Technlcal Report TR-1519 July 1985

Quantltative Evaluatlon of Software Methodology

Victor R. Basill

Department of Computer Sclence
Unlversity of Maryland
at College Park

Abstract

This paper presented a paradigm for evaluating software
development methods and tools. The basic idea is to generate a set of
goals which are refined into quantifiable questions which specify
metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize,
evaluate, predict and motivate. They can be used in an active as well
as passive way by learning from analyzing the data and improving the
methods and tools based upor what is learned from that analysis.
Several examples were given representing each of the different
approaches to evaluation.

This study is funded by NASA grant NSG-5123 and Alr Force Research Grant AFOSR F40620-80-C-001. This paper
will be presented at the First Pan Pacific Computer Conference. Melbourne, Australla. September 10-13, 1085.

Quantltative Evaluation of Software Methodology
Victor R. Baslil

Department of Computer Sclence
Unlversity of Maryland

INTRODUCTION

One of the major problems In the development of software Is the lack of
management's ablllty to (1) ind criteria for selecting the appropriate methods and
tools to develop and malntaln software and (2) evaluate the goodness of the software
product or process. In a survey of the software development Industry, [Thayer and
Pyster 1980] listed the twenty major problems reported by software managers. Of
these twenty, over half (at least thirteen) dellneated the need for management to
find selectlon criterla for the cholce of technology or be able to Judge the quality of)
the existing software development process or product. In some sense thls may have
been a surprise. Management's priority was not to ask for new technology but they
wanted to find ocut how to use the existlng technology. Thls Is in fact a maJjor aspect
of the technology transfer problem.

For many cases, there does exist a falr amount of technology avallable for
software development. However, 1t Is not always apparent to the manager which of
these technlques or tools to invest In, and whether or not they are working as
predicted for the particular project. What Is needed In almost all cases Is a quantita-
tlve approach to software management and engineering that uses models and metrics
for the software development protess and product. There are such models and
metrics avallable. They cover everything from resource estimation and plannlng to
the complexity of the product. '

This quantitative methodology Is needed for understandlng, comparing, evaluat-
Ing, predicting, motlivating, and good management practices. In many cases, 1t Is
still a primlitive technology and should be used by management and englneering as a
tool to augment good judgement, not to replace 1t. Typleally, we need to establish
the valldity of the models and metrics In the individual environments to be sure that
they capture the appropriate activities.

METHODOLOGY LEVELS

Before I discuss the avallable models and metrics for quantitat!ve management
and englneering, I will begin with the Issue of methodology. There are varlous levels
at which the software development process can be viewed. At the top most level, we
often will think about a particular technlque, some approach to solving a speclfic
aspect of the software development problem. For example, structured codlng Is a
mechanlsm for developing code In a particular programming language using a select
set of control structures. It Is a loglcally sound approach to code development since
It allows ease of testlng, readabllity, and permits the use of a checkable standard.

1

Unfortunately, 1t was thought of as the solutlon to the software development
problem back In the 1960's. That now appears rather nalve glven what we know
about software development. Structured codlng Is clearly only one part of the
software development process, attacking only one phase of the process and a single
product, the code. Taken In Isolatlon It can even cause a problem. Glven an
unstructured deslgn, 1t would be very difficult for the coder to redesign at the code
level, If the project Is not performing Inspections or dolng reading or wrlting tests
based upon the structure of the code, then many of the benefits of structured coding
are lost. Thus, the technlque of structured codling, used In Isolation can be a draw-
back and even Increase the cost of a project.

The problem Is that one cannot take a method or tool and place it Into a
forelgn environment and expect It to work. What s needed, as we now understand,
Is an Integrated set of methods and tools that work together across the whole life
cycle. The use of structured codlng In conjunction with structured deslgn, a struc-
tured process deslgn language, and reading technlques, have been shown to pay off
well. What we want Is an Integrated set of technlques that provide a methodology
for software development across the entire life cycle. Tools should be provided,
whenever possible to support the methods.

Unfortunately, this Is stlll not ‘the solutlon’. An Integrated set of methods must
by definltlon be an abstraction. These techniques must be engineered for a particu-
lar environment. In thls sense, software englneering lnvolves the appllication of an
Integrated set of technlques to a specific project, with Its unique problems, con-
stralnts, and environment. This approach requires an understanding of the project
and the environment In which 1t Is to be developed so that the right set of tech-

‘nlques can be (1) chosen from the Integrated set and (2) refined for the environment.
The following are examples of both choosing the appropriate techniques and

refinlng them. An Integrated set of technlques does not mean a standard fixed set.
An Integrated set should mean a set of technlques from which the manager may
choose the most appropriate given the project characteristics, knowing that whatever
set Is chosen they will Interface well with one another. For example, suppose the
project Is one in which the developer has very little experlence, and the requirements
will be changing on a regular basls. Then one should choose a subset of technlques
that lend themselves to a changlng environment. This calls for an evolutlonary
approach, such as lteratlve enhancement [Baslll and Turner 1975}, In which the
developer bullds subset versions of the product, evaluating each of the subsets as 1t
Is completed. Clearly, the standard waterfall model would not be effeetive In this
environment. However, many technlques, such as structured deslgn and coding
within a version, are useful.

An example of the refinement of a technlique mlght be based upon the history of
errors. Knowlng the error pattern In a partlcular environment, e.g. 409 of the
errors are errors of omlssion and 80% errors of commiIsslon, then reading the design
without having the requirements document avallable might mlss as much as 409 of
the errors. Thus the reading approach would requlre that consistency checks
between documents always be done. The error pattern always warns about total

rellance on a structural testing technlque. If It were known that 109 of the errors
were due to fallure to Initlallze varlables, then the readers could be advised to check
for the inltlallzation of varlables In thelr reading.

In elther case, 1t Is apparent that the more we know about our environment, the
better we can choose and tallor the appropriate technlques for development and
malntenance.

