Technical Report TR-1563 October 1985

ARROWSMITH-P
- A Prototype Expert System for
Software Engineering Management *

Victor R. Basill and Connie Loggla Ramsey

Department of Computer Sclence
Unlversity of Maryland at College Park

Abstract

Although the field of software engineering is relatively new, it can
benefit from the use of expert systems. Two prototype expert sys-
tems have been developed to aid in software engineering manage-
ment. Given the values for certain metrics, these systems will pro-
vide interpretations which explain any abnormal patterns of these
values during the development of a software project. The two
systems, which solve the same problem, were built using different
methods, rule-based deduction and frame-based abduction, so a
comparison could be done to see which method better suits the
needs of this field. It was found that both systems performed
moderately well, but the rule-based deduction system using simple
rules provided more complete solutions than did the frame-based
abduction system.

* Research supported in part by the National Aeronautics and Space Administration Grant NSG-5123 to the

University of Maryland. Computer support provided in part by the Computer Science Center of the University of Mary-
land. ’

1. INTRODUCTION

The importance of expert systems is growing in industrial, medical, scientific, and
other flelds. Several major reasons for this are: (1) the necessity of handling an
overwhelming amount of knowledge in these areas, (2) the potential of expert systems to
train new experts, (3) the potential to learn more about a field while organizing
knowledge for the development of expert systems, (4) cost reductions sometimes pro-
vided by expert systems, and (5) the desire to capture corporate knowledge so it is not
lost as personnel changes.

Although the field of software engineering is still relatively new, it can benefit from
the use of expert systems. As pointed out above, some of the major advantages to
expert systems are derived from the ability to learn from them. This learning experience
can take place on at least two different levels. The development of an expert system for
software engineering provides a learning experience by pointing out how much we do not
know yet, but also by forcing the knowledge engineer to develop and organize relation-
ships between various pieces of knowledge, such as metrics and their interpretations.

On another level, the expert systems in this field can be [used to train and help peo-
ple, including software managers. They can contain general software engineering
knowledge as well as a history of information from a particular software development
environment, and this can be very helpful to inexperienced managers and developers.

This paper will focus on two prototype expert systems, collectively named
ARROWSMITH-P.* This represents a first attempt at organizing some of the knowledge
and defining some of the problems associated with the process of creating expert systems
for software engineering. ARROWSMITH-P is intended to aid the manager of a
software development project in an automated manner. The |systems work as follows.
First, it is determined whether or not a software project is following normal development
patterns by comparing measures such as programmer hours per line of source code
against historical, environment-specific baselines of such measures. Then, the “manifes-
tations” detected by this comparison, such as an abnormally high rate of programmer
hours per line of source code, serve as input to each expert system, and each system
attempts to determine the reasons, such as low productivity, for any abnormal software
development patterns. These systems can be updated as the environment changes and
as more is learned in the field of software engineering.

The rest of this paper is organized as follows. Section 2|provides a brief overview
of the underlying methodology used to build the expert systems discussed in this paper.
Section 3 details the implementations of ARROWSMITH-P, and Section 4 discusses the
issues and problems associated with this process. Section 5 furnishes the details for the
evaluation of the two expert systems. Section 6 then discusses results and conclusions
from the development and testing of the expert systems. Finally, Section 7 discusses
current and future research needs.

* Martin Arrowsmith, created by Sinclair Lewis in the novel Arrowsmith, was in
constant search of truth in scientific fields. The “P” stands for Prototype.

2. BACKGROUND

In general, an expert system consists of two basic components, a domain-specific
knowledge base and a domain-independent inference mechanism. The knowledge base
consists of data structures which represent general problem-solving information for some
application area. The inference mechanism uses the information in the knowledge base
along with problem-specific input data to generate useful information about a specific
case.

The set of expert systems in ARROWSMITH-P was constructed using KMS [1], an
experimental domain-independent expert system generator which can be used to build
rule-based, frame-based and Bayesian systems. The ARROWSMITH-P systems were
built using two different methods: rule-based deduction and frame-based abduction.
These two methods are briefly described below.

2.1. Rule-Based Deduction

A common method for expert systems, and essentially the “standard” in AI today,
is rule-based deduction. In this approach, domain-specific problem-solving knowledge is
represented in rules which are basically of the form:

“IF <antecedents> THEN < consequents>"’,

although the exact syntax used may be quite different (e.g., PROLOG). If the
antecedents of such a rule are determined to be true, then it logically follows that the
consequents are also true. Note that these rules are not branching points in a program,
but are non-procedural statements of fact.

