A STRUCTURE COVERAGE TOOL
SOFTWARE SYSTEMS

ADA™

Liqun Wu, Victor R. Basili, and Karl Reed?

Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Coverage metrics have traditionally been used to
evaluate the eflectiveness of procedures for testing
software systems. In practice, however, the metrics are
heavily influenced by the characteristics of traditional
programming languages such as Fprtran and Pascal.
Languages such as Ada differ from traditional languages
to such an extent that it is necessary to develop new
metrics.

This paper proposes a number of coverage measures
for Ada features such as packages, generic units, and
tasks, and discusses their interpretation in relation to
the traditional coverage metrics. It also propose a
mechanism for collecting these coverage measures. In
addition, it suggests that coverage metrics may also be
interpreted as indicators of dynamic system
performance.

INTRODUCTION

The last few years have seen an increased emphasis
upon the development of techniques for assessing and
controlling the quality of software products. Research
in the U.S8:35.213,4 9 practice in the Japanese
computer manufacturers’ software factoriesi? 26. 12, 23
have recognized the importance of measures of program
structure on one hand. and techniques for quality

assurance on the other as fundamental aspects of
software quality assurance.
* The third author is on leave from the

Jepartment of Computing at the Royal Melbourne
astitute of Technology, Melbourne, Australia.

Ada is a trademark of the U.S. Department of
defense - Ada Joint Program Office.

Support for this research provided by NASA Crant
NSG-5123 to the University of Maryland.

The vast bulk
between measures
which can be obtaj
code, and dynamic

develop confidence in

system®2 would be
former!$ and test co

FOR

of the work to date distinguishes

of program and system structure,

ed by automatic analysis of source
easures of program quality which

program quality by testing the
cCabe's cyclomatic number for the.
erage for the latter!S. 14

There have been few reports of efforts to integrate
both static and dynamic measures to allow an overal]
assessment of software quality.

The TAME®
Maryland’s Departm
integrate tools for
measures of program

project ~at the University of
nt of Computer Science intends to
btaining both static and dynamic
quality into a single environment.

~This will allow the quality of a software product to be

monitored at all stages of its evolution and allow
judgements to be made upon the basis of various values
obtained. Although TAME is overwhelmingly language

independent, its first

application will be for monitoring

systems written in Ada.

Most of the usefu] code-based metrics measure the
statie structure of the source because there is a serious

shortage of measures

of dynamic structure, with Conte

et. al.10 citing only a simple liveness measure.

Considerable experience has been gained in using

these two classes

of metrics to study systems

implemented in traditional programming languages such
as FORTRAN, COBOL, Pascal, and PL/I, and many of
the quantities measured reflect their characteristics.

The availability
PROLOG, and

of languages such as Ada and

their use in applications systems,

necessitates the deve opment of new measures, since
these languages differ significantly from those currently
under study. Structural coverage metrics will need to
be tailored to allow for the impact of these new features
upon programming practice.

b See® and” for a complete description.

The results of a joint study between the University
of Maryland and General Electric ! show that a number
of Ada features such as packages, generic units.
exceptions. and tasks, appear to be misused, and'to be a
sonree of program [aults. Applying existing measures to
Ada programs without explicitly recognizing its uniqueZ0
characteristics may lead to a totally misleading picture
of a systems structure and quality.

Traditional measures of test coverage include®?
a) the percentage of source code instructions executed,

b) the percentage of partial paths traversed®,

c) percentage of predicate outcomes exercised,

d) the percentage of procedure or function calls made,
e} the percentage of procedures executed,

The first three of these measures are essentially
statement level measures and reveal little about the
system structure. On the other hand, the last two
measure the procedural level and provide an indication
of system structure.

Measures relating to procedure usage will need teo
be reassessed because of the impact of Ada’s generic
units and [acilities for partitioning systems. Ia addition,
new measures should be defined for tasks and exception
handling.

Measures of the dynamic behavior of a large system
consisting of a number of program-units cannot be
obtained easily by examining its source code. They
may, however, be deduced from an analysis of the
system's behavior during execution® and interpretation
of statistics normally associated with testing, such as
various ~coverage measures, and for altering the
strategies used for planning tests!8

The objective of test coverage measures is to allow
some estimate to be made of the extent to which a set
of tests is likely to have revealed errors in the test
subject!8:25: 22 generation, and the interpretation of
coverage metrics, will depend upon whether 2 series of
unit tests. a subsystem test, or a complete system test
are being planned.