MODELS AND METRICS

In order to evaluate the methods belng used, we must first understand the
software development process and product. This requlres hypothesizing models. A
model Is simply an abstraction of a real world process or product. It attempts to
explaln what Is golng on by makling assumptlons and simplifying the environment.

It glves a viewpolnt of the software development process or product by classifylng
varlous phenomena, abstracting from reallty, and Isolating the aspects of Interest.
There may be many models of the same thing, each attempting to analyze a different
aspect. The thing belng modeled may then be described as the sum of all the models
or viewpolnts. There are models which take the viewpolnt of resource use, complex-
1ty, rellablllty, change, etc. Based upon the models, there are metries which are sim-
ply quantitative measures of the extent or degree to which the software possesses
and exhlblts a certaln characteristle, quallty, property, or attribute. These metrics
provide us with measurements: numbers wlith an assoctated unit of measure which
describe some aspect of the software. '

Metrics can be viewed in many ways [Basill 1981]. They can be thought of as
objective or subjective. Objective metrics are absolute measures taken on the
product or process, e.g. the tlme for development, the number of lines of code, the
number of errors or changes. Subjective metrics are an estimate of the extent or
degree In the application of some technlque, or the classificatlon or quallfication of a
problem or experlence, usually done on a relative scale. Here there Is no exact meas-
urement but an oplnlon or consensus of oplnlons. Examples include a rating on the
use of a process design language (PDL) or a rating of the experlence of the program-
mers In an application.

Typlecally a subjective metric Is used when we do not know how to quantify an
obJectlve metric. For example, 1t is difficult to deflne an oblectlve metric for how
well a PDL was used In the development of a project. However, If we are to evalu-
ate the effect of the PDL we need to know whether the technlque was used well or
not, so that 1ts effect can be Judged appropriately. Even though we cannot come up
with an objectlve rating, we can ask two or three people to rate the use based npon
some ratlng scale, e.g.

0 - wasn’t used at all,

1 - used only partly and as a coding speclfication

2 - used almost everywhere but as a codlng specification

3 - used at a higher level than as a codlng specification

4 - used at multlple levels of speclfication with limited success
5 - used effectlvely at multiple levels of design

Although the rating wlll not be exact, It will provide reasonable subjectlve Infor-
matlon that could not be avallable otherwise. Sometimes there is an objective
metric we can use, but It Is less accurate than the subjective Information. For exam-
ple, to evaluate the experlence of a programmer In an appllcation, an objectlve
metric might be years of experlence. However, several studles have shown that years
of experlence Is not a rellable metrlc past two or three years. A subjectlve rating by
management and colleagues would probably be a more accurate measure.

Metrlcs can be measures of the product or the process. A product metric would
be a measure of the actual product developed, e.g. source code, object code, docu-
mentation, etc. Sample metrics are llnes of code (an objectlve metric) and readabii-
Ity of the source code (a subjectlve metric). A process metric would be a measure of
the process model used for developlng the product. Sample product metrics would
be the use of a methodology (a subjectlve metric) and the effort for development In
staff months (an objectlve metric).

Metrlcs can be used to measure cost or quallty. A cost measure Is some expen-
dlture of resources in dollars including capital Investment usually normallzed accord-
Ing to some value component. For example, staff months, computer use, size per
tlme slice. A quallty measure represents some form of value of the product. For
example, rellabllity, ease of change, correctness, number of errors remalning, amount
of code reusable.. Actually cost can be consldered a quallty metric since low cost
might be thought of as a valuable quality. However, we typlcally are trying to max-
Imlze quallty and minimize cost so It Is Interesting to see them as separate types of
metrics useful in tradeoffs.

There are several general uses of metrics. First and most lmportant, metrics
can be used to characterize and understand. A characterizing metric 1s one that
helps distingulsh the process or product or environment. For example, the use of a
methodology, the number of externally generated changes, or the size. Each of these
tell us something about the project so that we can better understand 1t. Character-
1zlng metrics can be used for schedule tracking, providing Information on where the
project stands with respect to percent of resource use, with respect to calendar time,
etc. They can be used to help define the model of the process or the product.

Metrics can be used for evaluation. The metric Is a good evaluative measure If
It correlates with or shows directly the quallty of the process or product, e.g. the
number of errors reported durlng acceptance testing or work productivity. Where
almost all metrics can be used for characterization, only a subset can be used for
evaluation. The schedule tracking metrics mentioned above can be used for evalua-
tlon, only If we know the planned schedule Is reasonable. If 1t Is, we can use confor-
mance t0 schedule as a means of evaluating the eflect of the methods used.

Metrics can be used for predlction and estimation. A predictive metric Is one
that Is estlmable or calculable at some polnt In time and can be used to predlct some
Informatlon at a later polnt In time. For example, estimating slze as a predictor of
effort Is a standard predictive relationship. It becomes Interesting to try to establish
metrics such as the use of a partlcular methodology as a metric that predicts (corre-
lates) with varlous aspects of quality, e.g. ease of modification.

4

Metrlcs can be used for motlvation. Letting the developers know what 1s impor-
tant In a quantltative way defines what It Is we are looking for. For example, one of
the major Issues In software productivity Is the need for reusabllity. However,
management does not motivate reusablilty, 1t actually unknowlngly discourages lIt.
By using schedule and cost as the primary motlvators for success, 1t discourages a
manager from uslng extra time or money that milght make parts of the product reus-
able. If reusabllity were listed as one of the prime motlvators, to be traded off with
cost and schedule, we might see more reusablllty. For example, we can motlvate g
project manager to try to develop reusable deslgn or code by rewarding him/her for
all code that gets used In another project. This would help encourage the manager
to conslider tradeoffs of reuse with tlme and cost. Another manager might be
motlvated to reuse someone else's code by rewarding him/her by counting any
reused code as part of thelr total source code count or even adding extra rewards for
reuse. Motlvational metriecs need to be carefully thought out, l.e. we need to be sure
we want what we are asking for. But even the generatlon of such metrics helps us
better understand what we are telllng managers versus what we should be telling
managers, l.e. ‘what are the actual goals of the company and the project.

