 24
o

| D09

nos

i aoeT

=T- 0081

o0ng

wx ey

e

IF Statement Coverage vs Procedure Coverage for 17 Accep-

tance Tests.

Plot 5.

‘3582 83uedT3tubrs 4oy (GI)L 3SN 's3uInd BREP £ B8JE adayl

&84 O = UOTJRTIDLUDD L8 €2 = DII3S513P3E | 0461 1T = Jd4d p3s
8.6 0 = astenbs 4 CEe LET- = adansaaur T1¢ ‘11 = adots
S e
[P (XT3 o GE Pt na (23 ¢ at Q I}
[} 4 n . t 4 -+ $- 0
i i { 1] t \ | B
i - | |
i i i i
| |
! {
-]
i
§
!
t
_ .H:”. .n
{ i | | \ I i \
H] 1 1 [}] [] i
i
]
w oSt
M‘ [wluts
S
q\
GO%e
-y ong
..\..»
\.Wﬂ-
.\.-. ! ———
[= L
04
+
GSE 1

ge for 17 Accep-

READ Statement Coverage vs Procedure Covera

tance Tests.

Plot 6.

‘3593 soued1diubrs 403 (Q1)L @S5 sjutod E3Ep /] S.E aaayy

OER 'O = UOIIRIa4I0D 45/ G = J2I3STILIS | G067 = 118 P3s
689 ¢ = asenbs o 669 - = jdadyazur SYE G = adoys
s St s S5 0 52 a2 51 ot G a)
c
- +
Lo . g ®
{ i
. v....
L. 4 &
» -
| S
| s
ﬁ. ‘ - ot

o o s et e o e e e

E WO R

ge for 17 Ac-

3523 auedrgrulrs w0y (GI)L @sn 'squrad ejep /] ase asayg

WRITE Statement Coverage vs Procedure Covera

Plot 7.

ceptance Tests.

€28 G = UOTI¥TBUL0D 4L 6 = ITISTIERS | CO2Z € = L48 P3s
189 O = dienbs 4 266 01~ = 3dasuajur ¥2. 0 = adors
3.3 4
as St ok = Ge 5= 0T g1 ot = 0
Bl
s
(A4
i
¥ & 7
e
7
w |/
a .
7 = §
- Nx
\..x..
N A " : o=
s2

> Comd B

-
-t

ge for 60

Assignment Statement Coverage vs Procedure Covera
Operational Usage Cases.

Plot 8.

"'3s83 aduedrgtubrs uoy (BG)L @asn 'sjurod ezep o9 ase asdayy

PESL G = UDIRETBLU0D LGB 61 = IFASTILAS | tGLE &b = 443 pas
2.8 0 = auenbs g Q2L g8~ = jdazaajul LBE b8 = adotrs
snoddn
s ab (X3 SL ag o ac St a1 u .u:
aTa) ¢
aoc
a0ge
ook
nos
- 009
00Z
..|\.\
g oS
I
b " -«
00%
Inte it

ELHARAMDICENCH M

ge for 60 Opera-

CALL Statement Coverage vs Procedure Covera

tional Usage Cases.

Plot 9.

‘ps81 sduedtgtubrs w0y (PG)L asn ‘sautod ejep OF ade adaayy
t68 0 = UOTIETBIL0D Z41 GT = JTASIALYS | PO 12 = 443 pas

&bL D = adenbs 4 gt BbT~- = jdanaajur e 8 = adoys
€noady
s Gb L] S o >t oz St ot S 0
; —¥ 13
s « T
&
i
-\.
o
)
7 (i
&
*® I
¥
-
H L
- ...
1)/
Lo
£ _—
% ’y ulu} ¢
’ v
% i,
e
\.4.. ..*
* ¥
!
!
s
- = sy
*
id &
ﬂ § !
- 1 ﬂ aae
m L
! +
! §m
|
_ usa

E AN PR

Do Statement Coverage vs Procedure Coverage for 60 Opera-

tional Usage Cases.

Plot 10.

£68 ¢

asuentgtubrs 4ol (@QYL asn
[FLAEE S - NWT.E.)
= a3J4enbs o

£

Lie Tt
488 vE-

3T3I5TAEAS | 4EL F

jdanuajur

FA-) S

Y]

‘S3UTod ®EP OY 34 adayl
143 pP3s

o1

L 28

403

T

%

Ak

[i=4

2
Dl

goOMm

Executable Statement Coverage vs Procedure Coverage for 60

Operational Usage Cases.