In what follows, we propose a number of measures
of static and dynamic structure for sysiems
implemented in Ada. We discuss their interpretation in
relation to traditional test coverage measures as a first
step in the development of a more complete method of
dynamic structure measurement through testing. These
are, in general, re-interpretations of existing measures.

Many of the measures are not specific to Ada and
:an be applied to any language supporting multiple
:ntry points,(e.g. Fortran, PL/I, Assembler), internally
and externally callable procedures (e.g. Cobol. PL/I

¢ A partial path is the shortest section of code
-onnecting two decision statements which does not
;ontain any other decision statement.

Assembler), generic declarative structures, or tasking
{e.z. Module).

ADA AND COVERAGE MEASURES

There are four important features of Ada which
impact the design of icoverage measures which will be
discussed further in this paper. These are:

a) generic units
b) packages

c) exceptions, and
d) tasking. ‘

The first two of these deal with the procedural levei
of system structure, #rhile the last two support non-
deterministic system behavior. A complete set of Ada
coverage measures must include the statement level
metrics mencioned#‘earlier. Table [shows the

relationship of the various measures.

Generic units may be instantiated into a new unit
by a declaration either overloading an existing unit
name or creating a new one. [nstaantiations may apply a
generic unit to different types. It is not possible,
therefore, to assume that a particular generic package
has been properly tested until all its instantiations have
been tested. Steps must also be taken to ensure that all
references to individ instantiations are correctly
counted. At least one currently available path analysis
tool fails to make thes# distinctions

Ada's provision for block statements, executable
units containing declarations!! , raises the possibility of
a particular instantiation of a generic - procedure not
actually being elabor}ated with the result that type

checking may not l:Tc completed. We will need a
coverage measure for generic unit elaboration for this

reason. l
1

The potential e of Ada library units and
packages as devices for arbitrarily partitioning a system
also presents a problem® In this case, the public entities
in the package or library constitute a potential set of
entities that can be referenced from any part of the
project. It will therefore be necessary to decide which
entities should be included in coverage counts and the
method to be used in dategorizing them.

4 \Ve note that block statements also require special
treatment for similar reasons, however, we have linited
our discussion to those features which illustrate our

point.

A particular package may contain units which can
be referenced from within the puckage as well. This
provides another basis for estimating coverage®.
andlin

king and Exceptio

' Ada's tasking and exception handling mechanisms
add a new dimension to path coverage since it may be
desirable to verify that paths which traverse more than
one program unit are exercised and to verify that
various interactions actually occur. Each of these
aspects of Ada must be accounted for in any proposed
measures and explicitly considered in ‘their
jnterpretation.

The issues discussed here apply to other languages
which support similar features.

RA TRICS FOR A

We focus on the impact of Ada's [facilities for
partioning systems and on the impact of generic units
because these are the features which necessitate re-
evaluating the approach to coverage measures. Any
complete set of measures for Ada would, of course,
include specific examples for packages and procedures of
both the generic and non-generic variety. In that sense,
some of our definitions are themselves generic.

0 teracti art

We wish to distinguish between the static structure
ind dynamic behavior of a system which may consist of
Ada library units, packages and a program. We may
‘hen obtain an indication of system complexity based
ipon this difference.

Let us consider a system which references *“n”

lifferent units. Let us also suppose that there are a
otal of “m" references to the “‘n" units. The ratio n/m

rould provide an indication of the static complexity of

uch a system. Two systems may have identical (n,m)
airs; however, they may have different interactive
)mplexity since one may activate most of its references

» the m units, while the other may not.

The total number of references executed by a set of
sts which represent a typical input would also provide
1 indication of absolute dynamic complexity. The
tio n/m corresponds to a procedure call coverage
etric.

We will base our discussion on procedures since
ese are among the most significant program units
dm a system structure point of view. A system written

Ada will appear as a collection of packages and

* Other languages share this property.

subprogram units, en‘ch of which may have multiple
procedures. 1

i
We can distingnish several diflerent types of
procedure reference, ‘Hepending on the location of a
reference and its targeT....
. the reference in the

to a procedure in that package,

b) Extra package relerence ... the reference in ‘the
current package i‘s to a procedure in some other
package, |

c) Inter package reference «. the reference is directed
to a procedure in|this package from some program
unit outside the package,

d) Combined inwar package references ... the sum of
a) and ¢), and i ;

e} . Combined outwarJis package references ... the sum

"~ of a) and b).