MEASUREMENT AND EVALUATION PARADIGM

The measurement and evaluation process requires a mechanlism for determining
what data Is to be collected; why 1t Is to be collected; and how the collected data Is
to be Interpreted [Baslll & Welss 1984]. The process requires an organlzed mechan-
Ism for determining the purpose of the measurement; defining that purpose In a
traceable way Into a quantitatlve set of questlons that deflne a specific set of data for
collectlon. The purpose of the measurement and evaluation flows from the needs of
the organlzation. These may include: the need to evaluate some partlcular technol-
ogy; the need to better understand resource utllizatlon In order to Improve cost esti-
matlon; the need to evaluate the quallty of the product in order to determine when
to release 1t; or the need to evaluate the benefits and drawbacks of a research pro-
Ject.

The goals tend to be vague and amblguous, often expressed at an lmprecise
level of abstractlon. For exambple, the words understand, evaluate, quallty, benefits,
and drawbacks carry different meanings to different people or vary with different
environments. The need to better understand resource utllization in order to
Improve the cost estimatlon process explains what I want to do but leaves many
questlons about what kind of data needs to be collected. The need to evaluate the
use of a technology, llke design Inspections, requires the perspective of the expecta-
tlons from the methodology as does the evaluation of a research project. The goals
need to be carefully articulated but also refined In a quantitative way In order to
glve precision and to clarify thelr meanlng wlth respect to the partlcular environ-
ment.

The data collectlon process itself requlres a baslc paradigm that traces the goals
of the collectlon process, l.e. the reasons the data are belng collected, to the actual
data. It s lmportant to make clear at least In general terms the organization's needs
and concerns, the focus of the current proJect and what Is expected from 1t. The

S

formulatlon of these expectations can go a long way towards focusing the work on
the project and evaluating whether the project has achleved those expectations. The
need for Informatlon must be quantified whenever possible and the quantification
analyzed as to whether or not It satlsfies the needs. Thls quantification of the goals
should then be mapped Into a set of data that can be collected on the product and
the process. The data should then be validated with respect to how accurate 1t Is
and then analyzed and the results Interpreted with respect to the goals.

The actual data collectlon paradigm can be visualized by a dlagram:

Goall Goal?2 Goaln

. . . .

Questlonl . Questlon3 Questlond . . Questlons

. Questlons . .
. Questlion2 . . Questlions . Questlon?
di . . . mg d2 e e . . . + . m5
Jml m2 m3 M m2 d3 m8 @ 0 ml mé m7

Here there are n goals shown and each ‘goal generates a setor\'quest.lon's that attempt
to define and quantlfy the specific goal which Is at the root of 1ts goal tree. The goal
Is only as well defined as the questlons that 1t generates. Each question generates a
set of metrlcs (m!) or distributlons of data (dl). Agaln, the question can only be
answered relatlve to and as completely as the avallable metrics and distributions
allow. As Is shown In the above dlagram, the same questions can be used to define
different goals (e.g. Questlons) and metrics and distributlons can be used to answer
more that one question. Thus questions and metrics are used In several contexts.

The paradigm Is Important not Just for focuslng management, englineering, and
quallty assurance Interests but also for Interpreting the questions and the metrics.
For example, m8 Is collected In two contexts and possibly for two different reasons.
Questlon8 may ask for the size of the product (m6) as part of the goal to model pro-
ductivity (Goal2). But m6 (size of the product) may also be used as part of a ques-
tlon about the complexity of the product (e.c. Questlon7) related to a goal on ease of
modificatlon (e:g. Goaln). ' ‘

If a measure cannot be taken but Is part of the definltion of the question, 1t Is
lmportant that it be Included In the goal/question/metric paradigm. This Is so that
the other metrics that answer the question can be viewed In the proper context and
the question Interpreted with the appropriate llmitations. The same Is true for ques-
tlons belng asked that may not be answerable with the data avallable. For example,
to determine the effectiveness of a2 method in reduclng errors, I need to know the
total number of faults over the system life time. I cannot know this number during
the development phase. I should still include the metric 1n the paradlgm so that I
know the Informatlon Is Incomplete.

It could then be assumed that although there may be many goals and even
many questlons, the metrics do not grow as the same rate as the goals and questlons.
Thus a set of metrlcs could be collected for characterlizing the software process and
- product that will allow many questions generated by different goals to be answered.

Glven the above paradigm, the data collectlon process consists of slx steps:
1. Generate a set of goals based upon the needs of the organizatlion.

The first step of the process Is to determlne what 1t Is you want to know. This
focuses the work to be done and allows a framework for determining whether or not
you have accomplished what you set out to do. For example, the organization may
wish to know whether the use of a specific method or tool Improves the productivity
of the projec¢t personnel or the quallty of the product. It may wish to define a set of
" goals for a research project and then determlne whether that project has achleved
those goals. The goal may be slmpler. It may be to characterize the resource usage
across the project. In any case the goals should be clearly stated. The goals do not
have to be quantifiable. It Is the next step In the process to take the goal and make
It measurable.