Plot 11.

o o e oo s o e s !

‘3583 @duedrytulirs oy (gg)s asn

1

‘sjutod wiep Q9 ase agay)

166 'C = U0ljEeIadu0d gof £ = ITISIIES | GO 14 = £ud pas
606 O = adenbs 4 b 28L- = 3dansajug 866 v = adojs
Ea0ad4
& St Gt HE s 5C Gc 57 ai s v
i i ; i m [T
1 m
L |
\S u’ xr -I.c“h
\\
Wy
\\\
.\\..\
-~
A
a8
- ’\\w *I oot
"
" » : Vs
=
- A -
!;.Wa
7 n\ "
o
Ed
- 000G T
% none

nose

FLUXVUIP U D

Plot 12. IF Statement Coverage vs Procedure Coverage for 60 Opera-
tional Usage Cases.

T R e S e el it s e 4 Rl et L A ST A e it e S A i S D Y A o S B i e 1 = e 2 i v o

| 1 ! '

#$#procs

45

oy

KK €| E
"

40

-
>
#
*

23

¥
20

15

10

L 24

FO

o = - P} fan]] ()

450
[x]
bl

eIyl
b}

200
b
]
5

o] u

et d 0

0. 940

T square = Q. 884

correlation

20. 976

11. 934 intercept = -133. 820
21. 629 T statistic
There are &0 data points. Use T(58) for significance test.

slope =
std err

READ Statement Coverage vs Procedure Coverage for 60

Operational Usage Cases.

Plot 13.

4593 asuedryrubrs woy (BG)L esn ‘sautod eiep 09 ade adayy

€6 'O = UOIZE[8440I GO& b = 213s8¥3€3s | +HI0°& = JdJ43 p3s
£42 G = 8aEnbs 4 o596 1 = 3dazsagug 1@ 0 = adoys
oo dn
[St bt G o b=t ng ST 0y < o
= - * 0
— 2
-t &
|
i
{
3
w -
7
,t..\s
] *®]
. - ax
»
L " - - 21
-
i
|
i
[.U ﬁ.

L LraDn

"9

35831 @duearyrubits woji (BE)IL @S sjutod EIEP 05 ade adayy
666 C = UGTIBRIALLOD 4LET G = ITISTIELS | EGT & = JLad P3s

WRITE Statement Coverage vs Procedure Coverage for 60

Operational Usage Cases.

£I1€ ¢ = aagndbs 4 911 2~ = jdasuajury €6 0 = adors
5 o e % N e as av o573 S 3
t } .
I H 0
i
|
1
i
t
[}
il .
r >
i
§
i
i
i
- -
.\\
& o
4.\. -
P w &
.v\\
o
e
e * * 7
* %ok o
Wi o
* -~
..\.
tl\\..\\
s J
» - L B d
e
s Q2
x,\!....
7
“L = =
uﬂ. w »
[« .
{
P 5

Plot 14.

Ci

o

-

P WA TRP TR

N Be=ced = -
O_E . ..

9 - m. o e
N..E. ...,

R L
-0 E... . .

) B -
O B i
ONHE . -,

vo w@leermremyd -
M e, ..

..9 m.l"i ..
- Peee Bt oo e .

-9'-. MIlnio -s
RN, RN SN S
O _E_

EERIERY 1) Pl R o R
. LB

(median, 10th, and 90th percentiles superim-

Structural Coverage of 100 Permutations of 60 Operational

Usage Cases.
posed)

e 9.-'0 Ml.l - -

SO PR

@ —x- 22 0 -y- 3000

Plot 15.

' T
: 9 S8 99 99
. 9 99 m
% ! H [m t
' . } m o, :
% - m . 10 10
ot m 1@ 19 10
‘ m
- % : !)
. m N
; 19 18 ' '
m ia !
18 .
@ —x- 11 1009 -y- 2see— ' L

Plot 16. Structural Coverage of 100 Permutations of 10 Acceptance
Tests. (median, 10th, and 90th percentiles superimposed)

s Bme e ¢ B o mmeame s o
e w01 MmEewanous v wmreacaan S0
- e B et e = mem aa e
Pt e e s 06 e ammrememmee e
A Wee s mimamae s w——

B s ewme @ ca e cecmm—

e mimam s wa— b

-1000 -y~ 200

@ —x- 29

NHPP Model Fitted to the First 5 Values of the 100 Opera-

Plot 17.