These can be repeated for the program reference ...
giving

a) Intra package r%ference

current package i

f) Intra program reference ... the reference is to a

procedure in the program, and

g) Extra program reference ... the reference is to a
procedure outside the program.

Dynamic Interaction Measures

It is possible to define a wide range of these metrics
which measure the amount of interaction between
specific packages; however, we restrict ourselves to the
following simple examples to illustrate the principle!.

A) The number of extra referenced procedures in a
package = called mpared to the number of
procedures in a package ‘

B) The number of |combined inwards procedures
referenced procedures in a package called compared
to the number cﬁf combined inwards package

.references, and |

C) The number of e#tra procedure references-in a
package executed compared to the number of extra
procedure references.

Measure A cannot be interpreted without a
knowledge of the the number of combined inwards
referenced procedures for the package concerned and the

_ context of .the test. It| will convey no information in

addition to a“static count of the referenced procedures
in' a package if the package is in a system test.
However in the case of { unit test, it will show that the
components of the package are inadequately tested.

! We could consider interaction between a given
package and each of its partners, and some subset of its
partners, for example. We could also consider all possi-
ble combinations of these against the procedure refer-
ence categories presented above.

Measure B3 will show the extent to which a
particular package’s inwards calls are being utilized by a
particular -test. It will. as the procedure coverage
asymptotes, provide an indication of the total dynamic
complexity of the package’s inwards communications.

It is also interesting to consider the implications of
this measure for a single test case since it provides an
indication of the dynamic complexity of the path traced
by the individual case. This may be useful in judging
the difficulty in debugging faults found during the test.

A similar interpretation can be applied to to
measure C.

G S COVERAG ASUR

A generic unit is a template from which particular
instances of a general unit can be obtained. A
declaration provides a program unit name and an

optional generic_actual_part® specifying the name and
the types to used by this particular version of of the
package. The elaboration of the declaration of an
instance of a generic unit creates a new version which is
distinct from other versions generated from the same
generic unit. This is true even if instances have been
instantiated with the same generic_actual_part.

Instantiated units are indistinguishable f{rom
ordinary units. All relevant coverage measures should
therefore be collected for both types of units. For
sxample, procedure call coverage measures should
clearly be collected in both cases.

In addition, elaborating an instantiation effectively
completes the process of type declaration and can
sroduce errors. Coverage measures are necessary for
.his case also. Any knowledge of the instantiation can
e obtained only by an examination of the instantiating
tatement and the generic unit, and any data about its
sehavior can only be collected by monitoring the
riginal generic package or the point of instantiation.

The mechanism used to obtain coverage measures
or procedures cannot readily be used for generic units.
Ve shall discuss an appropriate method in the section

n implementation®.

g Seell page 12.8.

b The Ada instantiation and generic package
rechanism automates the process of type translation
‘hich might otherwise be achieved explicitly by a pro-
>dure which existed solely for that purpose. Monitoring
rocedure usage would, of course, be simpler in such a
1se, but the semantics of the linkage between a pro-
:dure pair might not be apparent. Ada makes the link
:plicit but complicates the measurement process.

- ‘operators can lead

Coverage Measures For Generics

We will discuss tm number of measures for generic
"units, focusing on instantiation since it is this feature
that makes the generjc unit special.

I. The first dynamic |measure for generic unit should be:

« Elaboration Coverage for a Generic Unit

** the number of| instantiations elaborated for a
generic unit divided by the total number of actual
instantiations for this generic unit.

It is necessary becatu{ type checking can not be said to

be complete until a declaration is elaborated, as we have
already said. !

This measure is| essentially a procedure coverage
metric, but it may also be used to provide an indication
of the extent and nature of actual reuse of a particular
generic unit, as distinct from that which was intended.

An equivalent static measure would be the number
of instantiating statements for a given generic unit.

e Total Elaboration Coverage for Generic Units

If the average number of instantiations actually
elaborated for all gemeric packages is large, it could
mean that this system is making effective use of its
subcomponents,

¢ Generic Unit Instance Coverage

From a test confidence point of view, exercising
each instance of a generic unit is necessary since errors
occurring in one instance may not appear in another. A
test set which exercises a large proportion of generic
instances without producing errors will raise user
confidence significantly. 'We recommend two measures

_in this case, one for individual generics, and one for a
complete system.

