TAILORING THE SOFTWARE PROCESS
TO PROJECT GOALS AND ENVIRONME NTS"

Victor R. Basili and H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park MD 20742

(301) 454-2002

ABSTRACT

This paper presents a methodology for improving the
software process by tailoring it to the specific project goals
and environment. This improvement process is aimed at the
global software process model as well as methods and tools
supporting that model. The basic idea is to use defect
profiles to help characterize the environment and evaluate
the project goals and the effectiveness of methods and tools
in a quantitative way. The improvement process is imple-
mented iteratively by setting project improvement goals,
characterizing those goals and the environment, in part, via
defect profiles in a quantitative way, choosing methods and
tools fitting those characteristics, evaluating the actual
behavior of the chosen set of methods and tools, and refining
the project goals based on the evaluation results. All these
activities require analysis of large amounts of data and,
therefore, support by an automated tool. Such a tool -
TAME (Tailoring A Measurement Environment) -- is
currently being developed.

KEYWORDS: software process, methods, tools, measure-
ment, evaluation, improvement, tailoring,
goals, environment, errors, faults, failures.

INTRODUCTION

One of the major problems in software projects is the
lack of management’s ability to (1) find criteria for choosing
the appropriate process (global process model and methods
and tools supporting those models), (2) evaluating the good-
ness of the software process, and (3) improve it. In a survey
of the software industry Thayer et al.® listed the twenty

* Research for this study was supported in part by the National Aeronautics and
Space Administration grant NSG-5123 to the University of Maryland. Computer
time was supported in part through the facilities of the Computer Science Center
of the University of Maryland.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy.
otherwise, or to republish, requires a fee and/or specific permission.

© 1987 ACM 0270-5257/87/0300/0345300.75

345

major| problems repprted by software managers. Of these
twenty, over half (at least thirteen) delineated the need of
management to find |selection criteria for the choice of tech-
nology or to be able [to judge the quality of the existing soft-
ware process.

In many cases,|there does exist a fair amount of tech-
nology available for| software projects. However, it is not
always apparent to the manager which of these methods or
tools to invest in, and whether or not they are working as
predicted for the articular project. What is needed in
almost all cases™is| a quantltatlve approach to software
manaﬁement and engineering.

We have been orking on a methodology for choosing
and improving the software process and resulting products.
A partlcular software process is defined by a global process
model and methods and tools that support it. In this paper
we emphasize choosing ‘and improving the set of methods
and tools in the context of a given global process model.
The criteria for improvement of the set of methods and tools
to be used in a project is the degree to which they support
the achievement of |given project quality and productivity
goals in this particular project environment. Such an evolu-
tionary improvement process requires the tailoring of
methods and tools to (constantly changing) project goals and
environment characteristics. Sound tailoring requires the
ability to characterize the project goals to be achieved, the
environment in which those goals are to be achieved, and the
effect of methods and tools on achieving those goals in a par-
ticular environment| Quantitative characterization is pre-
ferred because it gives more credibility to characterizations
and better justification to the improvement recommenda-
tions based upon these characterizations.

There are various approaches to characterization, one of
which: is to use defects (errors, faults, and failures). Project
goals lare characterized by the number and type of defects
(deviations from ‘the optimum), environments are character-
ized b‘y the number jand type of defects they impose on pro-
jects, .and methods |and tools can be characterized by the
number and type of defects related to their use. We can
think of alternative approaches to characterize the impact of
goals, environments, methods and tools. Instead of defects
during development we could.use defects during operation or
some measure of customer’s/user’s satisfaction. A com-
pletely different approach would be to characterize a project
environment and methods and tools by a set of factors such
as 'what are the abilities of humans involved and how are
those |abilities supported by candidate methods and tools’,
‘what are characteristics of the software process model and

Reviewed and recommended by:

Barry Boehm

how are those aspects supported by candidate methods and
tools’, etc. These different characterization approaches are
not necessarily exclusive but might be used together. How-
ever, in this paper we are basing our tailoring on defect
profiles during development.

As indicated in figure 1 the characterization mechanism
‘defects during development’ is applied to a particular
environment, the NASA/SEL environment. Therefore, all
the defect profiles and characterizations presented in this
paper are specific to those NASA/SEL projects. The. fact
that the impact of methods and tools may vary substantially
across environments does not affect the message to be sent
by this paper: There are ways to support a project
manager’s need to evaluate and improve the software process
based on quantitative information. The approach can be
transferred to other environments, the specific characteriza-
tions derived from NASA/SEL projects cannot; they have to
be revalidated in the new environment. ‘

Improvement
Methodology

7
7
7 !
-
-)
d)
P
rd] -
Products Global Process Methods and Tools
Models :
2T~
F~ -~
- —
- - /
PRt - ”~
User ...| Operational
Satisfaction Defects
N\
/{.\.\ IERIRAN
- ;
p—
-
— - -

-

Fig. 1. Improvement Methodology Framework

Figure 1 clearly decribes the overall scope of the
improvement and tailoring approach presented in this paper.
Based upon a general improvement methodology we (1)
emphasize choosing and tailoring the set of methods and
tools to specific project goals and environments, (2) use one
particular mechanism (development defects) for quantita-
tively characterizing project goals, environments, and the
effect of methods and tools, and (3) validate the approach in
one particular environment (NASA/SEL).

* The SEL (Software Engineering Laboratory) is a joint project between NASA
Goddard Space Flight Center, the University of Maryland, and Compiter Sei-
ences Corporation. The objective of this project is to evaluate and improve the
software process and its resulting products.

346

In the following sections we introduce the improvement
methodology; the relationship of errors, faults, and failures
with a (most process model underlying) problem-solution
model; classification schemes for errors, faults, and failures;
the tailoring approach including characterizations of the
impact of methads and tools in the NASA/SEL environment;
an application of the improvement methodology to a charac-
teristic NASA/SEL project; and, finally, the TAME (Tailor-
ing A Measurement Methodology) project intended to sup-
port all measurement and evaluation tasks required by the
presented improyement methodology.