The inference mechanism consists of a rule interpreter which, when given a specific
set of problem features, determines applicable rules and applies them in some specified
order to reach conclusions about the case at hand. Rule-based deduction can be per-
formed in a variety of ways, and rules can be chained together to make multiple-step
deductions. (For a fuller description, see [2].) In addition, in many systems one can
attach “certainty factors” to rules to capture probabilistic information, and a variety of
mechanisms can be used to propagate certainty measures during problem solving.
MYCIN [3] and PROSPECTOR [4] are two well-known examples of expert systems
which incorporate rule-based deduction.

2.2. Frame-Based Abduction

Another important method for implementing expert systems is frame-based abduc-
tion. Here, the domain-specific problem-solving knowledge is represented in descriptive
“frames” of information [5], and inference is typically based on hypothesize-and-test
cycles which model human reasoning as follows. Given one or more initial problem
features, the expert system generates a set of potential hypotheses or ‘“‘causes” which can
explain the problem features. These hypotheses are then tested by (1) the use of various
procedures which measure their ability to account for the known features, and (2) the
generation of new questions which will help to discriminate among the most likely
hypotheses. This cycle is then repeated with the additional information acquired. This
type of reasoning is used in diagnostic problem solving (see [6] for a review). INTER-
NIST (7], KMS.HT [1], (8], PIP [9], and IDT [10] are typical systems using frame-based
abduction.

In order to simulate hypothesize-and-test reasoning, S employs a generalized set
covering model in which there is a universe of all possible manifestations (symptoms)
and a universe which contains all possible causes (disorders). | For each possible cause,
there is a set of manifestations which that cause can explain.| Likewise, for each possible
manifestation, there is a set of causes which could explain the manifestation. Given a
diagnostic problem with a specific set of manifestations which are present, the inference
mechanism finds all sets of causes with minimum cardinalisy** which could explain
" (cover) all of the manifestations. For a more detailed explanation of the theory underly-
ing this approach and the problem-solving algorithms, see (8], {11], [12], [13].

3. IMPLEMENTATIONS

In this section, we will first present the methodology developed for building expert
systems for software engineering. Then we will discuss the actual implementation of
ARROWSMITH-P.

3.1. Methodology

The following methodology for constructing expert systems for software engineering
management was developed. (An earlier version of this reasoning was presented in [14].)
Given a homogeneous environment, it is possible to produce historical, environment-
specific baselines of normalized metrics from: the data of past software projects. Normal-
ized metrics are derived by comparing variables such as programmer hours and lines of
code against each other. This is done so that influences such|as the size of the individual
project are factored out. The baseline for each metric is defined as the average value of
that metric for the past projects at various discrete time intervals (such as start of cod-
ing and start of acceptance testing). Only those metrics which exhibit baselines with
reasonable standard deviations should be used; too little variety in the values of the
measures proves uninteresting, while too much variety is not very meaningful. In addi-
tion, one ideally wants a relatively small number of meaningful metrics whose values are
easily obtainable.

Next, interpretations, such as unstable specifications or good testing, are deter-
mined which explain any significant deviation (more than one standard deviation less
than or greater than the average) of a particular metric from |the historical baseline.

The deviation of some metric can be thought of as a manifestation or symptom which
can be “diagnosed’ as certain interpretations or causes. Furthermore, these interpreta~
tions should be made time-line specific because, for example, an interpretation during
early coding might not be valid during acceptance testing. In addition, measures to indi-
cate how certain one is that the deviation of a particular metric has resulted from a par-
ticular interpretation can be included.

The approach, described above, can be classified as a bottom-up approach because
it seems to go in the opposite direction of cause-and-effect. First the symptoms (deviant
metric values) that something is abnormal are explored, and then the underlying

** Ockham’s razor, which states that the simplest explanation is usually the correct
one, together with the assumption of independence among causes motivate 'the require-
ment of minimum cardinality.

interpretations or diagnoses of the abnormalities are developed. This approach is reason-
able in a homogeneous environment because the metrics are homogeneous, and devia-
tions are indicative that something is wrong. However, this approach contrasts with the
development of expert systems in other flelds, such as medicine, which typically use a
top-down approach. A top-down approach would first define the various disorders or
causes and then associate the correct manifestations or effects with each disorder.

The input to the expert systems consists of those metrics from a current project
which deviate from a historical baseline of the same metrics at the same time of develop-
ment for similar projects. The knowledge bases consist of information about various
potential causes, such as poor testing or unstable specifications, for any abnormally high
or low measures, and the expert system provides explanations for any abnormal software
development patterns.