It 1s difficult to provide an organlzatlon with a set of guldellnes for generating
goals. These should be based upon the partlcular needs and concerns of the organi-
zatlon and its purpose for beginning a data collectlon actlvity. The goals can be
management orlented, englneering orlented, quallty assurance oriented or even
research orlented. As stated above, many of the questions or metrics may be the
same for the different orlentations but they may be comblned in different ways and
the Interpretation will have a different focus and impact. '

Management orlented goals wllil typlcally deal with resource allocatlon and mon-
Itoring for the purpose of prediction and estlmation. For example managers may
wish to estlmate cost, track resource expendltures, and predlet the quality of the
project. An englneering orlentation may be to evaluate the technology belng used In
the development of the project, discover the problems In terms of errors and resource
use In order to Improve the quality of the process or the product. A quallty
assurance orlentation may be to characterize the product or even the process to
Judge adherence to standards, Isolate parts of the product that require rework, or
evaluate the product for dellvery. A research orlentation may be to focus on the
benefits and drawbacks of the development of a new technology and demonstrate 1ts
effectlveness. Each of these orlentations have goals In common. It Is the Interpreta-
tlon that may be different. Many of the questions and metrics (e.g. about resource
allocatlon) will be replicated for different goals so that the same data can answer
many questions and allow for the achlevement of many goails.

The goals to characterize, evaluate and predlct aspects of the software process
and product cover a large area. We can set goals to characterize the effort expended,
the changes generated, the errors commltted, the dimenslons of the products such as
slze and complexity at various polnts In tlme, the metkods and tools, the documenta-
tlon, the applicatlon, the experlence of the deveiopers, the computer and the con-
stralnts set on the project, and the varlous execution tlme Issues such as perfor-
mance, space utllizatlon, and test coverage. We can set goals to evaluate the

7

effectiveness of the tools and methods used, the environment In whilch the product 1s
developed, and even the models for the process and product. We can set goals to
predlct the cost, rellabllity or quality of the product.

2. Derlve a set of questions of Interest or hypotheses whilch quantlfy those
goals.

The goals must now be formallzed by making them quantifiable. This Is the
most difficult step in the process because it often requlres the Interpretation of fuzzy
terms llke quallty or produectlvity within the context of the development environ-
ment. These questlons define the goals of step 1. The alm 1s to satisfy the Intultlve
notlon of the goal as completely and consistently as possible. For example with the
above goal of characterlzing resource usage across the prolect, questions of Interest
might be: How much tlme (in minutes, hours, weeks, months or years) was spent by
all personnel of Interest (programmer, librarian, support stafl, managers, reviewers,
etc.) In total and across subcategorles, 1n each phase (requirements, speclficatlon,
deslgn, code, test, and operation) or actlvity (tralning, reviewing, making changes,
ete.) for each product part (module, subsystem, full system)? How much computer
tlme was spent by all personnel of Interest In total and across all subcategoriles, for
each phase or activity, for each product part? These questions actually generar,e sets
of questions parameterized by ea.ch of the subcategorles above.

- “After all possible resource usages have been deflned and tra.nsposed into ques-
tlons, the questlons posed must be evaluated as to whether they provide a complete
definlitlon of the goal. This process Is a heurlstic one and the Judgement of whether
or not the goal Is satisfled by the questlons will be subjective. The process Is often
lteratlve and after collectlng resource characterlzation data the collector may dis-
cover new questions that were missed. These could then be added to the question
llst for later projects. It mlght even be possible that the data has been collected to
answer these questions because It was collected to answer another question. However
before applying the data directly, the question/metric paradigm should be developed
to assure proper interpretation of the question.

It will often be the case that the set of questions do not fully satisfy the goal.
Thils may be because we do not know how to phrase a question In a quantifiable way
or because we cannot Interpret the fuzzy terms of the goal In a well defined way or
the cost for collecting the data may not be worth It for the achlevement of the goal.
In these cases the mlssing aspects of the goals should be noted so that later Interpre-
tatlons of the results can be qualified appropriately.

3. Develop a set of data metrics and distributions which provide the Informa-
tlon needed to answer the questions of Interest.

In thils step, the actual data needed to answer the questions are ldentified and
assoclated with each of the questions. In the above example thisIs a slmple count of
people and computer tlme by the varlous subcategories. However, the Identification
of the data categorles Is not always so easy. Sometimes new metrlcs or data distri-
butlons must be defined. Other times data ltems can be deflned to answer only part
of a questlon. In this case, the answer to the questlon must be qualified and Inter-
preted 1n the context of the missing information. As the data ltems are identifled,

8

thought should be glven to how valld the data item wlil be wlth respect to accuracy
and how well It captures the specific question.

These data ltems may be objectlve or subjective. If they are subjective, some
mechanlsm must be deflned for quantifylng the evaluation, e.g. an Integer scale of 0
to 5, and ellmlnating varlations in Judgement, ¢.g. a consensus of three people.

4. Deflne a mechanlsm for collectlng the data as accurately as possible

- The data can be collected via forms, Interviews, or automatlcally by the com-
puter. If the data Is to be collected via forms, they must be carefully deflned for
ease of understandlng by the person filllng out the form and clear Interpretation by
the analyst. An Instruction sheet and glossary of terms should accompany the
forms. Care should be glven to characterizlng the accuracy of the data and defining
the allowable error bounds.

5. Perform a valldatlon of the data

The data should always be checked for accuracy. Forms should be reviewed as
they are handed In. They should be read by a data analyst and checked with the
person fllling out the form when questions arlse. Sample sets should be set to deter-
mine accuracy the data as a whole. As data Is entered Into the data base, valldity
checks should be made by the enterlng program. Redundant data should be col-
lected so checks can be made.

The valldlty of the data Is a critlcal Issue. Interpretations will be made that
wlill effect the entlre organlzation. One should not assume accuracy without
Justification.

8. Analyze the data collected to answer the questions posed

The data should be analyzed in the context of the questions and goals with
which they are assoclated. Misslng data and mlissing questions should be accounted
for In the Interpretation.

The process Is top down, l.e before we know what data to collect we must first
define the reason for the data collection process and make sure the right data Is
belng collected, and It can be Interpreted In the right context. To start with a set of
metrics 1s working bottom up and does not provide the collector with the right con-
text for analysis or Interpretation.