IMPROVEMENT METHODOLOGY

The improvement methodology requires a mechanism
for characterizing the project environment and the candidate
process models, methods, and tools. The process requires an
organized mechanism for determining the improvement
goals; defining those goals in a traceable way into a set of
quantitative questions that define a specific set of data for
collection. The improvement goals flow from the needs of the
current project and, as far as possible, knowledge from previ-
ous projects. Based on a check to what degree the esta-
blished improvement goals can be met by candidate process
models, methods, and tools in the particular project environ-
ment, the most| promising ones are chosen for the current
project. Throughout the project the set of prescribed data is
collected, validated, fed back into the current project, and
subsequently evaluated for the purpose of improving future
projects. This evaluation determines the degree to which the
stated improvement goals were met by the chosen software
process. ‘Based| on these findings recommendations for
improvement ar¢ made as input for the next project.

This whole|improvement. process® is structured into five
major steps:

1. Characterize the approach/environment.
This step requires an understanding of the various factors
that will influence the project development. This includes
the problem factors, e.g. the type of problem, the newness
to the state of the art, the susceptibility to change, the
people factors, e.g. the number of people working on the
project, their|level of expertise, experience, the product
factors, e.g. |[the size, the deliverables, the reliability
requirements, portability requirements, reusability require-
ments, the resource factors, e.g. target and development
machine systems, availability, budget, deadlines, the pro-
cess and tool factors, e.g. what methods and tools are
available, training in them, programming languages, code
analyzers.

2. Set up the goals, questions, data for successful pro-

ject development and improvement over previous
project developments.
It “is - at “this point the organization and the project
manager must determine what the goals are for the project
development. [Some of these may be specified from step 1.
Others may be chosen based upon the needs of the organi-
zation, e.g. reusability of the code on another project,
improvement of the quality, lower cost.

3. Choose the
project. .
Once it is clear what is required and available, methods

appropriate methods and tools for the

and tools should be chosen and refined that will maximize
the chances of satisfying the goals laid out for the project.
Tools may be chosen because they facilitate the collection
of the data necessary for evaluation, e.g. configuration
management tools not only help project control but also
help with the collection and validation of error and change
data.

4. Perform the software development and mainte-
nance, collect the prescribed data and validate it,
and provide feedback to the current project in real
time.

This step involves the transfer of new. technologies chosen
in the previous step into the current project environment,
and the application of the new software process.
Throughout the project data have to be collected by
forms, interviews, and automated collection mechanisms.
The advantages of using forms to collect data is that a full
set of data can be gathered which gives detailed insights
and provides for good record keeping. The drawback to
forms is that they can be expensive and unreliable because
people fill them out. Interview can. be used to validate
information from forms and gather information that is not
easily obtainable in a form format. Automated data col-
lection is reliable and unobtrusive and can be gathered
from program development libraries, program analyzers,
etc. However, the type of data that can be collected in

this way is typically not very insightful and one level
removed from the issue being studied. Besides the post
mortem analysis in step 5 for the purpose of suggesting
improvements for future projects, we are also interested in
tuning the software process of the ongoing project based
on real time feedback from measurement activities.

5. Analyze the data to evaluate the current practices,

determine problems, record the findings, and make
recommendations for improvement for future pro-
jects,
This is the key to the mechanism. It requires a post mor-
tem evaluation of the project. Project data should be
analyzed to determine how well the project satisfied its
goals, where the methods were effective, where they were
not effective, whether they should be modified and refined
for better application, whether more training or different
training is needed, whether tools or standards are needed
to help in the application of the methods, or whether the
methods or tools should be discarded and new methods or
tools applied on the next project. Proceed to step.1 to
start the next project, armed with the knowledge gained
from this and the previous projects.

This procedure for developing software has a corporate
learning curve built in. The knowledge is not hidden in the
intuition of first level managers but is stored in a corporate
data base available to new and old managers to help with
project management, method and tool evaluation, and tech-
nology transfer.

As indicated earlier the effectiveness of ‘this improve-
ment methodology depends on the ability to quantitatively
characterize the improvement criteria ’environment’ (see step
1) and ’goals’ (see step 2) as well as the effectiveness of our
improvement vehicles *process models’, *methods’, and 'tools’
in meeting those criteria (see step 2). The following sections
of this paper propose an approach to support the activities
in figure 2 marked with '*’ by analysis of error, fault, and

347

K

STEP 1: - characterize environment
- characterize candidate
models, methods, and tools (*)

™)

, A
(++)

STEP 2: - set up improvement goals
- quantify goals (+)®
- check consistency between

Y improvement goals and
candidate models,
methods and tools &)
STEP 3: - choose appropriate models (**)
- - chopse appropriate

methods and tools

(**)

Y
STEP 4: - transfer chosen technology
- perform software project (+)
- collect data (+)
- validate data +
- provide feedback in real time (+)

)

STEP 5: - analyze data post mortem
- recommend new improvement
goals for future projects (+)
- proceed to step 1

(+)

Y

Fig. 2. Improvement Methodology

failure profiles. The steps concerned with setting up improve-
ment%goa.ls, data collection and validation, data analysis, and
interpretation are performed according to a separate evalua-
tion methodology® these steps are marked with '+’ in figure
2. The choosing of appropriate models, methods, and tools
(see steps marked with ™** in figure 2) is made based on
characteristics of the of improvement goals and the environ-
ment and sound knowledge concerning the qualification of
models, methods, and tools of meeting those characteristics®,

The use of methods and tools is supposed to improve
software quality and productivity by reducing the number of
defects. To make effective use of methods and tools one has
to be aware of the nature of defects.

Defects exist in three different instances according to':
Errors are defects in the human thought process made
while trying to understand given information, to solve prob-
lems, or to use methods and tools. Faults are the concrete

manifestations of errors within the software. One error may
cause several faults; various errors may cause identical
errors. Failures are the departures of the software system
from software requirements (or intended use respectively). A
particular failure may be caused by several faults together; a
particular failure may be caused by different faults alterna-
tively; some faults may never cause a failure (difference
between reliability and correctness).