3.2. Actual Implementations

ARROWSMITH-P is based on previous research conducted on the NASA/Goddard
Space Flight Center Software Engineering Laboratory (SEL) environment [14]. Since the
SEL environment is homogeneous, it was possible to use the bottom-up methodology
described above to produce historical, environment-specific baselines of normalized
metrics from the highly reliable data of nine software projects. (See [15], [186], [17], [18],
[19] for fuller descriptions of the SEL environment.) Altogether, nine metrics (shown in
Table 1) proved satisfactory, exhibiting baselines with reasonable standard deviations.
The time-line for the baselines was divided (after a slight modification) into the following
five discrete intervals: early code, middle code, late code, systems test, and acceptance
test.

The interpretations for abnormal values of metrics were mostly derived from Frank
McGarry of NASA/GSFC and Jerry Page of CSC, experts who have had a great deal of
experience in this fleld and particularly in the SEL environment. The set of interpreta-
tions was later modified and made time-line specific for use in| the development of
ARROWSMITH-P. (The complete list of interpretations used in the expert systems is
displayed in Table 2.) In addition, measures to indicate how certain one is that the devi-
ation of a particular metric has resulted from a particular interpretation were included.

As stated previously, two different methods were used to build the two expert sys- ~
tems for this application in order to determine which method better suits the needs of
this field. The two methods used were rule-based deduction and frame-based abduction,
which were described in Section 2. In the rule-based system, the rules are of the form

TABLE 1 - METRICS USED IN EXPERT SYSTEM

- Computer Runs per Line of Source Code

- Computer Time per Line of Source Code

- Software Changes per Line of Source Code
- Programmer Hours per Line of Source Code
- Computer Time per Computer Run

- Software Changes per Computer Run

- Programmer Hours per Computer Run

- Computer Time per Software Change

- Programmer Hours per Software Change

* Unstable Specifications

Late Design

New or Late Development

* Low Productivity

* High Productivity

+ High Complexity or Tough Problem

* Low Complexity

* Simple System

Removal of Code by Testing or Transporting
Influx of Transported Code

Little Executable Code Being Developed

* Error Prone Code

* Good Solid and Reliable Code

Near Build or Milestone Date

* Lots of Testing

* Little or Not Enough Online Testing Being Done
* Good Testing or Good Test Plan

Unit Testing Being Done

* Lack of Thorough Testing

* Poor Testing Program

System and Integration Testing Started Early
Change Backlog or Holding Changes

Change Backlog or Holding Code

Changes Hard to Isolate

* Changes Hard to Make

Easy Errors or Changes Being Found or Fixed
Modifications Being Made to Recently Transported Codi

* Computer Problems or Inaccessibility or Environmen
* Lots of Terminal Jockeys

TABLE 2 - INTERPRETATIONS USED IN EXPERT SYSTEM

* High Complexity or Compute Bound Algorithms Run|or Tested

* Large Portion of Reused Code or Early and Larger Tests

* Loose Configuration Management or Unstructured Development
* Tight Management Plan or Good Configuration Control

I Constraints

Note - * indicates that this interpretation was used in the evaluatio
of the expert systems

“IF manifestations THEN interpretations,’”* while in the frame-based system, there is one
frame (containing a list of manifestations) for each interpretation. The two systems

were intentionally built to be as consistent with one another

possible. The causes and

manifestations used were identical in both cases, as were the relationships between them.
However, the certainty factors attached to the rules could not be directly translated to
measures of likelihood in the frames so these measures of likelihood were omitted. For

example, we were relatively certain that an abnormally high v
software change is caused by good, reliable code so this was g

alue of computer time per
ven a certainty factor of

0.75. However, if that particular metric appears abnormally high very infrequently and
that particular interpretation is common, then we would not be able to state that good,
reliable code generally results in an abnormally high value of computer time per software

change. (For a discussion of similar problems see [20].) Figure
of each knowledge base. Example sessions with the expert sys
Appendix 1.

1 shows a sample section
tems are provided in

ATTRIBUTES:

/#* INPUT ATTRIBUTES */

COMPUTER RUNS PER LINE OF SOURCE CODE (SGL):
ABOVE NORMAL,
NORMAL,
BELOW NORMAL.

/* INFERRED ATTRIBUTE */
INTERPRETATION (MLT):

UNSTABLE SPECIFICATIONS

LOW PRODUCTIVITY

HIGH PRODUCTIVITY

GOOD TESTING OR GOOD TEST PLAN

RULES:

CRLC1 IF COMPUTER RUNS PER LINE OF CODE = ABOVE NORMAL,
& TIME = EARLY CODING
THEN INTERPRETATION == LOW PRODUCTIVITY <0.26>,
& INTERPRETATION = ERROR PRONE CODE <0.75>.