Individual ~instantiations may have different
combinations of data types and operators as parameters
as represented by their individual generic_actual_part.
This is a major reason for insisting that each instance of
a generic -unit be exercised. Ada's overloading of
a situation where a previously
tested program unit may be used with new data types
which ‘are not valid for:its semantics. However, the
instantiation will not be invalidated if there exist
operators for data types supplied. This is a sufliciently
subtle probiem to warrant special attention.

It is therefore | important to collect coverage
measures for data |type usage which provide a
perspective of how data types are exercised dynamically.
We need to know the the structure of each unique
generic_actual_part iated with each generic
procedure, since this| specifies a semantically unique
instagtiation.

« Unique Instantiation ;

** an instantiation of a particular executable generic
unit is said to be unique if the general_actual_part
specified differs in terms of actual type usage from
that used in any other instantiation of that generic
unit.

‘Based on this, we get the following coverage

measure:

¢ Unique Instantiation Execution Coverage

** the number of unique instantiations being executed
for a executable generic package divided by total
number of unique instantiations declared for that
generic package.

A high value of this measure means that the unique
instantiations for the generic have been extensively
tested. The tester may have increased confidence in the
unit if no errors were detected.

It may also be useful to exercise a generic package

with generic_actual_parts applying it to a variety of
data types. This would require some prior knowledge of
the problem domain for which the unit was intended. A
testing philosophy of this type could lead to the
certification of a generic package for a set of data type
combinations.

The method of collecting this information will be -

discussed in the section on implementation.

Parameter Utilization .

A generic procedure may have been created by
extending the application of some existing procedure to
3 new type set. It will be necessary, therefore, to
monitor the internal statement coverage, . during
subsequent testing, to ensure that the behavior of all
operators are verified. One particular possibility is that
the type of only one of a generic procedure’s parameters
may be altered. In this case, a tester will be interested
in ensuring that all statements aflected by that
Parameter are exercised.

We can use the method described by Rapp and
Weyuker!? to ebtain the set of “all-use-paths” for a
varticular parameter®, Designing tests which ensure
‘hat the set of ‘“all-use-paths” for a particular
Jarameter were covered would ensure that all
‘tatements in which the parameter appears are
*ercised. This will ensure that any new uses of type
‘Onversions and operators are actually tested.

The following metric would indicate effectiveness of
- Parameter use coverage test.

Parameter Usage Coverage

the number of statements in which a parameter
appears which are executed divided by the total
number of those statements.

Tests aimed at collecting this metric would ensure

By

that - the impact of

evaluated.

parameter - type changes was

A similar static measure could be proposed which
would' show the the extent to which a package was
likely to be influenced|by a particular parameter.

¢ Parameter Usage Factor

** the number of statements in which a parameter
appears compared to the total
statements,

number of

m written in Ada may contain
independent tasks. A full test of such a system may be
the only satisfactory| mechanism of evaluating task
interaction, since task unit tests would validate the
function of the task and not its user. A similar
argument can be applied to exceptions; a unit
containing exceptions can not be coasidered tested until
it has raised all its exceptions. Coverage measures are
therefore required for tasks and exceptions. In the case
of the former, we would wish to know...

ya) whether every task was activated,
b) whether every entry to a given task is used.

Coverage metrics can be defined readily for these
cases. :

An identical set o
exceptions.

measures would be needed for

While not a coverage metric, we advocate recording
the task execution sequence. This will simplify the
detection of errors’ /due to poor synchronization
strategies and allow the| construction of tests designed to
force particular task o

The statistics necessary for computing the coverage
measures that we have proposed can be collected by the
use of automatically inserted probes' written in Ada is
under conmstruction as| part of the TAME project?
environment.

b See also Weiser et] al.?% and Weiser24

' See Brown and Hofflman? and mSt.uckigl"22 for ex-
amples from other languages.

Structure test coverage execution reqiires two

components: an instrumented program and an execution
monitor. Probes are inserted into the source code to
obtain the instrumented program. The execution
monitor initializes the prooes, records when they are
executed, and reports on its results.