EXAMPLE TECHNIQUE EVALUATION

As an example conslder the goal of evaluating the effectiveness of 2 method such
as deslgn Inspections. This appears to be a clearly stated goal at first but the goal
does not say with respect to what are we to evaluate the technology. Let us help
define thls better by asking a set of questlons.

Question 1: How well were the inspections performed? Use a subjectlve ratlng O
to 5.

This questlon provides us with a basls for evaluation. We would not llke to
-evaluate the technical benefits of the method If 1t was not applied well. We may
even wish to rate how well different aspects of the technlique were applled. This

ratlng might be done by the moderator, a project person and the Instructor of the
technlque.

Questlon 2: How many errors were uncovered? Characterize the errors by
different classification categories.

This might tell us whether the technique is better at finding certaln kinds of
errors and If we have any history of other projects as a basls, 1t can tell us whether
we are dolng better or worse than the norm.

Questlon 3: How much calendar time was spent?

This question addresses the cost of applylng the technlque. For example we
mlght wish to analyze the effect on the schedule.

Questlon 4: How many staff hours were spent?

This question addresses the cost and resources spent. We can compare the
number of hours spent finding errors In this way to the varlous testing techniques
used.

Questlon 5: What percent of the errors were found?

We wlll not fully be able to answer this question unt!l the product has been In
the fleld for several years but at each mllestone, e.g. acceptance test, one year in the
fleld, etc.- We will be better able to understand the eﬁectlveness or r,he technlque. o

Question 6: What was the cost ot error lsolaclon‘? error ﬂx‘?

This question allows us to analyze the cost of 'dlscoverlng and fixing errors dur-
Ing Inspectlons as opposed to durlng testing.

ete.

There are many more questions we might ask based upon what It Is we want to
know. As stated above, these questions permit us to better define the goals, help us
to speclfy what data needs to be collected (e.g. subjectlve ratings on how well the
method was applled, error counts and distributions, effort in Inspection by person by
actlvity), and how the data should be interpreted (e.g. we may not be able to Judge
the total effectlveness untll the project has been out In the fleld for a whille).

METHODOLOGY IMPROVEMENT PARADIGM

All thls leads us to the following baslc paradigm for evaluating and Improving
the methodology used In the software development and malntenance process.

1. Characterize the approach/environment.

This step requires an understanding of the various factors that will influence the
project development. This Includes the problem factors, e.g. the type of problem,
the newness to the state of the art, the susceptlbllity to change, the people factors,
e.g. the number of people working on the project, thelr level of expertlse, experl-
ence, the product factors, e.g. the size, the dellverables, the rellabliity requirements,
portabllity requirements, reusability requirements, the resource factors, e.g. target
and development machlne systems, avallabllity, budget, deadllnes, the process and
tool factors, e.g. what technlques and tools are avallable, tralning in them,

10

programming languages, code analyzers.

2. Set up the goals, questlons, data for successful project development and
Improvement over previous project developments.

It 1s at this polnt the organization and the project manager must determlne
what the goals are for the project development. Some of these may be speclfled from
step 1. Others may be chosen based upon the needs of the organlzatlon, e.g. reusa-
bllity of the code on another project, Improvement of the quallty, lower cost.

3. Choose the approprlate methods and tools for the project.

Once 1t Is clear what Is required and avallable, methods and tools should be
chosen and reflned that will maximize the chances of satlsfylng the goals lald out for
the proJect. Tools may be chosen because they facllltate the collection of the data
necessary for evaluation, €.g. configuration management tools not only help project
control but also help with the collectlion and valldatlon of error and change data.

4. Perform the software development and malntenance, collecting the
prescribed data and valldating it.

This step Involves the collectlon of data by forms, Interviews, and automated
collectlon mechanlsms. The advantages of using forms to collect data Is that a ful}
set of data can be gathered which gives detalled Inslghts and provides for good
record keeping. The drawback to forms Is that they can be expensive and unrellable

Automated data collection Is rellable and unobtruslve and can be gathered from pro-
gram development librarles, program analyzers, etc. However, the type of data that
can be collected In this way Is typlcally not very Insightful and one level removed
from the Issue belng studied.

5. Analyze the data to evaluate the current practlces, determilne problems,
record the findings and make recommendations for improvement.

This Is the key to the mechanism. It requlres a post mortem on the project.
Project data should be analyzed to determine how well the project satlsfied Its goals,
" where the methods were eflectlve, where they were not effective, whether they should
be modified and refined for better appllcatlon, whether more training or different
tralning Is needed, whether tools or standards are needed to help In the application
of the methods, or whether the methods Or tools should be discarded and new
methods or tools applled on the next project. ’

8. Proceed to Step 1 to start the next project, armed with the kpowledge galned
from thils and the previous projects.

This procedure for developlng software has a corporate learning curve bullt in.
The knowledge Is not hidden In the intultlon of first level managers but Is stored In a

11

CASE STUDIES OF METHODOLOGY EVALUATION

WI1th all the different methods and tools avallable, we need to better quantita-~
tlvely understand and evaluate the benefits and drawbacks of each of them. There
are several different approaches to quantltatively evaluating methods and tools:
blocked subject-project, replicated project, multi-project varlaticn, and single project
case study [Baslll & Selby 84]. The approaches can be characterized by the number
of teams repllcating each project and number of different projects analyzed as shown
In Table 1.

x ' # of proJects *

* one more than *

* one *
**
* * . *

of * one * silngle project multl-project =«
teams * * varlation *
* *) *

per * more than « replicated . blocked *
project x one * - proleet. ‘ ~subje'cc-'pro.l'e~ct *
* * ' - ' *
;;**********

TABLE 1

The approaches vary In cost and the level of confldence one can have in the result of
the study. Clearly, an analysls of several replicated projects costs more money but
wlll generate stronger confildence In the conclusion. Unfortunately, since a blocked
subject-project experlment s so expenslve, the projects studled tend to be small.
The size of the projects Increase the costs go down so Is possible to study very large
single project experiments and even multl-project varlation experiments If the right
environment can be found. In what follows, at least one example of each of these
approaches will be given as performed by the Laboratory for Software Englineering
Research (LASER) at the Unlverslty of Maryland.