SCLC3 IF SOFTWARE CHANGES PER LINE OF CODE = ABOVE NORMAL,
& TIME = LATE CODING :
THEN INTERPRETATION = GOOD TESTING OR GOOD TEST PLAN <0.25>,
& INTERPRETATION = ERROR PRONE CODE <0.75>.

Figure 1a - Small Section of Rule-Based Deduction Expert System.

ATTRIBUTES:

/* INPUT ATTRIBUTES #/

COMPUTER RUNS PER LINE OF SOURCE CODE (SGL):
ABOVE NORMAL,
* NORMAL,
BELOW NORMAL.

/* INFERRED ATTRIBUTE - FRAMES »/
INTERPRETATION (MLT):
LOW PRODUCTIVITY
[DESCRIPTION:
COMPUTER RUNS PER LINE OF CODE == ABOVE NORMAL;
COMPUTER TIME PER LINE OF CODE = ABOVE NORMAL;
PROGRAMMER HOURS PER LINE OF CODE = ABOVE NORMAL |,
GOOD TESTING OR GOOD TEST PLAN
[DESCRIPTION:
SOFTWARE CHANGES PER LINE OF CODE = ABOVE NORMAL;
SOFTWARE CHANGES PER COMPUTER RUN = ABOVE NORMAL;
COMPUTER TIME PER SOFTWARE CHANGE = BELOW NORMAL; -
PROGRAMMER HOURS PER SOFTWARE CHANGE = BELOW NORMAL |,

Figure 1b - Small Section of Frame-Based Abduction Expert System

4. RESEARCH ISSUES AND PROBLEMS

The fleld of expert systems is relatively new, and therefore, the development pro-
cess of expert systems still faces many problems. The selection of which method to use
for building them is not generally clear, although an attempt has been made to provide
guidelines for the selection of an appropriate method in [20]. |[Furthermore, most expert
systems are shallow in nature and cannot handle temporal or|spatial information well.

In addition to general problems, negative effects are compounded when the
knowledge to be included in such systems is incomplete. The science of software
engineering is not well-defined yet, and therefore many details about the relationships
between various components is often unclear. As a result, the knowledge base of any
expert system developed in this field is particularly exploratory and prototypical in
nature. This is in contrast to expert systems developed in established fields such as
medicine where the information contained in the knowledge hase is based on many years
of experience.

Due to the uncertainty of the data in the knowledge base for a field such as
software engineering, one must deal with the issues of completeness versus correctness
and completeness versus minimality. When dealing with a diagnostic problem, the more
certain one is of relationships between causes and manifestations, the more exact the
answer can be, ultimately leading to the one correct answer. However, when dealing
with very uncertain relationships, it is preferable to list many outcomes so as to avoid
missing the correct explanation, and to let the experienced person using the expert sys-
tem decide what the correct explanation really is. Therefore, [rules with simple
antecedents were used in the rule-based deduction system (see Figure 1a) because the
more involved patterns needed for complex antecedents are not yet known. If one tried
to “guess” what these patterns are without actually being certain, this would lead to
incomplete solutions which miss some of the correct interpretations. For example, a high
value for computer runs per line of code, a high value for computer time per line of code,
and a high value for programmer hours per line of code are all indications of low produc-
tivity. So, we might construct the following rule for this pattern:

IF Computer Runs per Line of Code is above normal, and Computer Time per Line
of Code is above normal, and Programmer Hours per Line of Code is above normal
THEN the interpretation is Low Productivity.

However, what if it turns out that computer time per line of code is almost never above
normal? Then this rule will almost never succeed, and we will miss the interpretation of
low productivity even if it happens to be true.

This issue also leads to concern in the frame-based abduction system which pro-
vides all answers of minimum cardinality. The inference mechanism works very well for
most diagnostic problem solving, but one must be cautiously aware of the fact that not
all possible explanations are provided by this expert system. [For example, if an abnor-
mally high value of computer runs per line of code and an abnormally low value of pro-
grammer hours per software change can be explained by the combination of two
interpretations, low productivity and good testing, and also by a single interpretation,
error prone code alone, then only the single interpretation will be provided by this sys-
tem. This is because the single interpretation has a lower cardinality than the two
interpretations together.

One final, but very important, fact should be noted here. ARROWSMITH-P was
built using the data from one particular homogeneous environment. Therefore, the

information in the knowledge base reflects this one environment and would not be tran-
sportable to other environments. However, the ideas and methods used to build
ARROWSMITH-P are transportable, and that is what is important.

