LESSONS LEARNED IN USE O

ADA™.ORIENTED DESIGN METHODS

Carolyn E. Brophy+, W. W, Agresti* and Victor R. Basilit

+ Dept. of Computer Sciences
University of Maryland
College Park, Maryland 20742

Abstract

'As Ada is introduced into new environments, both
managers and developers need to understand the ways
in which the decision to use Ada as the target language
will affect the software development lifecycle. The
Flight Dynamics division at NASA Goddard Space
Flight Center is involved in a study analyzing the effects
of Ada on the development of their software. This pro-
ject is one of the first to use Ada in this environment.
In the study, two teams are each developing satellite
simulators from the same specifications, one in Ada and
one in FORTRAN, the standard language in this
environment. This paper will address the lessons learned
during the design phase including the eflect of
specifications on Ada-oriented design, the importance of
the design method chosen, the importance of the docu-
mentation style for the chosen design method, and the
effects of Ada-oriented design on the software develop-.
ment lifecycle. It is hoped that the issues faced in this
project will show more clearly what may be expected in
designing with Ada-oriented design methods.

Introduction and Experiment

As Ada is introduced into new environments, the
need arises for both managers and developers to under-
stand the ways in which the decision to use Ada as the
target language will affect the software development
cycle. This becomes an especially important issue for
NASA, who is planning to use Ada for its space station
project. In doing this, NASA needs to understand the
effects of Ada on their traditional software development
approach.

The experiment in progress is being conducted by
the Software Engineering Laboratory (SEL) of the
National Aeronautics and Space Administration’s God-
dard Space Flight Center (NASA/GSFC).
NASA/GSFC and Computer Sciences Corporation

Ada is a trademark of the U.S. Department of Defense - Ada Joint
Program Office.

Contact: Carolyn Brophy, Dept. of Computer Science, University of
Maryland, College Park, MD 20742, (301) 454-6154.

Support for this research provided by NASA grant NSG-5123 to the
University of Maryland.

* Computer Sciences Corporation
System Sciences Division "
8728 Colesville Road
Silver Spring, Maryland 20010

ors of the experiment, which is sup-
nel from all three SEL participating
organizations (NASA/GSFC, CSC, and University of
Maryland) [Agresti et al. 86).

goals of the whole study [McGarry &
Nelson 85] are to

(1) characterize the development process with Ada,
and

(2) determine the impact the use of Ada will have
on reusability, reliability, maintainability, pro-
ductivity,|and portability.

Two teams|are each developing a Gamma Ray
Observatory (GRO) satellite dynamics simulator from
the same specifications. One team is using FORTRAN,
as usual, as the| target language. The other team is
using Ada. The purpose of the GRO dynamics simula-
tor is to test and evaluate GRO flight software under
conditions that sjmulate the expected in-flight environ-
ment as closely as possible [Agresti et al. 86)].

Both teams began in January, 19085. The Ada team
however, had a three or four month training period
before beginning|development. The software develop-
ment lifecycle as|it applies to this project is shown in
Figure 1 [Agresti 86], [McGarry, Page et al. 83].

The Ade team is now in the midst of the imple-
mentation phase.| The FORTRAN team’s simulator is
almost ready to enter production use.

Ada can be viewed in two ways. We can look at it
as a programming language only, or we may view it as
an orientation toward a new approach to problem solv-
ing. In the former context, the changes only affect the
phases from coding on. As a new approach to problem
solving, all phases|of the software development cycle are
affected, beginning with the specifications. A previous
study [Basili et al. 85] showed that developing an Ada
product from a set of specifications that were written
knowing that FORTRAN would be the implementation
language lends itself to a F ORTRAN-style design.
Changing to Ada in this latter case requires a break
from the mechanisms of the past.

eir traditional language, FORTRAN,
NASA is giving up a legacy of reusability. This reuse
exists in their specifications, design, and code. So it is
hoped that with the adoption of Ada they will gain
something. For example, can Ada provide a new and

~ better legacy of reusability, not only as a programming
language, but also as a design methodology with its
appropriate set of documents and orientation? We are
interested in learning what are the advantages and
disadvantages of an Ada development and maintenance
orientation. So we have embarked upon a study which
threw away the old FORTRAN Jegacy, and with it, the
reuse leverage of the past.