METHODS + TOOLS

m

DETECT

.
.
-
e

——tause _y [FAULTS] TS .mm&.) AIL

ERROR
. *‘
5 Methods and Tools dea‘lmg with Defects \

Probleni‘Solutlon Model 07‘ Softﬁ:{a Process Models \

: TN ¥
. o \ " ANALYZE
: ¥ L

Fotlm], CONSTCT |\ ANALYZE
q “\ \

UNDERSTA \ execute

4

Fig. 3. Methods, Tools - Defects - Process Model

In Figure 3, the above defined relationship between
errors, faults, and failures, their relationship with a general
problem solving model incorporated in each concrete process
model, and their relationship with prevention, isolation, or
detection methods and tools is outlined.

A general problem solving model incorporated in each
process model consists (or should consist) of an iteration of
the following sequence of general activities:

e Understanding of given information such as problem,
requirements or design documents

¢ Constructing some new (in general more concrete) solu-
tion

¢ Documenting the new solution

e Analyzing the new solution, and possibly starting a new
iteration of development or executing the product

e Managing the development and maintenance process and
all resulting documents (data)

The relationships between errors, faults, failures on the one
hand and the prevention or detection approach on the other
hand are as follows:

* The number of iterations depends on the chosen global process model.

348

¢ Errors can be prevented {e.g. by training).

e Faults can be prevented from entering a software pro-
duct (e.g. by a|syntax directed editor).

e Faults can be detected during non-operational analysis,
all related faults can be isolated and corrected.

¢ Failures can be detected during execution (test or
operation), all related faults can be isolated and corrected.

effectiveness of the

The introduced improvement
methodology depends -on the availability of defect
classification schemes allowing us to characterize quality and
productivity aspects, as well as the impact of a particular
environment on quality and productivity, and to distinguish
between methods and tools based on the degree to which
they can prevent, detect, isolate and correct various defect
classes. Numerous classification schemes for defects were
proposed for various purposes. In this section several
classification schemes for errors, faults, and failures will be
presented which jare expected to allow us to do a good job in
tailoring methods and tools towards project improvement
goals and environments. Most of these schemes were
presented in the| literature already, some are refinements of
earlier schemes.

The usefulness of each classification scheme for the pur-
pose of tailoring methods and tools to improvement goals
and ‘environments is evaluated with respect to three criteria:
1) is it possible to decide the defect class for each defect, 2)
can the information necessary for the decision be collected
easily, and 3) for each class, are there methods and tools
that can either prevent or detect, isolate, and correct the

defects in that ¢
a scheme is of an
mulates the char
each defect there
whereas the thir
context.

lass. The first criterion determines whether
y practical use, the second criterion just for-
acteristics of a real classification scheme (for
exists one and only one class it belongs to),
4 criterion defines the goal of schemes in this

ERROR CLASSIFICATION

The criteri
is, to define cl
be prevented by
presented error
identification of

n for a classification of errors in this context
es of errors by the ease with which they can
different (types of) methods and tools. The
classification schemes all try to allow the
certain problem areas within the project

environment. The first classification scheme indicates the

phases in which
scheme indicates

resulted in error

literature” ®, mos
two schemes; re
appropriate in
characteristics.

The practic
eral is tricky bec
ing documents.
understand - the
being after the

errors occurred; the second classification
domains of the project environment which
s. There exist many more schemes in the
t of them being refinements of the following
finements of these two schemes might be
order to represent specific environment

or 'problem-solution’.

al use of error classification schemes in gen-
ause error data can’t be collected by analyz-
By nature, identifying errors means to
defect in the thought process of a human
fact’®. The problems, and consequently

sources for misclassification, lie in the attempt to reconstruct
the thought process of human beings as well as in the fact

that this classific

ation of errors is usually done after the fact.

The usual procedure is, that fault data are collected, and
error data are derived based on interviews with the original
programmer or subjective guesses. An additional problem
lies in the complex interrelationship between errors and
faults: One error can result in different faults (an application
error might result in a control fault as well as in a computa-
tion fault), one fault might be caused by different errors (a
computation fault can be caused by an application error as
well as by a clerical error), one error can result in a number
of faults at the same time. Faults are classified depending
on how they were corrected. It is well-known that a given
fault in many cases might be corrected in different ways
(changing a control construct or changing a computation)
what would put it into different fault classes. Trying to
reconstruct the underlying error based on such vague fault
classification might be an impossible

Error Scheme 1 (by Time of Error Occurrence).
Classification of errors by the time of their occurrence allows
you to attribute certain errors to methods and tools used at
this time. Because methods and tools are usually used during
certain phases or activities according to some process model,
the virtual time scale used for error classification is phases.
E.g., for NASA projects monitored by the University of
Maryland errors were classified, according to NASA’s process
model, as 1) requirements, 2) specification, 3) design, 4)
code, B) unit test, 8) system test, 7) acceptance test,
and 8) maintenance errors. Whenever one of the classes
in such a classification scheme shows an above average
number of errors we know what phase to emphasize for the
purpose of error prevention. This classification scheme
fulfills all three criterion for being useful.

Error Scheme 2 (by Domains which are Causing
the Errors). Classification of errors by the project aspects

that caused problems allows you to attribute certain errors
to methods and tools dealing with these aspects of the soft-
ware project. Typical problem domains can be the applica-
tion area, the methodology to be used, the environment of
the software to be developed, ete. The following
classification is a slight modification of the scheme developed
by Basili and others™

e Application errors are due to a misunderstanding of the
application or problem domain. Application errors are
possible during all life cycle phases, but are more likely
during early development phases.

e Problem-Solution errors are due to not knowing,
misunderstanding, or misuse of problem solution processes.
This kind of errors occur in the process of finding a solu-
tion for a stated and well-understood problem; this solu-
tion is then going to be represented using the syntax and
semantic rules of some language. Practically, these
problem-solution errors can occur in the process of specify-
ing, designing or coding a problem.

e Semantics errors are due to a misunderstanding or misuse
of the semantic rules of a language (for representing code,
designs, specifications, or requirements).

e Syntax errors are due to a misunderstanding or misuse of
the syntactic rules of a language (for representing code,
designs, specifications, or requirements).

e Environment: errors are due to a misunderstanding or
misuse of the hardware or software environment of a given
project. Environment comprises all hardware and software
used but not developed within a given project (for exam-

349

ple, operating systems, devices, data base systems).