METHODOLOGY EVALUATION USING BLOCKED SUBJECT-
PROJECT ANALYSIS '

Thls type of analysls allows the examlinatlon of several factors within the frame-
work of one study. Each of the technologles to be studled can be applled to a set of
projects by several subjects and each subject applles each of the technologles under
study. It permits the experimenter to control for differences ln the subject popula-~
tlon as well as study the effect of the particular projects.

The sample study dlscussed here Is a testing strategles comparison [Baslll &
Selby 85]. The goal was to compare the effects of code readlng, functlonal and struc-
tural testing with respect to 1) fault detection eflectlveness, 2) fault detectlon cost,

12

and 3) classes of faults detected. A secondary goal was to compare the performance
of software type and expertlse level but only the first goal will be discussed here.

The experlmental approach involved three repllcations of the experiment using
74 subjects on four different projects. The projects were a text formatter, a plotter,
an abstract data type, and a .database program varylng In length between 145 and
365 llnes of code. The programs each contalned software faults (9, 6, 7, 12 respec-
tlvely) that were elther made durlng the actual development of the program or were
seeded based upon characteristic faults found In the local environment. The experi-
mental deslgn was a fractlonal factorial deslgn blocked according to experlence level
and the program tested. Each subject used each technique and tested each program.

Two of the questions generated from thls study were:

Questlon 1: Which of the validation technlques detects the greatest number of
faults In the programs? :

The data collected for thls question Is the number of fauits found in each pro-
Ject by each subject. The results of the study were that 4 faults were found on the
average and that code reading was more effective than both testing technlques but
functlonal testing was more effective than structural testlng. Reading found 5.1
faults on the average, functlonal testing found 4.5 faults on the average and struc-
tural testing found 3.3 faults on the average.

Questlon 2: Which of the technlques has the highest fault detectl_on rate
(number of faults detected per hour)? :

The data collected to answer this question was the number of faults found and
the time spent by the subjJect In detecting faults. The results were that code reading
Wwas more cost effectlve than functional and structural testing. Code reading found
3.3 faults per hour on the average whlle each of the testing technlques found 1.8
faults on the average.

Because of the experimental design of this type of analysils there were many
other questions that were posed and answered by this experiment, e.g. Is the fault
detectlon rate dependent on the type of software? Is the number of faults observed
dependent on the type of software? Do the methods tend to capture different classes
of faults? What classes of faults are observable but go unreported?

The experimental deslgn for this study permits a great amount of statlstical
analysls and provide the experimenter with a falr amount of latitude In studying the
different aspects of the project. The drawbacks to the study are that the projects
studled are small module size projects and the results do not necessarily scale up to
the acceptance test phase of very large prolects. The Interpretation Is more accurate
for the unit test phase. The study does not provide sufficient Insight Into how the
technlques might work on larger projects. . This drawback 1s of necessity because the
cost of repllicatlon Is t0o expensive.

METHODOLOGY EVALUATION USING REPLICATED PROJECT
ANALYSIS

13

The replicated project analysls Involves several repllcatlons of the same project
by different subjects. Each of the technologles to be studled Is applled to the project
by several subjects but each subject applles only one of the technologles. It permits
the experimenter to establish control groups.

The goal of the sample study was to quantlitatively evaluate the effect of a dls-
clplined approach to software development [Baslll & Relter 81]. The disclplined
approach Included the use of an Integrated set of technlques that Included top down
design, a process deslgn language, walh-throughs, chlef programmer teams, and the
use of a llbrarian.

The experimental approach Involved the replication of the same project by 19
teams, Including 7 three person disclplined teams (DT), 6 three-person ad hoc teams
(AT), and 8 ad hoc Individuals (AI). The project was to bulld a compller for a small
language, anticipating about 1200 source lines of code In a high level language. All
the data was collected automatlcally so that the subjects did not know what was
belng measured. The drawback to this Is that the Information was typlcally one
level removed from what we really wanted to know. The statistlcal analysls per-
formed were the non-parametric Mann-Whitney U and Kruskal-Wallls H tests.

Speclific questions Included:

Question 1 Does a dlscipllned approach reduce the average cost and complexity
of the process?

The data collected was a count of the (1) number of Job steps, l.e. any aspect. of
computer access such as module compllations and program executlons, and (2) pro-
gram changes, l.e. the number of changes to a program that Indlcated an error or
omlsslon. Job steps were used to represent effort and program changes were used to
represent errors.

The results of the study showed that for all categories of Job steps and program
changes, the dlsciplined teams had statistically less of both than elther the ad hoc
teams or the ad hoc Indlviduals.

Question 2: Does a disclplined team behave more llke an Individual programmer
than a team In terms of the resulting product? This was an attempt to measure con-
ceptual Integrity.

The data collected here was varlous product measures such as size (number of
segments, number of lines of code, number of declslons) and complexity, e.g. a com-
parison of cyclomatlc complexity [McCabe] for the top quartlles of modules.

The results of thls study showed that the ad hoc Individuals had a smaller
number of segments than elther the disclpllned teams or the ad hoc teams. The ad
hoc Individuals had less lines of code than the disciplined teams which had less lines
of code than the ad hoc teams, and the ad hoc Indlviduals and diselpllned teams had
less declslon than the ad hoc teams. Comparing the cyclomatic complexity of the
modules In the upper quartlles, the results were that the dlsclplined teams created
the least complex projects and the ad hoc Indlviduals the most complex project With
the ad hoc teams lying In between, depending upon the mechanlsm for counting
declslons.