5. EVALUATION OF EXPERT SYSTEMS

A preliminary evaluation of ARROWSMITH-P has been done. The method used to
do the evaluation was simply to compare the interpretations provided by the expert sys-
tems against what actually happened during the development of the projects, thereby
obtaining a measure of agreement. The actual results were gathered from information in
the database, mostly from subjective evaluation forms and project statistics forms. The
subjective evaluation form contains mostly subjective information (such as a rating of
the programming team’s performance) and some objective numbers (such as total
number of errors) concerning the project’s overall development. Altogether, 20 out of
the 33 possible interpretations could be checked against measures from these forms.
(These are starred in Table 2.)

Since the vast majority of the ratings in the subjective evaluation form is not
divided by phase of the project, there probably exist some discrepancies between the
results indicated in the forms and the actual interpretations for a particular phase.
However, these are the closest data that are available, so we must assume that most of
the interpretations for each phase are similar to the interpretations for the entire pro-
ject. In addition, some of the interpretations derived from analyzing the data in the
database were very evident, while others were somewhat uncertain. Therefore, these two
classes were partitioned in the analysis of agreement between the expert systems and the
information in the database.

The interpretations for the acceptance test phase were evaluated for all nine pro-
jects, and this analysis was performed for both expert systems. The results are
displayed in Table 3. The entries in the agreement column are the number of interpre-
tations which were indicated by both the expert system and the information in the data-
base. The first number depicts those interpretations which were explicit in the database,
while the second number represents those which were marginally indicated. The entries
in the disagreement column are those interpretations indicated by the database, but not
listed by the expert system. Again, the first number represents those which are certain
and the second number is those which are marginal. Finally, the column labeled
“Extra’” specifies the number of extra interpretations (out of the 20 possible from the
information in the database) listed by the expert system. This number is not that mean-
ingful in determining the performance of the rule-based system at this time because, as
discussed previously, the rule-based system was built to provide as complete a list of
interpretations as possible. The manager would then have to|decide which interpreta-
tions are meaningful and disregard the others. However, in general, it is better to have
as few extra interpretations as possible.

The expert systems performed moderately well given that (1) so much of the
knowledge and relationships are unclear in this field, (2) the expert systems used only
five variables and only nine metrics derived from these variables to achieve the list of
interpretations, (3) many of the interpretations in the database are subjective in nature
and therefore may not always be correct, and (4) there may be discrepancies between the
interpretations of the particular phase and the overall interpretations for the project.

Table 3 - Agreement between Expert System and Information in Database

Rule-Based Deduction System Frame-Based Abduction System
Project Agreement Disagreement Extra | Agreement Disagreement Extra
1 1-0 3-3 2 1-0 3-3 2
2 0-3 3-1] 0-2 3-2 3
3 0-0 0-2 5 0-0 0-2 5
4 2-0 4-3 2 2-0 4-3 2
5 3-0 3-0 5 3-0 3-0 5
6 1-1 0-2 2 1-1 0-2 2
7 5-2 0-0 5 1-0 4-2 0
8 1-0 4-3 1 1-0 4-3 1
9 2-2 1-1 5 2-2 1-1 5
Total 15-8 18- 15 36 11 -5 22 - 18 25

The rule-based system performed better, agreeing with 45% (15/33) of the very evident
interpretations from the database and 35% (8/23) of the more uncertain interpretations.
The frame-based system agreed with 33% (11/33) of the clearcut database conclusions
and 22% (5/23) of the more uncertain interpretations. Of course, the agreement with
the more evident database interpretations is much more important than agreement with
the uncertain conclusions. It is interesting to observe that both expert systems provided
the exact same interpretations (with respect to the 20 interpretations discussed here) in
seven out of nine projects. The only differences occurred in projects 2 and 7, where the
frame-based system resulted in very few interpretations (adding the number of interpre-
tations in agreement with the database to the number of extra interpretations, there
were 5 for project 2 and 1 for project 7) which covered all of the manifestations. The
rule-based system performed much better on these two projects, agreeing with 439 (3/7)
of the combined clearcut and marginal database interpretations for project 2 and 100%
(7/7) of the interpretations for project 7. The frame-based system agreed with only 20%
(2/7) of the database conclusions for project 2 and 14% (1/7) of the database conclu-
sions for project 7. Also, these differences resulted in 31% (11/36) fewer extra interpre-
tations for the frame-based system, but again, it is better to have extra interpretations
than to miss correct interpretations. It should be noted that evaluation and testing of
these expert systems will continue, and any information learned about incorrect relation-
ships, etc. will be incorporated into the systems to make them stronger.