Questions we are attempting to answer in this
study include: How might the requirements be
represented so as to avoid the FORTRAN legacy?
What is the appropriate design technique, knowing that
the implementation language will be Ada? What design
method is appropriate for the specific application, and
can it be scaled up to the problem size? Is it teachable
and usable by the existing stafi? What kind of training
is needed? Can it be documented? What are the mile-
stones needed for an Ada development?

Because of the nature of this experiment, we have a
clean start, rewriting the specifications, refining and
adapting a new design approach, and developing new
forms of documentation. There is a motivation for
innovation that might allow for the development of
better specifications, design, code and documentation
because of the experimental nature of this study. We
want to record the successes and failures, advantages
and disadvantages, and capture them in a lessons
learned document so that future developments can gain
from our experience. The SEL is preparing a document
that will cover the entire lifecycle with respect to the
lessons learned on this project.

The information for this paper is from a survey
given to the Ada designers after the design was com-
pleted. The rest of this paper consists of a list of “les
sons learned”, each followed by the Ada team experi-
ences which led to that particular conclusion.

Seven Design Lessons

1. Choose a specification method that does not
constrain design.

Presently in this environment, the specifications the
development team receives are heavily biased toward
FORTRAN. In fact the high level design for the simu-
lators is actually in the specifications document, and has
not changed for several years. Therefore, to really
explore various design methodologies, the Ada team
found they had to rewrite the specifications to remove
the bias toward FORTRAN and the whole FORTRAN
legacy. The specifications were rewritten using the
Composite Specification Model [Agresti 84].

It was at this point when the highest level of the
design began to take shape. The problem domain lends
itsell well to an object oriented view, so problem solving
proceeded along this line.

Team members felt that the resulting specifications
were language neutral. The team had not yet had

extensive experience with Ada, and this particular
specification ethod pre-existed Ada. New
specifications freed the team from the FORTRAN
oriented design built into the original specifications.
One person felt that even the new specifications had a
design bias built in. However this one was an object
oriented one, and it was felt that it did not limit
development with| Ada. :

The team felt that rewriting the specifications
increased their understanding of the problem more than
merely analyzing [the original specifications would have
done. One person said one additional consequence of
rewriting the specifications was that this also prevented
them from postponing some important questions until
implementation, which would have meant major design
changes at that point.

It seems clear that new Ada developments will
require more time up front in the requirements,
specification and |design phases. However, this extra
effort should pay loff because of the deeper understand-
ing of both the problem and the solution domains. This
yields a higher quality product, better documentation of
these earlier phases, and a cost savings during testing
and maintenance. | :

2. 'Choose a
features.

If a methodology does not do this, why use Ada
rather than another language? Thus much of Ada’s
benefits stem from packages, tasks, and generics which
are central features distinguishing Ada from most other
languages.

ethod that exploits new Ada

One of the study objectives was to experiment with
various design methodologies. The Ada team did high
level designs with |three [Agresti, Brinker, Lo et al. 85].
They used structural decomposition, Cherry’'s PAMELA
{Cherry 85}, and ch’s object oriented design [Booch
83]. They found that structural decomposition did not
encourage use of Ada's unique features at all.
PAMELA, which was designed for use with embedded
systems, was viewed as too oriented toward concurrency
for this application. Booch’s object oriented design
methodology did not provide enough guidelines in its
representations for| a project this big. It left too much
up to the designer’s judgement.

As a result, the team developed their own object
oriented methodology, which incorporates ideas from
both Cherry’s and Booch’s methods [Seidewitz 85),
[Stark & Seidewitz 86], [Seidewitz & Stark 86]. The
methodology produces object diagrams as the final
result of object/data flow analysis. Two orthogonal
hierarchies exist:

(1) parent-child hierarchy (object decomposition)

(2) seniority hierarchy (an object using services of
another is senior to the used object).