(residuals)

tional Growth Sequences.

@ x-2 9 -y~ 4000 4 L

Plot 18. NHPP Model Fitted to the First 5 Values of the 100 Opera-
tional Growth Sequences. {(plot of a vs b)

......

L e R L L m——
0 4 e seseerms oo v s on emmamem— se
.o swmes wee e oo s e ——.
e Bm e sees et e rmrmem ma—— .
- - N e
- es omnemecmmmm ares o0
- PSS
o ——— -
orvm— v -
— ctemmerm + - e

- omae ma s e smae - te . -
. e e e s oo oo coa v -
- - s cam - - -

@ —x- 21 -500 -y~ 1009

L

Plot 19.

NHPP Model Fitted to the First 10 Values of the 100 Opera-

(residuals)

tional Growth Sequences.

@ x- 1.5 1600 -y- 2800— L

Plot 20. NHPP Model Fitted to the First 10 Values of the 100 Opera-
tional Growth Sequences. (plot of a vs b)

-— e
* mm— e s -
————— e o mme
———— “ono wmees w

060 D e S 0 - 8

e e ¢ ¢ st oo o

" 00t Bam o —— ¢ ¢ G————— "

8 s W chat & Swn = Gommememee ® awe s oo
¢ ®Ee o we s MaGw e ae e deerme & o
00 s CHEmELeIB o b e S M @M Ghome me s eae s b 8 bwe oo
mamimte ®e o somes ma w . -

@ x- 21 -500 —y- 1008—L

NHPP Model Fitted to the First 15 Values of the 100 Opera-

Plot 21,

(residuals)

tional Growth Sequences.

8 —x- 1 2008 -y- 3000 —1 L

Plot 22. NHPP Model Fitted to the First 15 Values of the 100 Opera-
tional Growth Sequences. (plot of a vs b)

o et o e v 40 ae o

e T —

R e T T oy

8 —x~ 21 -508 —y- 1508

NHPP Model Fitted to the First 20 Values of the 100 Opera-

(residuals)

tional Growth Sequences.

Plot 23.

@ —x- 1 2200 -y- 3000 L L

Plot 24. NHPP Model Fitted to the First 20 Values of the 100 Opera-
tional Growth Sequences. (plot of a vs b)

Comparison of Execution Coverage of Acceptance Test and

Operational Usage.

Plot 25.

‘3503 aduedT3rubis a0y (ET1IT)L Bsn sjurod ejep GIIT ade adayl

T

<+

46860 = UNTRBRTALLIOD BLIEB = I7351383S5 | 4210 = Jdd3 p3s
€98 0 = adenbs 4 260 0 = jdassajgur 186 0 = adays
souridady
o1 - 8'0 30 'O a2'Q
* * * 4
- *®
*
E 3 »
. = -
-
W * e e
* *\\‘\
- *
»
A
£ 3 » \\ w
» ® »
* »
| I *
sl *
» £) £ oL
pr
. [<
\\\ T
t »
\\Aﬂ » P
. e * %
¥ . .-
P * *® »
« \\\ »* -
e »
. e
» \.\ M
P
e "
N pd *
\x\ *
* .
\\\.\ »* ~-—
a #* *
\.\
..s\A..\
*
* 2

o

LY. B-T1

by 17 Benchmark Test Cases.