14

Thus 1t was felt that the questions were both answerable In the affirmative.
The beneflt of the study Is that the results were soundly supported statistically
because of the number of replicatlons and the projects were of a more reasonable size
than the modules studled In the testing experiment. The drawback to this study
agaln Is that the projects were still smaller than many projects one might encounter
and 1t Is not clear that the results would stlll hold if the project slzes were increased
by an order of magnlitude.

METHODOLOGY EVALUATION USING MULTI-PROJ ECT VARIA-
TION ANALYSIS

Multl-project variation analysls Involves the measurement of several projects
where controlled factors such as methodology can be varled across simllar projects.
Thls Is not a controlled experiment as the previous two approaches were, but allows
the experlmenter to study the effect of varlous methods and tools to the extent that
the organlzatlon allows them to vary on different projects.

The goal of this sample study was to examine the relatlonshlp between metho-
dology and varlous factors such as productlvity and quallty. [Balley & Baslll 1981],
(Baslll & Balley 1980], [Basll1 1981]. The study was conducted In the Software
Englneering Laboratory, at Jolnt project between NASA Goddard Space Flight
Center, the Unlversity of Maryland, and Computer Sclences Corporation.

The approach was to study a serles of projects that Involve ground support
software for satellltes. Each project was rated with respect to a large set of factors,
covering environment, methodology, éXperlence, performance, etc. When the metrics
were sublective they were given on a six polnt scale, e.g. rating on the basis of the
use of a methodology.

The methodology factors used In the study were very similar to the methodol-
ogy factors used In the replicated projJect study dlscussed above. Thls allowed us to
see If the methods could work on larger projects than in the controlled study. This
has been a common mechanlsm in the Laboratory for Software Englneering
Research. We run both controlled experiments on small projJects and case studles or
multl-project analysls on large projects to verlfy the eflects of the technologles. The
combination of both approaches provides us with a deeper confidence that the tech-
nologles are effectlve as well as allowing us to understand thelr effects in different
environments.

The three major questions asked In this study were:

Questlon 1: Did the projects with a high methodology use come from a different
populatlon than those projects with a low or medlum methodology use?

Question 2: Do any other factors or sets of factors show a signlficant effect on
productivity?

Data used to answer these questlons were lines of source code per staffl month
for productlvity and such factors as customer Interface complexity; customer orl-
glnated program deslign changes; the complexity of such things as the appllcation,
the program flow, the Internal communlicatlon, the external communlcation, the data

15

base; constralnts such as I/O capabllity, timing, maln storage; programming group
experlence such as machine famlllarity, language famlliarity, appllcatlon experlence;
hardware changes durlng development.

The approach to answerlng these first two questlons was based upon a simliar
tvpe of study at IBM/FSD [Brooks 1081]. A statlstical test was performed to see If
projects with high methodology came from a different environment with respect to
productlvity than projects with a low methodology use. The data used was based
upon a relatlve ranking rather than an absolute ratlng. The approach was to divide
the ratlngs for each technlque Into 3 categorles: low (-1), medlum (0), high (1). This .
was done to offset differences In scales. The ratings were added to get a cumulative
methodology rating. The projects were then divided Into groups based upon thelr
rating and analyzed uslng the Mann-Whitney U test.

In analyzing the relatlonship between productlvity and varlous factors, no
signlficant relatlonshlp was found between productlvity and slze. However there
were statlstlcally significant results in demonstrating that those projects with high
methodology use came from a different (and much higher) productlvity population
than those projects with low or even medium methodology use. So the answer to the
first questlon was yes. The answer to this question was no. o

Questlon 3: What are the factors that predict quality? R

The metrics were compressed Into three factors: quallty, methodology and com-
plexity. Methodology and complexlity were not significantly correlated. Quallty was
significantly correlated with methodology (r == .67) and complexity (r = -.84) at less
than quallty, we got an R**2 of .45. Using the methodology and complexity metrics
to predlct quallty we got an R*x2 of .65. Based upon this study, It was clear that
quallty can be predicted from the use of methodology.

The benefit to this approach Is that It does not requlre special experimental pro-
Jects but allows for the evaluation of methodology In the normal development
environment. The Improvement algorithm discussed eariler can be applled to the
environment In order to Improve both the productlvity and the quality of the
software.

However, there are several drawbacks to the approach. First, It requires that
there Is enough differences in the projects use of methodology and there are enough
projects using each of the methods, l.e. there must be enough of a sampling to gen-
erate a statistlcal result. Second, since the experiment Is not controlled, there Is
always the possibllity of making mistakes In the Interpretatlon, l.e. other factors that
have not been controlled for may be causing the differences In productivity or qual-
Ity. Thlrd, If the methodology Improvement paradigm Is belng used, we are losing
our control group of projects where little or no methodology 1s belng used.

METHODOLOGY EVALUATION USING SINGLE PROJECT /CASE
STUDY ANALYSIS

Unfortunately, this Is where most methodology evaluation beglins. There Is a
project and the management has declded to make use of some new method or set of
methods and wants to know whether or not the method generates any improvement

16

In the productivity or quallty. A great deal depends upon the Indlvidual factors
Involved in the project and the methods applled.

This sample study had a set of goals that dealt with the effectiveness of certaln
development technlques; Information hidlng, abstract Interfaces, and formal
speclfications, as well as the effectlveness of the data collectlon process [Baslll &
Welss 1681]. The project Involved was the redevelopment of the on-board opera-
tlonal flight program for the A-7 alrcraft. The development was done at the Naval
Research Laboratorles In Washington D.C. The analysls reported here was done
after the requirements document was baselined with the subgoal of trylng to Judge
the effectlveness of the requirements document which was developed using a formal
speclficatlon technlque, a state machine model and abstract Interfaces.