We use a generic probe package to implement the
execution monitor. Elizabeth Katz first used this
approach in a prototype coverage system, but that
approach has been extended. As Fig. 1 shows, this
package has two generic parameters and declares two
procedures. Size (a parameter given to the generic
package initiate_record) indicates how many probes
have been added to the code. The increment procedure
is called with a probe number in this range whenever
the associated probe in the instrumented program is
executed. A separate probe number is allocated for each
upique object under observation. The report procedure
reports on the results whenever it is called.

We will now consider how the nature of these
probes varies with the various items being monitored
and discuss their insertion in the program to be
instrumented.

TABLE 1 - RELATIONSHIP BETWEEN TRADITIONAL
AND ADA COVERAGE MEASURES
LANGUAGE AND MEASURE
IYSTEM FEATLRE TRADITIONAL ADA
’ Stazement, Statement.
Statement Level Pash, - Paub.
Predicatd Coverage Predicate Coverage
Procedaral Level Call and Cait and
Procedure Coverage Procedure Coverage
Cenerie ——— lastance aad
Elaboration Coverage
Package,
3ystem Partioging - nter 3ad {atea
Package Coverage
Task and
Task 3ad Exception —— Exception Coverage
, Coverage Task Sequence
{

astrumenting The Program

An instrument consists of two components: the
robe and its monitor. The probe is inserted in the
>de, and the probe monitor collects the data.

robe Monitor

Probe monitors will be implemented as geperic

package. They coasist of variables which record values
for some coverage measures whenever the procedure
increment is called and compute the necessary statistic
when the procedure report is called at the end of each
unit's execution.

Inserting a probe into a generic unit would cause
multiple instances of that unit to call a single probe
monitor. Some difficulty would then be experienced in
deciding which jnstance of the package had actually
called the monitar. :

generic 1

Fig. 1. Structure of probe monitor

Using generie packages for probe monitors solves
that problem since a new version of the monitor can be
created with every instantiation of the the unit being
moaitored.

This is implemented by inserting an instantiation
statement for the| probe monitor inside the specification
part of every generic package. Whenever a generic
package is instantiated, a new instance of the probe
monitor is generated. The variables in one instance will
give coverage measures for one instance of a generic
package. Therefore, we can easily distinguish the
coverage measures of a generic package for different
instances. The | structure of the instrumented
specification part for a generic package is shown in Fig.
2.a. The instantiation for such a generic package is
given in Fig. 2.b.

There are tvE parameters passed to the probe

monitor. The first is an instance number identifying the
particular instantiation of the generic unit, and the
second is a table represented by Fig. 3. The instance
number is not used for non-generic units.

The table has/two components. The first one gives
the unit name (e.g. name of generic package), and the
second one is an array which holds details of each.probe

active for that generic uniti. The details include the

_probe’s usage, location, count, value, etc. Therefore,

every instance of the probe monitor must be aware of
the meaning of each of its probes and the total number
in use,

The tables themselves are instances of the generic
table shown in Fig, 4. Property_list is a record whose
structure is determined by the number and nature of
the properties of each probe as described in the bottom

I The non-generic units a treated as a single unit.

.

generic

c_no: natural;
package XX is

Xx_monitor is new probe_monitor
(instance_no=>c_no; c_table=> xx_table);

éx;é XX;

a. The structure of instrumented specification
part for a generic package

¥y is new xx{...; c_no => xx_no);

b. The instantiation statement for
the generic package

Fig. 2

Unit name Unit i

Probe name [ﬂobe 1 l Brobe 27 [Probe n_[

[Usage | [Tlocation |
Information for each probe

Fig. 3

row of Fig. 3. The generic table has the form shown in
Fig. 4. »

All instantiation statements for this generic table
will be inserted at the beginning of the main program,
since the number of probes needed for each program
‘unit can be determined during compile time. One
instance of the probe monitor can therefore collect the
coverage measures for all non-generic program units or
one instance of a generic unit.

Task Monitor

The task monitor is implemented by a task with
one -entry which receives the signals from tasks and
records the sequence of task execution. Each task may
have several entries which may be invoked by other
Program units (including tasks) and may also have
Statements which jnvoke entries in other tasks. Since
the tasks can be executed concurrently, the invoking
qQuence may be very complicated. The task monitor

records the invoking sequence for each system. The ~
structure of the task monitor is given in Fig. 5.