Statement Coverage
of the MAL Preprocessor

A ——— —— ——— ——— —— iyt — —— — — — —— — o— vt twioitt e it ontos ity . ettt ot st ot

|
|
|
Case Procs Exec Assign Calls Do If Reads Writes |
7 33 7069 530 78 52 206 6 3]
2 I 30 | 913 : me | s 1 37 Logg I g | qg
3 : 33 ; 1067 | 529 : 76 : 52 : 2146 : 6 ; 13
B 0 2 456 84 20 6 11
5 : _3,3 : 1%39 : 5?9 } 77 : %% : 2ug : 6 : 12 :
|
6 I z7 gz ! o632 | 110 | 62 1288 | 11 | 22
7 | 30 | 928 | us5s | '8y | 39 1 208 | 6§ | 10 |
8 I 36 | 1228 | 622 ! 101 | 61 lo2;g I 6§ | gy |
9 30 1 928 | us5 | ‘g4 | 39 1 208 1 6 | 10 |
10 : 14 : 1677 : 821 ! 161 : 71 : 368 : 11 ; 21 |
' |
11 | w6 ! 1786 | 855 | 216 | 76 1 375 | o | 16 |
12 | 38 11285 | 6u0 ! 102 | s8 1285 ! g | 20 |
13 w0 ! iwwg ! 691 | 166 | 57 lzaw I 7 1 g2,
14 bus lagrs | os19 1169 | 70 g7 | 9 | 20 |
15 : 15 : 1959 : 957 } 209 : 85 : 14 } 13 ; 5 |
|
16 { 15 } 16l : o1 : 177 : 73 }3323{3 : 2 : 2
1 5 172 0 171 71 9
7 | | | | IR | |
Union b st Vawos ! 1187 | 286 1108 lwgo | 14 | 30 |
Intersect ll 29 ; 778 : 389 } 42 ; 35 ; 186 ’l 6 : 10 :
Maximm | 68 | 4300 | 1870 | ws | 157 | 753 | s | 208 |

Table 1.

o ™M oM Mmoo OO Ot~ ~f~ 0o
» ° e o * ® o ® . ¢ . L4 .« o . o ° o o @
4 WI3wIntdt oFoFo oA Se oo
L] - \n - - —
=
.“ OO o\0 =+ \O o \O = 55652 Pakis QOO
P N ElE e eEd vweo N N
W LeNeQ Afeve RS io am o~
* e o [. . .« o . ® « o
H N gt O pem s o =
R YRR YR NN MmN o Q0 QR 83
L]

R nlmTn Kalay FoamIFT QB od
9o .
aCtX llllllllllllllllllllll —
| 3
$EBS] Noaes moann NSNio me xo

[» 7 =1 —4 ¢ & . s . » « @ .
3 VLERO® wlaQ0 =—x0 Sl Jo Jo
Cmmﬁw "H-&- UN{CR WSR2 3°
s 8ol __ —_
eL.m%n
mMmmm NoMAR MmN ENQpn oo n®
teees ® e 0 4 o . . [. . » . @ e o

VMOt~ NI Ot~ F o

Sgmola JIPIFN KIRIY SRR -3~ AR
2 ¥~ Bl

b - I [—_—

A e

.W. (2] AN O - MO oY 59706 o N o -

mnucllu..oum Ooh&choﬂ QHQNQ”.' * ® o&

H dunan Aelaen T80ge 59 9w

Mw [T T N VoW Tl . i ad e 69822 o N o w

S w sSScgs mwmgy g Sn

0

& 3T FINITZ vInnwog 8y Lo

ER]

o

bt 1]

o R

8 S ¢

© oMz, L~ HE

— Ol N O~ O e e 2 — — D

Table 2.

Statement Coverage
of the MAL Preprocessor

by 60 Operational Useage Cases.

Case

S W OJOUI £WN -

o

Exec

1368
1712
1830
1262
1252
1098
1012
1359
1246
1252

1743
1249
1295
1286
1136
1794
1272
1252
1270
1249

1118
1657

994

986
1361
1235
1123
1260
1270
1779

1218

997
1070

561
142y
1250
1743
1262
1749
1258

Assign Calls Do Ir

660 125 52 324
832 193 80 381
896 184 78 1 411
625 86 57 278
618 120 53 276
536 84 50 248
486 94 39 236
652 129 52 331
619 84 56 275
618 120 53 276
831 196 76 382
616 120 53 275
666 - 81 68 306
660 81 68 305
545 106 45 272
853 217 76 378
637 86 57 278
618 120 53 276
635 86 57 | 278
616 120 53 275
532 13 39 253
807 155 68 363
505 62 42 242
496 66 42 241
646 132 53 322
638 76 67 288
529 104 52 265
626 85 57 276
635 86 57 278
857 192 80 413
593 121 50 282
500 66 41 247
538 63 ug 264
299 21 25 108
681 164 60 305
619 85 56 275
831 - 196 76 382
629 86 57 278
832 199 77 383

Reads

10
10
13
14
10

9

9

9
14
10

"
10
10
10

9
12
14
10
14
10

Writes

14
19
22
24
15
14
13
13
23
15

19
15
19
19
14
19
24
15
24
15

9
25
13
13

1l
19
14
2

24
20

13
13
15
11
15
24
19
23
19
15

612 117 55 298

Table 3.