6. DISCUSSION

The goal of this study was to build useful expert systems for software engineering;
a major subgoal was to determine what type of expert system might be best suited for
this field with respect to ease of implementation and accuracy of results. Two methods,
rule-based deduction and frame-based abduction, were chosen as methods for implemen-
tation. Another common method for building expert systems is statistical pattern
classification, but this method was not used because the needed statistics are not avail-
able yet in this relatively new field. It should be noted that estimates are not acceptable

because system performance is greatly reduced when estimate

The initial knowledge was derived from empirical softw
organized in a table format, so the first set of simple rules an
time-line specific were straightforward to develop. The situat
when the interpretations were made time-line specific. The fr
divided into five systems based on time period because the se
could not be incorporated into the frames in a reasonable ma
attempt was made to rewrite the rules to contain more meani
ships among the manifestations in the antecedents. However,
the format of simple rules in order to be as complete as possi

are used [21], {22], [23].

e engineering research and
frames which were not

on became more complex
me-based system was
ond dimension of time

ner. Furthermore, an

gful and complex relation-
it was decided to retain

le. It should be noted that

for this type of diagnostic problem in a well-defined domain, it is generally much easier
and more natural to write frames than to encode the same information in complex rules

[20].

The two expert systems performed moderately well, especially when one considers

that a relatively small number of metrics were used to sugges
that many of the relationships between the metrics and the i

In seven out of nine projects, the two systems provided the s

ever, when analyzing the results from all nine projects, the ru
more interpretations and exhibited a higher rate of agreemen
did the frame-based system. This is directly attributable to t
were used in the rule-based system, allowing completeness of
and (2) the frame-based system only provides those explanati
ity. Therefore, we conclude that the rule-based system with

more applicable to the field of software engineering at this po
may very well not be true in the future, as more is learned in

This study has provided many additional new insights in
expert systems for software engineering by stressing the need
exist between the components. In particular one must define
teristics would result in what types of abnormal measures, ho
various project development phases, and how certain one is ¢
results from a certain characteristic.

7. FUTURE RESEARCH DIRECTIONS

The development of ARROWSMITH-P is a preliminary
expert systems for software engineering management. The in
knowledge base can be refined, and new knowledge, such as i

many interpretations, and
terpretations are unclear.
me interpretations. How-
e-based system provided
with the database than

o facts: (1) simple rules
he list of interpretations,
ns of minimum cardinal-
imple rules is probably
nt in time. However, this
this field.

to the development of

to define relationships that
what development charac-

this changes through
at an abnormal measure

ttempt at constructing
ormation contained in the
formation about error

metrics [24], [25], can be incorporated into these systems as more is learned. As these

systems are evaluated further and incorrect relationships are
they can be changed to incorporate the knowledge gained fro
rules should become more complex as relationships between
become better defined. In addition, the testing of current, on
formed on the two systems. The data from the new projects

rought to the surface,
testing. Eventually, the
anifestations and causes
oing projects will be per-
ill then be incorporated

into the environment-specific baselines of metrics so the systems continue to be updated

as the environment changes. Another extension of this projec

t will be to redesign the

systems using a top-down approach, looking first at the possible interpretations and then

deciding what metrics might provide information about those

10

interpretations. This

should provide new insights and a more complete picture.

In a more general sense, a theoretical framework for developing expert systems for
software engineering is needed. For example, a categorization scheme, which would
address such issues as when a top-down system is better than a bottom-up system and
vice versa, should be built. Also, perhaps a new and different type of inference mechan-
ism or method for building expert systems would better suit the needs of some aspects in
this fleld. All of these issues require a great deal of further research and analysis.

8. ACKNOWLEDGEMENT

The authors are grateful to Frank McGarry, Dr. Jerry Page, Dr. James Reggia,
James Ramsey, Bill Decker, and Dave Card for their invaluable assistance in this pro-
ject. The authors would also like to thank the members of their research group for
enlightening comments and ideas.

11

References

(1]

(2]

(4]

[5]

(8]

(0]

(10]

[11]

(12]

(13]

J. Reggia and B. Perricone, KMS Reference Manﬁal, Tech. Report TR-11386,

Computer Science Department, University of Mary

F. Hayes-Roth, D. Waterman, and D. Lenat, Principl

land, 1982.

s of Pattern-Directed Infer-

ence Systems, pp. 577-601 in Pattern-Directed Inference Systems, ed. Water-

man and Hayes-Roth, Academic Press, 1978.

E. Shortliffe, Computer-Based Medical Consultations:

YCIN, Elsevier, 1976.

A. N. Campbell, V. F. Hollister, R. O. Duda, and P/ E. Hart, Recognition of a
Hidden Mineral Deposit by an Artificial Intelligence Program, Science 217,

pp. 927-928, 3 September 1982.

M. Minsky, A Framework for Representing Knowledge, pp. 211-277 in The

Psychology of Computer Vision, ed. P. Winston, M

cGraw-Hill, Inc., 1975.