¢ Information Management errors are due to a mishan-
dling of certain procedures.

¢ Clerical errors are due to carelessness while performing
mechanical transcriptions from one format to another or
from one medium to another. No interpretation or seman-
tic translation is involved. Examples are typing errors
using an editor.

This classification scheme has its problems with respect to
criterion 1. It is nat always easy to decide whether an error
is of type ’application’ or of type 'problem-solution’.

FAULT CLASSIFICATION

The criterion for a classification of faults in this context
is, to define classes|of faults by the ease with which they can
be detected or isolated by different (types of) methods and
tools. The presented fault classification schemes try to allow
the identification of certain problem areas within the project
environment. The |first classification scheme indicates the
phases in which faults are detected; the second scheme indi-
cates whether a fault was due to omission or commission; the
third classification scheme indicates various software aspects
affected by faults. /A number of fault classifications exist™ '™
18, 19

Fault Sche (by Time of Fault Detection).
Classification of faults by the time of their detection allows
you to attribute certain faults to methods and tools used up
to this time. Because methods and tools are usually used
during certain phases or activities according to some process
model, the virtual time scale for fault classification is phases
or activities. In the|case of the NASA/SEL environment the
same classification scheme is used as in error scheme 1. This
classification scheme fulfills all three criteria for being useful.

(by Omission/Commission).
Classification of faults depending on whether something is
missing completely| (omission) or whether something is
incorrect (commission) proved to be a very helpful
classification with respect to classifying methods and tools.
It is obvious that omission errors are harder to detect by
detection methods and tools solely based on the source code
such as structural testing, whereas functional testing or code
reading are more successful based on the fact that these
methods include the corresponding specifications into the
detection process’.| This classification scheme is useful
according to our three criteria.

(by Software Aspects Affected by
Faults). Classification of faults by the product aspects
affected allows us to attack certain faults by methods and
tools aiming at exactly those aspects. It is obvious that a
large number of control flow faults is better detected by a
detection method or tool which is based on dynamic simula-
tion of the program (such as testing) rather than static
checks (such as code reading by stepwise abstraction)’. How
many classes exist depends heavily on the language used. It
doesn’t make sense to create classes for faults that cannot be
identified easily because the corresponding aspects are not
represented by language features explicitly. One example is
that in Fortran environments it is harder to identify control
flow faults of global character (affecting more than one pro-
gram unit) than it |is in Ada, where interfaces are explicit.
Therefore, the following classification scheme, used in the

NASA/SEL Fortran environment is of higher granularity
(especially as far as interface or global faults are concerned)
than the corresponding scheme for an Ada environment
would be:

e Control Flow faults are related to incorrect control flow
within one module. Examples are incorrect sequences of
statements, incorrect branching, use of incorrect branching
condition, or incorrect computation of branching condi-
tion.
Interface faults are related to problems affecting more
than one module. Examples are incorrect module inter-
faces, incorrect implementation in more than one module
due to a bad design decision, or incorrect definition or ini-
tialization of global data. An interface fault might require
corrections in only one or in more than one module.
Data faults are related to incorrect data handling. One
can distinguish between three types:
- Data Definition faults are related to incorrect name,
type, or memory specification.
- Data Initialization faults are related to incorrect ini-
tialization of a variable. ,
- Data Use faults are related to wrong use of a vari-
able.
o Computation faults are related to incorrect mathematical
expression (if not a branching condition).

This classification scheme is useful with respect to our three
criteria. If a fault seems to fit into more than one class, the
first applicable one is to be chosen.

U. CLASSIFI 10

The criterion for a classification of failures in this con-
text is, to define classes of failurés by the ease with which
they can be detected by different methods and tools. The
presented failure classification schemes allow the
identification of the failure time and the impact of failures
on the production of a system.

Failure Scheme 1 (by Time of Failure Detection).

Classification of failures by the time of their detection allows
you to attribute certain failures to methods and tools used
up to this time. Because methods and tools are usually used
during certain phases or activities according to some process
model, the virtual time scale for failure classification is
phases or activities. In the case of the NASA/SEL environ-
ment a subset of the classification scheme in 4.1:1. is used;
only those phases or activities are used which include execu-
tion: (1) unit test, (2) system test, (3) acceptance test,
and maintenance. This classification scheme is useful
according to all three of our criteria.

Failure Scheme 2 (by Severity of Failures).
Classification of failures by their impact on the environment
of the system under consideration allow us to decide on the
degree to which those failures can be tolerated. A possible
classification scheme is (1) stops production completely,
(2) impacts production significantly, (3) prevents full
use of features, but can be compensated, and (4) minor
or cosmetic. This classification scheme is useful for charac-
terizing the impact of failures, but it does not allow the
classification of methods and tools with respect te the ease
with which those failures can be detected.

350

Supporting| the improvement methodology for the pur-
pose-of tailoring|the set of methods and tools to be used in a
project, requires quantification of how to characterize §))]
project improvement goals, (2) the particular project
environment, and (3) the effect of candidate methods and
tools on those goals and environment. The approach chosen
in this paper is| to utilize error, fault, and failure analysis.
As discussed as part of the introduction section and reflected
in figure 1, utilizing defects is only one possibility for charac-
terizing improvement goals, environments, methods, and
tols for the purpose of tailoring. However, it is an approach
that guarantees that we take all factors possibly affecting the
outcome of a project into consideration. The advantage of
this approach is|that we can use data from previous similar
projects in the same environment; the disadvantage is that
we take an indirect characterization approach (by measuring
the impact of environments) rather than a direct approach
(by ‘measuring (factors of the environments themselves).
Indirect approaches allow precise characterizations of
environments by conducting post-mortem analysis of the
impact of environments and methods and tools in this
environment on |quality and productivity; direct approaches
allow better characterization of new environments before any
projects are completed in this new environment.

goal/question/metric (GQM) paradigm® * * 7 developed to
help us define the areas of all kinds of studies, in particular
studies concerned with improvement issues, and help in the
interpretation of the results of the data collection process.