Statement Coverage

of the MAL Preprocessor

by 60 Operational Useage Cases.

(cont.)
Case Procs Exec Assign Calls Do Ir Reads Writes
41 39 1290 638 101 58 286 12 23
B2 36 1351 695 87 T1 326 9 18
43 37 1246 619 84 56 275 14 23
4y 45 1736 838 172 71 382 15 27
45 45 2002 971 213 86 435 16 28
46 uy 1685 819 162 71 371 " 14 24
47 39 1292 640 101 58 286 12 23
48 45 1683 817 170 70 370 12 23
49 45 1970 956 210 86 17 16 28
50 45 1772 859 178 73 386 15 27
51 39 1337 635 127 54 317 10 16
52 37 1271 635 86 58 280 14 23
53 34 1184 585 109 1) 267 9 15
54 40 1355 650 126 52 333 9 13
55 40 1456 689 167 57 327 10 i5
56 37 1250 617 120 53 275 10 15
57 37 1248 603 115 54 302 9 14
58 37 1272 637 86 57 278 14 24
59 34 1048 516 72 50 2u2 9 15
60 20 527 273 19 24 106 8 11
UNION 55 2757 1345 327 120 581 19 36
INTERSECT 19 hy2 228 16 19 86 T 9
MAXIMUM 68 4300 1870 418 157 753 34 206

Statement Coverage
of the MAL Preprocessor

by 60 Operational Useage Cases.

(Percentage of Maximum)

(@]
[5)
7]
®

=0 0~ VUl =W N —

Procs

57.4
63.2
66.2
54.4
54,4
52.9
48.5
57.4
54.4
54,4

64.7
54.4
51.5
51.5
51.5
67.6
54.4
54.4
54.4
54.4

54,4
63.2
4.1
14,1
57.4
50.0
54,4
54,4
54,4
63.2

54.4
uy.1
48.5
30.9
57.4
54.4
64.7
S4.4
64.7
55.9

Exec

31.8
39.8
2.6
29.3
29.1
2505
23.5
31.6
29.0
29.1

40.5
29.0
30.1
2909
26.4
1.7
29.6
29.1
29.5
29.0

26.0
38.5
23.1
22.9
31.7
28.7
26.1
2903
29.5
41,4

28.3
23.2
24.9
13.0
33.1
29.1
40.5
29.3
4o.7
29.3

Assign Calls Do

35.3 29.9 33.1
44,5 46.2 51.0
47.9 k3.0 49.7
33.4 20.6 36.3
33.0 28.7 33.8
28.7 20.1 31.8
26.0 22.5 24.8
34.9 30.9 33.1
33'1 20.1 3507
33.0 28.7 33.8

s4.4 | 46.9 | u48.4
32.9 | 28.7 | 33.8
35.6 19.4 43.3
35.3 19.4 43.3
29.1 25.4 | 28.7
45.6 51.9 48.4
34.1 20.6 | 36.3
33.0 | 28.7 | 33.8
34,0 | 20.6 | 36.3

32.9 | 28.7 | 33.8
28.4 | 27.0 | 2u.8
43,2 37.1 43.3
27.0 | 14.8 | 26.8
26.5 | 15.8 | 26.8
3.5 | 31.6 | 33.8
3.1 | 18.2 | 2.7
28.3 | 28.9 | 33.1
33.5 | 20.3 | 36.3
34.0 | 20.6 | 36.3
45.8 | 45.9 | 51.0
31.7 28.9 31.8

26.7 15.8 26.1
28.8 15.1 31.2
16.0 5.0 15.9
36.4 39.2 38.2
33.1 20.3 35.7
hy.y 46.9 u8.4
33.6 20.6 36.3
hy.s 47.6 49.0
32.7 28.0 35.0