J. Reggia, Computer-Assisted Medical Decision Making, pp. 198-213 in Applica-

tions of Computers in Medicine, ed. M. Schwartz, |

R. Miller, H. Pople, and J. Myers, Internist-1: An Exp

[EEE Press, 1982.

erimental Computer-Based

Diagnostic Consultant for General Internal Medicine, New England Journal of

Medicine 307, pp. 468-476, 1982.

J. Reggia, D. Nau, and P. Wang, Diagnostic Expert Systems Based on a Set Cov-

ering Model, International Journal of Man-Machine
1983.

S. et al Pauker, Towards the Simulation of Clinical C
of Medicine 60, pp. 981-996, 1976.

H. Shubin and J. Ulrich, IDT: An Intelligent Diagn
Proceedings of the National Conference on Ar
1982.

Studies, pp. 437-460, Nov.

ognition, American Journal

ostic Tool, pp. 290-295 in
tificial Intelligence, AAAI,

J. Reggia, D. Nau, and P. Wang, A Theory of Abductive Inference in Diagnostic

Expert Systems, Tech. Report TR-1338, Computer

land, College Park, MD, December 1983.

D. S. Nau and J. A. Reggia, Relationships Between

Inference in Knowledge-Based Diagnostic Expert

Sci. Dept., Univ. of Mary-

Deductive and Abductive
Systems, pp. 500-509 in

Proceedings of the First International Workshop on Expert Database Systems,

1984.

Y. Peng, A General Theoretical Model for Abductive Diagnostic Expert Systems,
Tech. Report TR-1402, Computer Science Department, University of Mary-

land, May 1984.

12

[14]

[15]

[16]

(17]

(18]

19]

(20]

(21)

(22]

(23]

[24]

(28]

C. Doerflinger and V. Basili, Monitoring Software Development Through Dynam-
ic Variables, pp. 434-445 in Proceedings of the IEEE Computer Society’s
International Computer Software and Applications Conference, Nov. 1983.
(also to appear in IEEE Transactions on Software Engineering).

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr., W. F.
Truszkowski, and D. M. Weiss, The Software Engineering Laboratory, SEL-
77-001, Software Engineering Laboratory, NASA/Goddard Space Flight
Center, Greenbelt,Maryland, May 1977.

V. R. Basili and D. M. Weiss, A Methodology for Collecting Valid Software En-
gineering Data, I[EEE Transactions on Software | Engineering SE-10, 6, pp.
728-738, Nov. 1984.

V. R. Basili and M. V. Zelkowitz, Analyzing Medium-Scale Software Develop-
ments, pp. 116-123 in Proceedings of the Third International Conference on
Software Engineering, Atlanta, Georgia, May 1978.

D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, The Software
Engineering Laboratory, SEL-81-104, Software Engineering Laboratory,
NASA/Goddard Space Flight Center, Greenbelt,Maryland, Feb. 1982.

Annotated Bibliography of Software Engineering Laboratory (SEL) Literature,
SEL-82-006, Software Engineering Laboratory, NASA/Goddard Space Flight
Center, Greenbelt,Maryland, Nov. 1982.

C. Ramsey, J. Reggia, D. Nau, and A. Ferrentino, Comparative Analysis of
Methods for Expert Systems, International Journal of Man-Machine Studies,
1985. Submitted.

A. Shapiro, The Evaluation of Clinical Predictions, New England Journal of

Medicine 298, pp. 1509-1514, 1977.

A. Tversky, Assessing Uncertainty, 36 (B), pp. 148-159, 1974.

D. et al Leaper, Computer-Assisted Diagnosis of Abdominal Pain Using Estimates
Provided by Clinicians, British Medical Journal 4, pp. 350-354, 1972.

D. M. Weiss and V. R. Basili, Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory, IEEE Tran-
sactions on Software Engineering SE-11, 2, pp. 157-168, Feb. 1985.

V. R. Basili and B. T. Perricone, Software Errors and Complexity: An Empirical
Investigation, Communications of the ACM 27, 1, pp. 42-52, Jan. 1984.

13

APPENDIX 1a - A sample interactive session with the rule-based d

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE PROJE
DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.
PLEASE ANSWER THE FOLLOWING QUESTIONS.

COMPUTER RUNS PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=1

2.

COMPUTER TIME PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

{2)NORMAL

(3)BELOW NORMAL

=7

2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=1

2.

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=7

2.

COMPUTER TIME PER COMPUTER RUN;:
(1)ABOVE NORMAL

(2)NORMAL

{3)BELOW NORMAL

=1

2.