The specification part of the task monitor will be
inserted "before the main program; therefore, the
monitor can run concurrently with the main program.

The entry has one parameter for receiving signals.
Whenever an entry in a task is invoked, the task
monitor is invoked by a statement inserted at the
beginning of the original task entry. This statement
passes the name of this entry to the monitor.

generic

unit_name : string;

size : natural;
package initiate_record is

type table_type is record
information : property_list;
serial_no: natural;

end record;

type table is array [1..size] of table_type;

type record_type is record
name : striog :== unit_name;
name_no_table : table;

end record;

end initiate_record;

Fig. 4 Generic¢ Table

task task_monitor is
entry signal(name_of_the_calling_procedure)
end task_monitor;

task body task_monitor is
begin
accept signal(name) do

end signal;
- put the name in a list

end task_monitor;

Fig. 3 Structure of Task Monitor

Probes

The probes for recording non-task activity consist
of a call to the increment procedure in the appropriate
probe monitor and code to ensure that the call is made
only once. As aiready discussed, the probes are inserted
before or after the components to be measured and may
contain code which determines whether the event being
monitored actually occurred.

A structure coverage tool which collects a {ull range
of Ada related measures is currently being constructed
as part of the TAME project. The tool will implement
the instrumenting concepts described in this paper and
will be used to explore the impact of Ada on testing
strategies.

CONCLUSION

We have discussed the impact that a language such
as Ada has upon the traditional measures used for
evaluating test effectiveness. In particular, we have
drawn attention to the impact of Ada’s system
partitioning facilities, and its generic capabilities, and
suggested new measures which recognize them explicitly.

We have proposed that some individual language
features be counted explicitly during testing. The
particular features differ significantly from those
traditionally measured. Previously, ensuring that all
statements and components were executed would be a
reasonable goal. Applying those same criteria to Ada
srograms without explicitly considering these new
‘eatures might lead to unjustified confidence in the
esults of some testing processes. A failure to
listinguish between particular instantiations of generic
1nits is a case in point.

We have also suggested that coverage measures
aay also be useful in determining a system’s dynamic
haracteristics and as an indicator of its complexity.

Our future work will include a further investigation
f these concepts.

(0] DG

The authors wish to acknowledge discussions with
number of TAME project members and faculty in the
2partment of Computer Science at the University of
aryland. John Ganpon and Mark Weiser acted as
‘unding boards and sources of information, and
izabeth Katz and Dieter Rombach, assisted in
wrifying a number of aspects of Ada's semantics.

We are particularly indebted to Ms. Katz who read
seral early draflts and assisted in constructing some
't cases. Her assistance iwas invaluable and enabled

conanee tn ha samnlatod an o sahagdola

We thank them/|for their help, however, we must
accept the responsibility for the opinions expressed
here:_n. which are our own unless otherwise stated.

REFERENCES

1. V. R. Basili, E. |E. Katz, N. M. Panililo-Yap, C.
Loggia Ramsey and, “Examining the Modularity of
Ada Programs,”| [EEE Computer Vol. 18 No.
9 pp. 53-635 (Sep.| 1985).

2. V.R. Basili and EE. Katz, “METRICS OF
INTEREST IN ADA DEVELOPMENT,” [EE-CS
WORKSHOP ON SOFTWARE ENGINEERING
TECHNOLOGY| TRANSFER, pp. 2229 [EE’
COMPUTER SOCIETY PRESS, (1683).

3. V. R. Basili and|J. Ramsey, ‘‘Structural Coverage

of * Functional | Testing,” Computer Science
Technical Report Series TR-14427
Department of Computer Science. University

of Maryland, (Sept. 1984).

4. V.R. Basili and D.M. Weiss, A Methodology for
Collecting Valid Software Enginering Data,” [EEE
Trans. on Software Eng. Vol. SE-10 No. 8 pp.
728-738 (Nov. 1984). ‘

5. V.R. Basili, “Quantatative Evaluation of Software
Methodology," Proc. First Pan Pacific Computer
Conference, Australian. Computer Society, (Sep.
1985).