Ir

43.0
50.6
54.6
36.9
36.7
34.3
31.3
uy.0
36.5
36.7

50.7
36.5
40.6
ko.5
36.1
50.2
36.9
36.7
36.9
36.5

33.6
48.2
32.1
32.0
42.8
38.2
35.2
36.7
36.9
54.8

37.5
32.8
35.1
14.3
’40.5
36.5
50.7
36.9
5009
39.6

Readé

29.4
29.4
38.2
41.2
290)"
26.5
26.5
26.5
,‘"1 02
29.‘4

32.4
29.4
29.4
290"’
26.5
35.3
41,2
29-"‘
41.2
29.14

2006
41,2
23.5
2305
29.4
29.4
26.5
h1.2
41.2
29.“’

2665
23.5
26.5
23.5
29.4

S b1,.2

32.4
1.2
32.4
29.4

Writes

L 3

— - — b

NWO = O - J U 3O OV O = RO OOy OV = ~ =~ O OO OO N, O] - OOV O
. e 6 & o ¢ o o o * & e ¢ o o o o o

WHNNMDTWwww w NN O OW W W-w--INoohn hpwN WNWWoWwWw=I 3N o

b

—d -
e & o & o o . 0 .

-— -—
. s e e« o e o .

-

Table 4.

by 60 Operational Useage Cases.

Statement Coverage
of the MAL Preprocessor

(Percentage of Maximum)

(cont.)

Case Procs Exec Assign Calls Do If Reads Writes
49 57.4 30.0 34.1 24,2 36.9 38.0 35.3 11.2
42 52.9 31.4 37.2 20.8 45,2 43.3 26.5 8.7
43 54.4 29.0 33.1 20.1 35.7 36.5 1,2 1.2
by 66.2 4o.u 44,8 b1.1 45.2 50.7 by, 13.1
us 66.2 46.6 51.9 51.0 54.8 57.8 47.1 13.6
ug 64.7 39.2 43.8 38.8 u5,2 49.3 41.2 1.7
47 57.4 30.0 34,2 24,2 36.9 38.0 35.3 11.2
48 66.2 39.1 | 43.7 40.7 y.6 bg.1 35.3 11.2
49 66.2 45.8 51.1 50.2 54.8 55.4 47.1 13.6
50 66.2 k1,2 5.9 42,6 46.5 51.3 by, 1 13.1
51 57.4 31.1 34.0 30.4 34.4 42,1 29.4 7.8
52 54.4 29.6 34.0 20.6 36.9 37.2 41,2 11.2
53 50.0 27.5 31.3 26.1 29.3 35.5 26.5 7.3
54 58.8 31.5 34.8 30.1 33.1 Lu, 2 26.5 6.3
55 58.8 33.9 36.8 0.0 36.3 43.4 29.4 7.3
56 54.4 29.1 33.0 28.7 33.8 36.5 29.4 7.3
57 54.4 29.0 32.2 27.5 34,4 40.1 26.5 6.8
58 54.4 29.6 34,1 20.6 36.3 36.9 41,2 1.7
59 50.0 24,4 27.6 17.2 31.8 32.1 26.5 7.3
60 29.4 12.3 14.6 4.5 15.3 14,1 23.5 5.3
UNION 80.9 64.1 71.9 78.2 76.4 77.2 55.9 17.5
INTERSECT 27.9 10.3 12.2 3.8 12.1 11.4 20.6 4.y

Comparison of Statement Coverage
of the MAL Preprocessor
by 17 Acceptance Test Cases
and 60 Operational Usage Cases.