The new object oriented methodology maps very
well into Ada, ag both are developed with modern

software engineering concepts in mind (e.g., data
abstraction, information hiding). - Objects easily convert
to packages, and packages encourage modularity. -

One of the successful results from the design is the
modularity. The team felt this helped make interfaces
easier to design, and increased interface reliability is
expected at testing. Another important eflect of modu-
larity in the design is the ease of adding new program-
mers to the project and phasing out other programmers
il required.

Another successful point is that the original design
is still being followed in implementation, without major
changes. The changes that have been made are addi-
tions. The team now feels that enough attention was
not given to type specifications during design. However,
it was felt the object diagrams were ‘quite helpful as a
framework for discussing proposed changes.

3. Team needs to know different design methods
to converge on an appropriate design.

Most programmers/designers in this environment
use functional decomposition as their design method.
Part of the training for the Ada team was the use of
other desigh methodologies. Cherry’s PAMELA and
Booch’s object oriented design methodologies are radi-
cally different from the standard procedural decomposi-
tion used in this environment. Such. exposure was one
source of broader insight into problem solving for the
team. Thus, including various design methodologies in

training, especially the one to be used for that project, .

is very important. This is needed to really exploit Ada's
features; it is not enough just to know the language.

An appropriate design both exploits Ada's features
and makes implementation easier. We have already dis-
cussed the first issue. Concerning the second issue, the
team has found that implementation was significantly
promoted by their design. This design in turn was
developed from their design methodology, which owes
much to other methodologies as well. It was easy for a
programmer to code from the design documents also.
This was true even when the coder was not the designer
for that section of the project. This has an important
benefit in that it permits the build up of staff during the
coding process allowing parallel development. In a pro-
ject with tight schedule and high people resources,
managers may be able to increase the stafling to minim-
ize time.

4. Pay attention to how the design is docu-
mented.

Object diagrams (see Figure 2) are the key type of
documentation produced by the team’s object oriented
methodology. Structure charts are the documentation
produced with the standard FORTRAN design process.

Lack of a specific methodology at the start of the
project was a problem for the team, though unavoidable
in this case because of the objectives of the study. The
representations changed over time as the methodology

developed, which was a big problem, since it made it
difficult to keep the design documents consistent. To
apply a methodology well, everyone needs to know the

‘ground rules at the start. This facilitates understanding

between developers on the team, as well as between the
team and manage

The key issue here is the importance of people’s
expectations in what they see. Less precision in the
structure charts and FORTRAN presentations at the
Preliminary -and Critical Design Reviews has been more
acceptable than would be allowed with Ada documenta-
tion. - Since the representations are so different for the
Ada documentation, any unspoken understandings and
intuition is lost.

Managers found they could not understand the
object diagrams at| these reviews. They tried to look at
them as though they were the familiar structure charts,
and could not visualize the design. Object diagrams
contain a high level of detail in order to express all the
relationships - they |are capable of expressing. If some
type of modification was made to suppress details of
relationships between modules so that some relation-
ships could be shown between a greater number of
modules, the gap between object diagrams and structure
charts would be lessened.

Even so, training is needed to make the object
diagrams familiar to managers and customers. Unfami-
liarity leads to congerns that something is being hidden.
The developers get| less feedback on the design as well,
when the design is not understood due to the represen-
tation.

One clear implication of this experiment is the need
for education of the managers and customers in both
Ada and the new concepts of software engineering. An
Ada-oriented development requires a fair amount of
knowledge on the part of the reviewers. There is both
more and different|types of information to examine to
validate each of the phases of the lifecycle.