The paradigm does not provide a specific set of goals but
rather a framework for stating goals and refining them into
specific questions about the software development process
and product that provide a specification for the data needed
to help answer the goals.

Using this| paradigm, the process of quantifying
improvement goals consists of three steps:

1. Generate a set of goals based upon the needs of
the organization.
The first step |of the process is to determine what it is you
want to improve. This focuses the work to be done and
allows a framework for determining whether or not you
have accomplished what you set out to do. Sample goals
might consist of such issues as on how to improve the set
of methods and tools to be used in a project with respect
to high quality products, customer satisfaction, produc-
tivity, usability, or that the product contains the needed
functionality.

2. Derive a of questions of interest or hypotheses
‘which quantify those goals.
The goals must now be formalized by making them
quantifiable. This is the most difficult step in the process
because it often requires the interpretation of fuzzy terms
like quality or productivity within the context of the
development lenvironment. These questions define the
goals of step 1. The aim is to satisfy the intuitive notion
of the goal as completely and consistently as possible.

3. Develop a set of metrics and distributions which

provide the information needed to answer the ques-
tions of interest.
In this step, the actual data needed to answer the ques-
tions are identified and associated with each of the ques-
tions. However, the identification of the data categories is
not always so easy. Sometimes new metrics or data distri-
butions must be defined. Other times data items can be
defined to answer only part of a question. In this case, the
answer to the question must be qualified and interpreted
in the context of the missing information. As the data
items are identified, thought should be given to how valid
the data item will be with respect to accuracy and how
well it captures the specific question.

In writing down goals and questions, we must begin by
stating the purpose of the improvement process. This pur-
pose will be in the form of a set of overall goals but they
should follow a particular format. The format should cover
the purpose of the process, the perspective, and any
important information about the environment. The format
(in terms of a generic template) might look like:

¢ Purpose of Study:
To (characterize, evaluate, predict, motivate) the (process,
product, model, metric) in order to (understand, assess,
manage, engineer, learn, improve) it. E.g. To evaluate the
system testing methodology in order to improve it.

e Perspective:
Examine the (cost, effectiveness, correctness, errors,
changes, product metrics, reliability, etc.) from the point
of view of the (developer, manager, customer, corporate
perspective, etc) E.g. Examine the effectiveness from the
developer’s point of view.

e Environment:
The environment consists of the following: process factors,
people factors, problem factors, methods, tools, con-
straints, etc. E.g. The product is an operating system that
must fit on a PC, ete.

e Process Questions:
For each process under study, there are several subgoals
that need to be addressed. These include the quality of
use (characterize the process quantitatively and assess how
well the process is performed), the domain of use (charac-
terize the object of the process and evaluate the knowledge
of object by the performers of the process), effort of use
characterize the effort to perform each of the subactivities
of the activity being performed), effect of use (characterize
the output of the process and the evaluate the quality of
that output), and feedback from use (characterize the
major problems with the application of the process so that
it can be improved).

Other subgoals involve the interaction of this process with
the other processes and the schedule (from the viewpoint
of validation of the process model).

o Product Questions
For each product under study there are several subgoals
that need to be addressed. These include the definition of
the product (characterize the product quantitatively) and
the evaluation of the product with respect to a particular
quality (e.g. reliability, user satisfaction)

351

The definition of the product consists-of:

1. Physical Attributes. e.g. size (source lines, number of
units, executable lines), complexity (control and data),
programming language features, time space.

2. Cost. e.g. effort|(time, phase, activity, program)

3. Changes. e.g. errors, faults, failures and modifications
‘by various classes.

4. Context. e.g. customer community, operational profile.
The improvement is relative to a particular quality e.g.
correctness. Thus the physical characteristics need to be
analyzed relative to these.

The improvement goals and questions in the appendix were
derived by applying |this template.

ing sound software development on pre-
cise formulation of project goals or objectives is not new; it
is related to a number of approaches, e.g., Boehm’s 'Goal-
Oriented Approach|to Life-cycle Software (GOALS)™ and
Gilb’s 'Multi-Element Component Comparison and Analysis
Method (MECCA)". However, there are major differences
between these approaches and our improvement methodol-
ogy based on the GQM: paradigm. In Boehm’s approach,
major project goals are identified by using a ’software
engineering goal structure’ and means for achieving those
goals are defined. This approach corresponds to the setting
up of goals in our improvement methodology (see step 2).
The GQM approach provides support for.generating goals in
a more formal way (see our goal templates) and deriving
quantifiable questions and metrics (see our process and pro-
duct related templates). Gilb’s approach is closer to our
GQM approach. However, the two major differences are that
the GQM approach formalizes the refinement of high-level
goals -into metrics, and permits the interpretation of meas-
urement results the context of a particular project
environment by allowing for subjective metrics in addition to
objective metrics.

CHARACTERIZ] MEN

Characterizing|the environment was one of the subgoals
in applying the GQM paradigm to characterizing improve-
ment goals. The enyironment was characterized in terms of
subjective metrics such as 'to which degree were certain
methods or tools used by the project personnel’. The prob-
lem with these subjective metrics is that it is hard to choose
methods and tools based solely on such unprecise criteria.

-

It is our goal to characterize the project environment as
objectively as possible. The approach chosen in this paper is
use error, fault, and failure profiles for characterizing the
environment in a quantitative way. We are actually measur-
ing the impact of the environment on the quality of the soft-
ware process and its resulting products. This indirect charac-
terization has the advantage of objectivity. We can either
use actually measured defect profiles or, if measurement
results are not available, hypothesized defect profiles. All
changes in a project environment can expected to be
reflected in changing defect profiles. Unfamiliarity with the
application domain can be expected to result in more appli-
cation - errors, using| a set of new concepts for structuring
software, e.g. using Ada as implementation language, can be
expected to result in| more problem-solution errors.

Assuming we know the effect of certain methods and
tools on defect profiles, it should be relatively easy to tailor

tne set of methods and tools to cope with defect profiles of a
particular environment.

CHARACTERIZING METHODS AND TOQLS

The effectiveness of the improvement methodology
depends on the amount of knowledge we have on the impact
of methods and tools on defect profiles. Unfortunately, we
do not have enough such knowledge yet. Most. of the avail-
able knowledge is extremely environment dependent.