s et e iy G ot —— e oy i | oy e it i

—— . —n —— — — vt SEND it S —_ v— w— o ——

|
!
[
|
Case Procs Exec Assign Calls Do i Reads Writes |
' |
Acpt b 51 1 2u08 | 1187 | 286 | 108 ! ugo | 1y | 30 |
Usage { 55 :2757 : 1345 : 327 :120 :581 } 19 { 36 |
|
Union l 's5 | 2768 | 1353 | 327 | 120 | 581 | 19 | 36
Intersect : 51 ; 2397 : 1179 : 286 : 108 ; 490 : 14 : 30 |
!
A-0pU o 10l 81 ol ol o! o I o
OpU-A | u- | 360 | 166 | w1 | 2] 91| 5 | & |
Table 5.
Comparison of Statement Coverage
of the MAL Preprocessor I
by 17 Acceptance Test Cases]
and 60 Operational Usage Cases. I
(by percentage of Maximum) |
Case Procs Exec Assign Calls Do If Reads Writes |
. |
Acpt | 75.0 ! 56.0 ! 63.5 ! e8.u | 68.8 ! 65.1 | n1.2 | 14,6 |
Usage : 80.9 ; 6.1 : 71.9 : 78.2 : 76.4 : 7.2 : 55.9 : 17.5 |
I
Union | 8o.9 | 6u.y | 72,8 ! 78,2 V76,8 | 77.2 | 55,9 | 17.5 |
Intersect : 75.0 : 55.7 { 63.0 : 68.4 : 68.8 : 65.1 : $1.2 ; 1.6 |
!
A-OpU 9.0 1 0.3 ! o8 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0
OpU-A | 5.9 | 84 | 8.9 | 9.8 | 7.6 | 12.1 | 1.7 | 2.9 |

“Kruskal-Wallis Comparison

of Acceptance Test

and Operational Usage Coverage.

HO: populations are the same.

I |
I |
I |
| |
I |
| Coverage Type H Result |
I Procedure | 0.076 | ftr 8 0.1 |
| Executable Statement I 0.218 l ftr @ 0.1 |
| Assignment | 0.076 | ftr @ 0.1 l
| cal1 | 0.005 | ftr @ 0.1 I
| Do I 0.005 | ftr 8 0.1 I
| 1f I 0.362 ‘ ftr 8 0.1 I
| Read 11.657 reject @ 0.001 |
| write | 2.608 l ftr @ 0.1 !

Mann-wWhitney Comparison
of Acceptance Test
and Operational Usage Coverage.

HO: populations are the same.

|

|

I

|

|

Coverage Type 1] low U Result \
Procedure 487.5 AT ftr @ 0.1 i
Executable Statement | 472.0| AT | ftr @ 0.1 |
Assignment | 887.5] AT | ftr @ 0.1 |
Call] 504.0 | AT] ftr 8 0.1 |
Do | 504.0 | OpU | ftr @ 0.1 |
If | 461.0] AT | ftr 8 0.1 |
Read | 232.0] AT | reject € 0.01 |
Write I 378.5 l AT | ftr @ 0.1 '

Table 8.

Procedures Classified by the
Number of Times Procedure was Exercised /
Total Operational Executions

(Faulty procedures are starred.)
(Unexecuted procedures are u’s)

Procedures

100% % % ¥ pp
PPPPP
PPDPPP
PPPDPP
PPPPPD
PP '

90% PPD

80% * ¥p0p

70% p

60% PPPP

50% *¥ppp

ho% *pppop
p

30% PPP

20%

10% *pppp
pp

0% uuuuu
uuuuu
uuu

Table 9,

~ Time to Isolate the Change vs
Number of Times Procedure was Exercised /
Total Operational Executions.

(Effort to Understand and Implement in Parenthesis)

1009 (1h < 1d) (1h < 1d)
(1d < 3d)

90% '

80% (th < 1d) (1d < 3d)

70%

60%

50% (1h < 14)

40% (1 hour <)

30%

20%

10% (1h < 1d) ,
r=======T==?=?=ﬁour T hour < 1 day 1 3 1 day | never round |

Table 10.

Time to Understand and Implement the Change vs
Number of Times Procedure was Exercised /
Total Operational Executions.

(Effort to Isolate the Cause in Parenthesis)

100% {1t h<14d) (1Th<1d)
(1 hour <)

90%

80% (1h<1d) (>1 day)

70%

60%

50% (1 hour <)

409 (1 hour <)

30%

20%

10% (th<¢1d)

< 1 hour T hour < 1 aay T day < 3 aays S 3 days |

Table 11,

Faults by CRF Classification vs
Number of Times Procedure was Exercised /
Total Operational Executions.

Req. Func. . Design Extern. Lang. Cler. Other
Specs. Data Exp Env.

100% XyX X
90%
80% b'q X
70%
60%
50% b4
4o% X
30%
20%
109 X

Table 12.