8. V. R.'Basili and/ H. D. Rombach, *“‘Tailoring the
Software Proc to Project Goals and
Environments,” TR-1728, Department of Computer
Science, University of Maryland, (Nov. 1986). To
appear in the Hroc. of the Ninth International

Conference n Software Engineering,
Monterey, USA h-April 1087

7. V. R. Basili d H. D. Rombach, “TAME:
TAILORING AN ADA MEASUREMENT

ENVIRONMENT,” Proc. of the Joint Ada

Conference, (March 16-19 1987).

8. V. R. Basili and E. E. Katz, “Examining the
Modularity of Ada Programs,” Proc. of the Joint
Ada Conference, (March 16-19, 1987).

9. J. R. Brown and R. H. Hoffman, “Evaluating the
Effectiveness of |Software Verification- Practical
Experience With| an Automated Tool,” FJCC
AFIPS Conf Prde. Vol. 41, Part I pp. 181-190
(1972).

10. S.D. Conte H.E. Dunsmore and V.Y. Shen,
SOFTWARE ENGINERING METRICS AND
MODELS, The Benjamin/Cummings Publishing
Company, Inc, Menlo Park, Cal. 94025 (1986).

L.

13.

.

15.

. E. Miller,

LS DoD. "REFERENCE MANUAL FOR THE Ada
PROGRAMMING LANGUAGE,” ANSIMIL-
STD-1815-1983, United States Department Of
Defence, (Feb 17 1083).

. K. Fujino. “Software Development for Computers

and Communications at NEC,” [EEE Computer
Vol.17 No. 11 pp. 57-67 (Nov. 1984).

W. Harrison K. Mage! R. Kluezny and A. DeKock,
“Aying Software Complexity metrics to Program
Maintenance,” [EEE Computer Vol. 15 No. 9 pp.
65-79 [EEE Computer Society, (Sep. 1982),

W. E. Howden, “A Survey of Dynamic Analysis
Methods,"” IEEE Tutorial : Software Testing amd
Validation Techniques, PP- 209-231. IEEE
Computer Society Press

T. McCabe, “A Complexity Measure,” IEEE
Trans. Software Eng. Vol. SE-2 pp- 308-320 (Dec.
1976).

“Introduction to Software Testing
Technology,” In Tutorial: Software Testing &
Validation (E. Miller and W. E. Howden, eds.) 2nd
Edition pp. 4-16 [EEE Computer Society, (1981).

Y. Mizuno, “Software Quality Improvement,”
IEEE Computer Vol. 18 No. 3 pp. 66-72 {Mar.
1983).

J. Ramsey and V. R. Basili, “ANALYZING THE
TEST PROCESS USING STRUCTURAL
COVERAGE,” Proc. 8th International Conference
on Software Engineering, pp. 306-311 (August 28-
30, 1985).

S. Rapp. and E. J. Weyuker, Computer

-Seience Department Technical Report Report No.

23 Department of Computer Science Courant
Institute of Mathematical Sciences New York
University, (Dec. 1981).

25.

- Tool,” FICC AFIPS Conf Proc.

- M. Weiser, “Program

Jean E. Samm3t, “Why Ada Is Not Just Another
Programming Language,” Communication of the
ACM vol. 29 , no. 8 p, 722 (Aug. 1936).

L. G. Stucki, “A Prototype Automatic Testing
Vol. 41, Part
IO pp. 829-836 (1972).

L. G. Stucki, “NEW DIRECTIONS IN
AUTOMATED TOOLS FOR IMPROVING
SOFTWARE QUALITY,” Current Trends in

Programming Methodolgy, Vol Il R. T. Yeh (ed),
pPp. 80-111 Prentice-Hall, Inc., (1977). 2nd ed.
I[EEE Computer Society Press” also in
"TUTORIAL: Software Testing & Validation” 2nd
ed. [EEE Computer Society Press

. D. Tajima and T. Matsubara, ‘“The Computer

Software Industry In Japan,” [EEE Computer Vol,
14 No. 5 pp. 89-96 (May 1981).

Slicing,” IEEE Trans. of
Software Engineering Vol. SE-10, No. 4 pp. 352-
357 (Jul. 1984).
M. D. Weiser J. D. |Gannon P.R. McMullin,
*“‘Comparison of Structural Test Coverage Metrics,”
IEEE Software Vol. 2 , No. 2 pp. 80-85 {Mar.
1985).
M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon and
V. R. Basili, “Software Engineering Practices in the
US. and Japan,” IEEE Computer Vol. 17 No.
8 pp. 57-66 (Jun. 1985).