5. Designing with Ada may imply different start-
ing and ending points of the design phase.

The legacy is that the starting point for design is a .
specifications document already containing the prelim-
inary design. As we have seen, a preliminary design
oriented toward FORTRAN would severely limit an
Ada design because it would not take advantage of
Ada’s features. In this case therefore, with the
specifications rewrjtten, less design existed in the
specifications document. But since some design is there
and this is also unfamiliar, the line where requirements
analysis of the specifications stops and the design phase
begins seems fuzzy.)

The milestones of the design phase may also be
different. In the usual software lifecycle with FOR-
TRAN, it was well |accepted what a Preliminary Design
Review (PDR) and| Critical Design Review (CDR) are.
The breaks between lifecycle phases seemed logical and
real. However there is no direct conversion for Ada,

since the new object oriented methodology and its docu-
mentation is so different from the traditional ones.
Again, preliminary design seems to fade into detailed
design, and detailed design fades into coding. This
made PDR and CDR seem to come at arbitrary times
rather than at logical points in the design process.

The team was divided in how prepared they felt for
PDR and CDR. One team member in particular felt
more prepared for these than usual because he under-
stood the design and its implications so well. Others
felt less prepared than usual due to the newness of the
methodology and representations, and unsureness of
how to map the state of the design into the sorts of
things generally expected at PDR and CDR.

One might consider the PDR occurring later than
normal but with more rigor. The PDR could be
represented by high level compilable design elements
and CDRs might be staged for different design elements
by examining more detailed Ada PDL pieces.

6. Ada gives an opportunity for compilable
design elements

Ada can work well as a compilable program design -
language (PDL). The PDL used with FORTRAN is .

pseudocode. The advantage of compilable PDL is of
course, that interface checking and type checking may

be done, which helps assure validity of the design in a-

way otherwise not possible at this early a stage. To do
this requires more precision in the design process than
the standard FORTRAN design process now takes.
However it also provides more assurance and confidence
during the PDR and CDR.

7. Costs money not to reuse previous designs.

This whole discussion speaks of the real cost of a
changeover to Ada as being the legacy accompanying
FORTRAN which is lost. This is the case when Ada is
viewed not merely as a programming language, but as
including a whole new problem solving "world view”,
This legacy includes old specifications, old design, old
code, intuition, and institutional knowledge which is not
recorded anywhere. The Ada team found itself facing a
bewildering number of questions needing to be answered
again for Ada, as well as brand new ones, once they
began using this new technology.

Summary

When Ada is designated at the start as the
language of choice, it may influence many aspects of
design. Observation of this project is continuing. As
the study proceeds we will be very interested in seeing if
what is gained makes this lost legacy worth losing.

Acknowledgements

The Ada experiment is managed by F. McGarry
and R. Nelson of NASA/GSFC. The authors would like
to thank them and the Ada team for their cooperation
and assistance.

References

[Agresti 84)
Agresti W,, “An Approach to Developing
Specification| Measures”, Proceedings of Ninth
Annual Software Engineering Workshop, Goddard

Space Flight Center, Greenbelt, MD 20771,
November 1984,

[Agresti 85)
Agresti W., “Ada Experiment: Lessons Learned
(Training/Requirements Analysis Phase)”, Goddard

Space Flight |Center, Greenbelt, MD 20771, August
1985. .

[Agresti 80
Agresti W., |“SEL Ada Experiment: Status and
Design Experiences”, Proceedings of Eleventh
Annual Software Engineering Workshop, Goddard
Space Flight Center, Greenbelt, MD 20771,
December 1986.

|
|[Agresti, Brinker, Lo, et al. 85]

- Agresti W,, Brinker E., Lo P., et al, “GRO Dynam-
ics Simulator in Ada (GRODY) -- Preliminary
Design Report”, Goddard Space Flight Center,
Greenbelt, M) 20771, December 1985.

|
[Agresti et al. 86] |
Agresti W., A‘hurch V., Card D., et al, “Designing
with Ada for Satellite Simulation: A Case Study”,
Proceedings of First Annual Sympostum on Ada
Applications for the NASA Space Station, Houston,
Texas, June 1086.