SOFTWARE CHANGES PER COMPUTER RUN:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=1

2.

PROGRAMMER HOURS PER COMPUTER RUN:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=7

3.

PROJECT TIME PHASE:
(1)EARLY CODE PHASE
(2)MIDDLE CODE PHASE
(3)LATE CODE PHASE
(4)SYSTEMS TEST PHASE
(5)ACCEPTANCE TEST PHASE
=1

2.

COMPUTER TIME PER SOFTWARE CHANGE:
{1)ABOVE NORMAL

leduction expert system.

CT

(2)NORMAL
(3)BELOW NORMAL
=1

2.

PROGRAMMER HOURS PER SOFTWARE CHANGE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=1

3.

POSSIBLE INTERPRETATIONS ARE:
ERROR PRONE CODE <0.94>
EASY ERRORS OR CHANGES BEING FOUND OR FIXED <0.81>
LOTS OF TESTING <0.76>
LOTS OF TERMINAL JOCKEYS <0.76>
UNSTABLE SPECIFICATIONS <0.50>
NEAR BUILD OR MILESTONE DATE <0.50>
GOOD TESTING OR GOOD TEST PLAN <0.25>
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE <0.26>

Note - User answers are in boldface.

APPENDIX 1b - A sample interactive session with the frame-based abduction expert system.

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.
THIS PARTICULAR SYSTEM SHOULD BE USED FOR THE MIDDLE CODING PHASE.
PLEASE ANSWER THE FOLLOWING QUESTIONS.

FOCUS OF SUBPROBLEM:
*+THIS SUBPROBLEM IS CURRENTLY ACTIVE#x#
GENERATOR:
COMPETING POSSIBILITIES:

UNSTABLE SPECIFICATIONS
LATE DESIGN
NEW OR LATE DEVELOPMENT
LOW PRODUCTIVITY
HIGH PRODUCTIVITY
HIGH COMPLEXITY OR TOUGH PROBLEM
HIGH COMP OR COMPUTE BOUND ALGORITHMS RUN OR TESTED
LOW COMPLEXITY
SIMPLE SYSTEM :
REMOVAL OF CODE BY TESTING OR TRANSPORTING
INFLUX OF TRANSPORTED CODE
LITTLE EXECUTABLE CODE BEING DEVELOPED
ERROR PRONE CODE
GOOD SOLID AND RELIABLE CODE
NEAR BUILD OR MILESTONE DATE
LARGE PORTION OF REUSED CODE OR EARLY AND LARGER TESTS
LOTS OF TESTING
LITTLE OR NOT ENOUGH ONLINE TESTING BEING DONE
GOOD TESTING OR GOOD TEST PLAN
UNIT TESTING BEING DONE
LACK OF THOROUGH TESTING
POOR TESTING PROGRAM >
SYSTEM AND INTEGRATION TESTING STARTED EARLY
CHANGE BACKLOG OR HOLDING CHANGES
CHANGE BACKLOG OR HOLDING CODE
CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE
LOOSE CONFIGURATION MANAGEMENT OR UNSTRUCTURED DEV
TIGHT MANAGEMENT PLAN OR GOOD CONFIGURATION CONTROL
COMPUTER PROBLEMS OR INACCESSIBILITY OR ENV CONSTRAINTS
LOTS OF TERMINAL JOCKEYS

COMPUTER RUNS PER LINE OF SOURCE CODE;:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

2.

COMPUTER TIME PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

{2) NORMAL

(3) BELOW NORMAL

=1

2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
{1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

2

o

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

2.

SOFTWARE CHANGES PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

== P

2.

COMPUTER TIME PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

2.

PROGRAMMER HOURS PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

{3) BELOW NORMAL

=1

3.

FOCUS OF SUBPROBLEM:
GENERATOR:
COMPETING POSSIBILITIES:

LOTS OF TERMINAL JOCKEYS
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
LOTS OF TESTING
ERROR PRONE CODE
UNSTABLE SPECIFICATIONS

PROGRAMMER HOURS PER SOFTWARE CHANGE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

3.

FOCUS OF SUBPROBLEM:
GENERATOR:
COMPETING POSSIBILITIES:
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
ERROR PRONE CODE

COMPUTER TIME PER SOFTWARE CHANGE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

2.

POSSIBLE INTERPRETATIONS ARE:
EASY ERRORS OR CHANGES BEING FOUND OR FIXED <H>
ERROR PRONE CODE <L>

Note - User answers are in boldface.

- Both interpretations listed as solutions can explain all of the
given a high measure of likelihood (shown by the <<H>>) of be
Code is rated low.

manifestations, but the first is
ng correct, while Error Prone