We have to start creating environment specific
knowledge concerning the effect of methods and tools. Where
not enough knowledge is available in terms of measured
results, we have to add hypotheses in order to start using
the proposed methodology effectively. As we apply the
improvement methodology we increase our initial knowledge
based on analysis results derived during step 4 of our metho-
dology. Our goal must be the refinement of existing
knowledge and the substitution of actual analysis results for
hypotheses.

Tables 1, 2, and 3 describe the impact of a small set of
methods and tools on preventing errors and detecting faults.
This knowledge is mostly based on actual measurement
results as far as detection is concerned®, and hypotheses as
far as prevention is concerned. We selected methods and
tools which are either currently used or are candidates for
future use in the NASA/SEL environment. In most case the
names of the methods and tools are self-explanatory. How-
ever, the reuse method employed at NASA/SEL needs some
explanation: In the NASA/SEL environment applications of
similar type are developed over and over again; therefore,
not only code modules but especially whole specifications and
designs are reused with modifications. Without knowing
these specifics of .iie reuse method used at NASA/SEL the
impact of reuse in table 3 might look much too positive.
Both measurement results and hypothesis (see tables 1, 2,
and 3) are NASA/SEL specific. Therefore, the characteriza-
tions in these tables may vary significantly for different

environments. However, we expect the general pattern to be
more or less preserved.

Table 1
Fault Detection classified according to Scheme 2

Fault Classes
METHODS + TOOLS Omission | Commission
Functional Testing + +
Structural Testing - [
Code Reading
(by stepwise abstraction) + +
Syntax Directed Editor - o

The impact of methods and tools is determined on a
subjective scale (--, -, 0, +, ++). "Characterizing the effect of
a method or tool with respect to a particular defect class as

352

--’ means that|this method or tool is never able to detect or
prevent defects of this type, as >-’, that it is unlikely that
this method or tool will detect or prevent defects of this
type, as '0’, that it is possible that this method or tool will
&etect or prevent defects of this type, as ’+’, that it is likely
that this method or tool will detect or prevent defects of this
type, and as '+’ that it is certain that this method or tool
will detect- defects of this type. It is evident that only the
eflect of (automated) tools can be classified as - or '++7;
for all (non-automated methods there is never a guarantee
that they will never or always detect or prevent certain
types of defects due to the fact that the ability of human
beings is a deciding factor.

Table 2
Fault Detection classified according to Scheme 3

FAULTS
Data Intesface
METHODS 4 TODLS Control | Comput. | Def. | Init. | Use | Giobal Data | Other
Fuactional Testing + + - +
Structural Testing o o - o
Code Reading
(by stepwise abstractlon) ° + - + - [o
Syntax Directed Editor - + L
“Tool for keeping track of
common data + references - - - - - +

Table 3
Error Prevention classified according to Scheme 2

Error Classes
METHCDS + TOCLS Appl. | Prob.-Sol. | Sem. | Synt. | Env. | InfMagmt. | Clerical

‘Tralning wrt. Application + + ° ° ° °

'!’nlnhu‘ wrt. Language/

Environment - - + + +
Chief Programaner Tesm + + ° o o + +
Document Library - - ° + +
Configuration Control
(sutomated) - - - - + + +

Reuse + + + + ° °
PDL Design Lang ¢ ° + + - + [}
PIL Processor - + + + - + +
Syntax Directed Editar - - o + +
Data Abstraction - + o - L ° -

APPLICATION OF THE TAILORING PROCESS

The presented improvement methodology including the
approach to characterizing goals, environment, and methods
and tools by defect profiles was applied to a characteristic
project in the NASA/SEL environment. The project was
analyzed after completion, and based on the analysis results
recommendations were made for future projects of the same
class.

Some of the results of this improvement process are
presented according to the five steps of the improvement
methodology:

e Step 1: The project is characteristic for the class of

familiarity with the

solution and clerical ¢
inexperience of the t

high number of errors
of a single componen
that the high numbe

application; the number of problem-
errors can be explained by the relative
he lower-level project personnel. The
s occurring during the design or coding
t (see table 5) supports the hypothesis
of problem-solution errors in table 1,
can, in fact, be linked to the inexperience of the lower:level

ground support systems developed at NASA. Projects of
this class were built several times before; therefore, a very
high amount of code was reused from these previous pro-
jects. The software process for these class of systems is
well established; whereas the process model was not
changed over time, the set of methods and tools was fine-
tuned to the application from time to time. The manage-
ment personnel (first line managers and above) are
extremely experienced in this class of projects, whereas
lower-level personnel frequently changes. Based on the
continuity at the management level, managers understand
the design of the systems very well. The development pro-
cess is not supported by a very high number of automated
tools; this fact is currently changing in the NASA environ-
ment. An important characteristic of this class of projects
is the fact that the managers are very familiar with the
future use of their systems. As a consequence, a testing
method for system and acceptance test was established,

personnel.
Table 5
Error Profile according to Scheme 1
ERROR CLASS PERCENTAGE
1 Requirements 5%
Specification 3%
Design or Implementation
- of a single component 8%
- of more than one component 1%
Use of Language 8%

[This classiﬁcatiol) scheme is slightly different from
error scheme 1; data for error scheme 1 were not
available for this|project. As opposed to classifying
errors by the time of their occurrence, here they are
classified by the| project aspects affected: require-
ments, specification, design or implementation, and

whose termination criterion is not decreasing mean-time-
between-failures but just the completion of the set of test
cases derived from this knowledge concerning future use of
the system.

Table 4
Error Profile according to Scheme 2

ERROR CLASS PERCENTAGE
Application 5%
Problem-Solution 58%
Semantics 8%
Syntax 3%
Eavironment 2%
Information Management 5%
Clerical 17%

Looking at the error profiles in table 4, we recognize a
low number of application errors, -a high number of
problem-solution errors, and a high number of clerical errors.
The number of application errors reflects the extreme

353

use of language.