One of the subgoals was that the requirements document should be easy to
change. Based upon that goal the following questions were generated.

Questlon 1: Is the document easy to change?

Questlon 2: Is 1t clear where a change has to be made?

Question 3: Are the changes that are likely to occur, predicted correctly?
Questlon 4: Are changes confined to a single sectlon?

, The data collected to answer these questlons consisted of varlous distributions
of data such as the types of changes, effort to change, confilnement of changes and
changes by sectlon. Glven the data distributlons:

"Types of Changes: ,

85% were orlglnal error corrections

6% were to complete or correct a previous change

2% were to reorganize

7% were other changes (none of which were more than 1%)

Effort to Change: ’
88% were trivial (less than 1 hour)

26% were easy (1 hour to 1 day)

5% were medlum (1 day to 1 week)

0% were hard (1 week to 1 month)

1% were formldable (more than 1 month)

Conflnement of Changes:
85% were to one section
15% were to more than one section

The following concluslons were drawn:

The document was not very hard to change slnce most of the changes were
trivial or easy. The only formldable change Involved the change of a coordinate sys-
tem that the developers dld not know and the tlme for the change Included the
learnlng of that coordinate system. It should be noted that that change was
confined to one sectlon.

Since most of the changes were confined to a single sectlon of the report one
might argue that the document was organlzed In 2 way that the llkely changes were

17

predlcted correctly, that it was clear where a change had to be made, and that the
changes were conflned to a single sectlon.

So the conclusion was drawn that the document was easy to change. However,
that conclusion Is based on comparing the data with experlence and Intultion. Most
experienced people who have seen the data agree that the requirements document
Wwas a successful development but there Is no statistical evidence and there Is no solid
basls for comparison. If simllar data had been collected from other simllar projects,
and we were able to do a comparison, as we did with the multl-project analysls, our
confldence level In the results might have been higher.

SUMMARY AND CONCLUSION

This paper has presented a set of quantitative approaches to evaluating
software development methods and tools. The baslc 1dea Is to generate a set of goals
which are reflned Into quantifiable questions which speclfy metrics to be collected on
the software development and malntenance process and product. These metrics can
be used to characterlze, evaluate, predict and motivate. They can be used !n an
actlve as well as passive way by learnlng from analyzing the data and !mproving the
methods and tools based upon what s learned from that analysls. Several examples
were glven representing each of the different approaches to evaluation. The cost of
the approaches varied Inversely with the level of confidence 1n the Interpretation of
the results. : "

It 1s hoped that this paper has demonstrated that there are quantitatlve
mechanlsms for evaluating methodologies. These mechanlsms can be used ln indus-
try and In the research laboratorles to provide better Insights Into the beneflts and
weaknesses of technology.

ACKNOWLEDGEMENT

Thls research was supported In part by the Natlonal Aeronautlces and Space
Admlnlstratlon Grant NSG-5123 and by the Alr Force Office of Sclentific Research
under Contract AFOSR-F49620-80-C-001 to the Unlversity of Maryland.

REFERENCES

[Balley & Baslll 1981]
John W. Balley and Victor R. Baslll, A Meta-Model for Software Development
Resource Expendltures, Proceedings of the Fifth International Conference on
Software Engineering, San Dlego, Californta, pp 107-116, 1981.

(Baslll 1981] .
Victor R. Baslll, Evaluating Software Development Characteristics: Assessment
of Software Measures In the Software Englneering Laboratory, Proceedlings of
the Slxth Annual Software Englneerlng Workshop, December 1981.

[Basilt & Balley 1980]
Victor R. Basill and John W. Balley, The Software Engineering Laboratory:
Measuring the Effects of Software Methodologles within the Software Englneer-
Ing Laboratory, Proceedings of the Fifth Annual Software Englneering

18

Workshop, November 1980.

[Baslll & Relter 1981
Vlctor R. Baslll and Robert W. Reiter, Jr., A Controlled Experiment Quantlta-
tlvely Comparing Software Development Approaches, IEEE Transactlons on
Software Englneering, Vol. SE-7, No. 3, pp 299-320, May 1981.

(Baslll & Selby 1984]
Victor R. Basill and Richard W. Selby, Jr., Data Collectlon and Analysls In
Software Research and Management, Proceedings of the American Statistlcal
Assoclatlon, pp 21-30, 1984.

[Baslll & Selby 1985]
Victor R. Baslll and Rlchard W. Selby, Jr., Comparing the Effectiveness of
Software Testing Strategles, Unlversity of Maryland Technical Report TR-1501,
May 1985.

[Basllt & Turner 1975]
Victor R. Baslil and Albert J. Turner, Iterative Enhancement: A Practlcal Tech-
nlque for Software Development, IEEE Transactlons on Software Englneering,
Pp 390-396, December, 1975.

[Basill & Welss 1981]
Victor R. Basill and David M. Welss, Evaluation of a Software Requirements
Document by Analysis of Change Data, Proceedings of the Fifth International
Conference on Software Englneering, San Dlego Callfornla, pp 314-323, March
9-12, 19881.

[Baslil & Welss 1984]
Victor R. Bas!ll and David M. Welss, A Methodology for Collecting Valld
Software Englneering Data, IEEE Transactlons on Software Englneering, Vol.
SE-10, No. 3, pp 728-738, November 1984,

[Brooks 1981]
W. Douglas Brooks, Software Technology Payoff: Some Statistlcal Evidence,
Journal of Systems and Software, Volume 2, Number 1, pp 3-10, February 1981.

" [McCabe 1976]
Thomas J. MceCabe, A Complexity Measure, IEEE Transactions on Software
Engineering, pp 308-320, December 19786.

[Thayer & Pyster 1980]
Richard H. Thayer, Arthur Pyster, and Roger C. Wood, The Challenge of
Software Englneering Project Management, IEEE Computer Magazine, pp 51-
59, August 1980,

19