[Basili et al. 85
Basili V.R., Katz E.E., Panlilio-Yap N.M., Ramsey
C.L., and Chang S., “Characterization of a
Software Development in Ada,” IEEE Computer,

- Vol. 18, No. 9, Sept. 1085, pp. 53-65. September
1085.

[Booch 83)
Booch G., Software Engincering with Ada. Menlo
Park, California: Benjamin/Cummings Publishing
Co., Inc., 1983,

[Cherry 85]
Cherry G.W., “Advanced Software Engineering
with Ada -- Process Abstraction Method for

Embedded Large Applications”, Language Automa-
tion Associates, Reston, Virginia, 1985.

[McGarry, Page et al. 83]
SEL-81-205, “Recommended Approach to Software
Development”, McGarry F., Page J., Eslinger S.,
Church V., and Merwarth P., Goddard Space
Flight Center, Greenbelt, MD 20771, April 1983.

[McGarry & Nelson 85
McGarry F., and Nelson R., “An Experiment with
Ada -- The GRO Dynamics Simulator Project
Plan,” Goddard Space Flight Center, Greenbelt,
MD 20771, April 1985.

{Murphy & Stark 85]
SEL-85-002, ““‘Ada Training Evaluation and Recom-
mendations from the Gamma Ray Observatory Ada
Development Team’, Murphy R., and Stark M.,
Goddard Space Flight Center, Greenbelt, MD
20771, October 1685,

[Seidewitz 85)
Seidewitz E

Design”, Go

MD 20771, A

[Stark & Seidewit

SEL-86-002,

Development,

dard Space

August 1086.

[Seidewitz & Star
Seidewitz E.

“Some Principles in Object-Oriented
ddard Space Flight Center, Greenbelt,
ugust 1985,

z 86]

“General Object Oriented Software
', Seidewitz E., and Stark M., God-
Flight Center, Greenbelt, MD 20771,

k 86]
and Stark M., “Toward a General

Object Oriented Software Development Method™,
Proceedings
Applications
Texas, June 1986.

SCHEDULE*

*EFFORY LEVELS VARY

of First Annual Symposium on Ada
for the NASA Space Station, Houston,

REQTS.
ANALY.
s1s
\
FORTRAN SYSTEM ACCEPTANCE
4l DESIGN | IMPLEMENTATION e ke
H H] ' i
\ i i ! i '
' ' ' '] i
1
: ' : H : ! : SYSTEM
; | l : | | : H ' TEST
i
t]] '
H H B I H H H P~
REQTS . q
TRAINING ANALY- DESIGN IMPLEMENTATION Acc.
SIS o1 Test
T T T T T 1]]
ADA 1] [
TEam| @1 ! @ ! a1 | as ar ! 1 03 } et | a1 | 02 ! 03 ! a4
1 Il 1 i 1 5 I 1 i
1985 1986 1987

Figure 1. Schedule for the GRO experiment.

DATABASE

Figure 2. Example of an Object Diagram.
Seniority Hierarchy of Packages

Biographies

Carolyn E. Brophy is a graduate research
assistant at the University of Maryland, College Park.
Her research interests are in software engineering, and

" she is working with the NASA Goddard Software
Engineering Laboratory. Ms. Brophy received a B.S.
degree from the University of Pittsburgh in biology
and pharmacy. She is a student member of ACM.

William W. Agresti is
Corporation in Silver Spring,
the NASA Goddard Software

pleted the tutorial text, New
Development, for the IEEE

University.

‘ Victor R. Basili’s biography and picture are

included with the paper “TAME: Tailoring an Ada
Measurement Environment” by V. R. Basili and H. D.
Rombach in these proceedings.

with Computer Sciences
Maryland. He supports
Engineering Laboratory,
where he is currently project leader of the Ada
development team. His research interests are in
software process engineering, and he recently com-

Paradigms for Software
Computer Society. He

received the B.S. degree from Case Western Reserve
University, the M.S. and Ph.D. from New York