Table 8

Fault Profile ;ccording to Scheme 2

FAULT CLASS PERCENTAGE
Omission 22%
Commission 76%
Table 7
Fault Profile according to Scheme 3
FAULT CLASS || PERCENTAGE
Control 13%
Computation 16%
Data 30%
Interface
- global data 13%
- other 20%

The fault profile in table 6 reveals a percentage of omis-
sion faults (22%) which is lower than the average in this
class of projects (this base line data is not included in the
tables). One explanation is the very high percentage of reuse
in this project.

The fault profile in table 7 supports findings reported
by Basili and Perricone®, that reuse results in a lower
number of control flow faults. According to the same study,
the high percentage of data faults is due to the inappropri-
ate method for writing specifications; these specifications
made it hard to understand differences between old algo-
rithms (from previous projects) and new algorithms (required
for the current project). The number of global data faults,
even in a Fortran project, seems to be unnecessarily high.

Failure profiles could not be measured for this class of
projects. NASA manages to have almost no failures during
operation. This fact is due to a very thorough testing process
and the perfect knowledge concerning future use of those
systems.

o Step 2: The project goals for this class of systems in the
NASA/SEL environment are to produce highly reliable sys-
tems and to produce them on time. The improvement goals
are to decrease error and fault classes which were identified
as overrepresented in step 1 by changing the set of methods
and tools.

o Step 3: Recommendations for future projects based on les-
sons learned from the analysis of this project are: A number
of recommendations for future projects could be made based
on lessons learned from the analysis of this particular pro-
ject. The fact that these recommendations are not very
surprising does not affect the importance of the analysis
results. The objectivity of quantitative analysis results, even
if they are not surprising, increase the credibility of these
results and the justification of the improvement recommen-
dations based upon these analysis results. Another advan-
tage of quantitative analysis results is that they might allow
evolutionary improvement by revealing the problem sources
rather than improper improvement recommendations or
revolutionary improvement.

- Train (lower-level) personnel better with respect to algo-
rithms and technologies to be used; use studies of solutions
of this class of problem. This approach promises to lower
the number of problem-solution errors.

- Integrate more automated tools into the software process
for preventing clerical errors; candidate tools {according to
table ??) are configuration control tools, PDL processors,
and syntax-directed editors.

- Indications that reuse lowers the number of omission faults
suggest to encourage the implementation of reuse stra-
tegies in future projects. The detection of omission faults
is very difficult; therefore, reuse as a prevention method is
even more important.)

- Better specification methods and tools should be introduced
in order to decrease the number of data faults due to
misunderstanding of the specifications written according to
the currently used method.

- The high number of global data faults is mostly due to
changes in common data structures without updating all
references. It should be easy to implement a tool keeping
track of all common data structures and related references.
In the case of changing data stractures all affected

354

references conld be updated.

These recommendations promise to improve the development
of future systems of the same class. This assumption has to
be verified by performing steps 4 and 5 of the improvement
methodology in| future projects.

TOOL SUPPORT
FOR THE IMPROVEMENT METHODOLOGY

All steps of the methodology for choosing, evaluating,
and improving [process models and their support by methods
and tools require automated support. In 1986 we started the
TAME (Tailoring A Measurement Environment) project
which aims at the development of a prototype environment
to support all kKinds of quantitative evaluations. :

The objective of the TAME prototype is to support
quantitative and qualitative evaluation of Ada projects (pro-
cess and product aspects) in the framework of the GQM
paradigm. This includes (1) setting up the environment for
evaluation (deriving goals, questions, metrics, establishing
protection mechanisms), (2) conducting the actual measure-
ment and evaluation activities, and (3) maintaining a histori-
cal database. In the long-run such a system could become
an integral part of a comprehensive Software Development
Environment.

The requirements for the TAME system provide for
many features which assist the user in all kinds of measure-
ment activities, including those required in the context of
this methodology. These features include:

e generating evaluation goals, questions, and metrics.
Goal-oriented evaluation will be conducted in the context
of the GQM paradigm. The formulation of specific goals
and corresponding questions is not an easy task; the

will give assistance in performing this task.

o collecting datha. ‘

The metrics| or distributions necessary for addressing par-
ticular evaluation questions may originate from different
sources, e.g., forms filled out by development or mainte-
nance personnel, source code, all kinds of documents, run-
ning systems. The computation of the metrics is per-
formed by a|set of measurement tools analyzing these raw
data, such static code analyzers. The TAME system
will support |inputing and storing the raw data and com-
puting the metrics required for evaluation purposes.

e validating collected data.

All collected|data (especially those collected by forms) are
subject to errors. The system cannot guarantee complete-
ness and correctness in a strict way. For example, how
should the system judge whether the reported schedule for
completing some development task is correct or not?
However, it can guarantee partial completeness and con-
sistency; e.g., it can check that the schedule for completing
all modules of a system is consistent with the schedule of
the whole system.

e storing data in a data repository.

All data have to be stored in a data repository as soon as
collected. Data have to be identifiable according to vari-
ous criteria, e.g., when collected, from which source (type
of document, version, product name, etc.), time period
covered. In |addition, the system has to maintain con-
sistency of the data repository.

e retrieving information for answering particular evaluation
questions.
The TAME system will provide a basis for answering the
user’s evaluation questions based on information available
in the data repository.

e evaluating data.
The TAME system will provide goal-directed interpreta-
tion and evaluation of data according to an a priori esta-
blished framework (see the first feature)).

e running statistical analysis.
The TAME system will provide statistical analysis pack-
ages for computing statistical significance of evaluation
results.

e maintaining a historical knowledge base.
The TAME system will create and maintain a historical
data base over time. The purpose of this data base is to
allow better interpretations of analysis results relative to
historical baselines reflecting the characteristics of a par-
ticular environment. Whereas all input into the database
(see the fourth feature) is related to data regarding indivi-
dual systems, maintaining a historical database requires an
additional dimension by creating base-lines across systems
or even environments.

A macroscopic view of the TAME architecture shows the
system divided into four hierarchically organized layers:

USER INTERFACE LEVEL

{

LEVEL

EVALUATION

MEASUREMENT LEVEL

!

DATA REPOSITORY

Fig. 4. TAME Architecture

1. The User Interface Level implements the appropriate
means of interaction between users and TAME. In addi-
tion, the user interface level contains a tool for setting up
the measurement and evaluation environment for each
individual user (= creating or tuning an appropriate
instance of the evaluation level). An important part of
this measurement and evaluation environment is the
actual set of goals, questions, and metrics.

2. The Evaluation Level implements the appropriate
environment (probably set up by the user interface level).
Such an environment is characterized by goals, questions,

€]

355

metrics, and interp

tion profile which

urement and data

retation procedures, as well as a protec-
defines legal access paths to the meas-
repository level for this: particular user.

This level triggers the computation of the appropriate

metrics (by either

activating the appropriate measurement

tools or by accessing the data repository level), and pro-
vides adequate interpretation. A separate instance of this

level might exist fc

r each individual user.

3. The Measurement Level consists of tools for computing

metrics. Examples

of ‘such tools are tools for computing

data binding metrics, structural coverage metrics, or com-

plexity metrics.

4. The Data Repository Level provides the infra-structure

for .various types

and- retrieving all
level should be as

data base manag

of evaluation. This level allows storing
kinds of software related data. This
independent as possible of a particular
ement system or a concrete data base

structure; the data repository should be implemented as

an abstract data)

details.

type hiding all these implementation

Anotkher important general requirement for this TAME data
repository is to be flexible in varicus ways; the data reposi-

tory must allow

- changing (if possible extending) the data base structure of

the repository level

- changing the acce

without affecting

procedures to the repository level,

xisting ’user’ programs (measurement

tools, evaluation programs) more than absolutely necessary.
To make it clear, by flexibility of the repository level we do
not mean that the repository level may not be changed in
the case of data base changes; what we mean is, that in this

casé ONLY the rey
retaining the ’user

without changes.

An interesting
fact that this projec
cooperation betwee
artificial -intelligenc
TAME project the
reportsm’ u

Various version
been applied . in

ository level has to be changed, while
’ programs (measurement tools, etc.)

aspect from a research perspective is the
t requires and provides opportunities for
n software engineering, data base, and
e. For more details concerning the

reader is referred to TAME 'project

" AND FUTURE RESEARCH

1s of the improvement methodology have

several industrial settings. The basic

approach has evolyed from the work performed in the

NASA/SEL enviro
classification scheme
and applied to impr
methodology is expe
experience from futu

Using defect

nment, where most of the defect
s presented in this paper were developed
ove the development environment. This
cted to be refined in the future based on
re applications.

profiles for characterizing improvement

goals and environments and tailoring methods and tools
towards these quantified goals and environments has. proven

to be feasible and

eneficial. However, as indicated in the

introduction, defects are only one approach of many to

characterize

impact of methods
defect classification

improyement goals, environments, and the
and tools. We will continue to 1mprove
schemes for the purpose of characteriza-

tion as well as investigating alternative approaches to char-
acterization.

The TAME prototype is expected to support all kinds
of measurement, analysis, and evaluation needed in the con-
text of this tailoring approach. In the long-run the TAME
project is expected to derive guidelines for future software
development environments. Those future software develop-
ment environments are expected to include the software pro-
cess itself as one variable. Those environments are expected
to recognize the fact that quality software can only be built
in a productive manner if the process for building the soft-
ware is tailored to the particular project goals and environ-
ments in a natural way. Future software development
environments will not provide just a set of construction tools
(as most state of the art development environments to
today) or support one particular process model. Instead they
will provide (1) the flexibility of choosing the appropriate
global process model and tailoring it to specific project goals
and environment characteristics, (2) the flexibility of choos-
ing methods and tools (for comstruction and evaluation)
which fit into the defined process model framework, (3) sup-
port for tracing quality and productivity throughout the pro-
cess in a quantitative way, and (4) support for evaluating the
effectiveness of the chosen software process model as well as
individual methods and tools as far as meeting quality and
productivity goals are concerned. The latter evaluation
activity can be performed on-line for the purpose of provid-
ing feedback into ongoing. project or post-mortem for the
purpose of learning for future projects.

A first TAME prototype is currently built for an Ada
environment"”. There are many reasons for this decision. (1)
NASA is considering Ada as the language for building Space
Stations, (2) there is a thrust towards developing program-
ming support environments for Ada, and (3) it is believed
that more and more environments will move from traditional
languages to Ada as the implementation language and have
to confront the problem of choosing an appropriate process
model including methods and tools. In this context the
tailoring of software process models will be very important;
it can be expected that Ada environments will not only differ
from traditional environments in the sense that different
methods and tools are going to be used, they might also
require completely different process models.

Future use of this methodology will result in accumu-
lating more and more knowledge concerning the impact of
methods and tools on various defect types; this in turn will
make the tailoring methodology more effective. In- addition,
the TAME prototype will be an incentive and vehicle for

applying the methodology in various industrial environ-.

ments.

C DGEMENTS

The authors would like to thank Frank McGarry of
NASA/Goddard Space Flight Center and Dr. David M.

Weiss of the Office of Technology Assessment for their help-

ful comments on earlier versions of this paper, and the
reviewers for helping us better express our ideas.

356

[

(2]

(8]

(4]

(5}

(6]

[7)

8]

(9]

(10]

[11]

(12]

[13]

REFERENCES

V. R. Basili D. M. Weiss, ”Evaluating Software
Development by Analysis of Changes: The Data from
the Software Engineering Laboratory,”: Technical
Report TR:1236, Dept. of Computer Science, University
of Ma,ryland College Park, December 1982.

V. R. Basili, D. M. Weiss, A Methodology for Collect-
ing Valid Software Engmeermg Data,” IEEE Transac-
tions on |Software Engineering, vol. SE-10, no.3,
November 1984, pp. 728-738.

V. R. Basili, B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation,” Communica-
tions of the ACM, vol. 27, no. 1, January 1984 pp. 42-
52. ‘

V. R. Basili, R W. Selby, Jr., ?Data Collection and
Analysis in Software Research and Management,” in
Proc. American Statistical Association and Biometric
Society Joint Statistical Meetings, Philadelphia, PA,
August 13-16, 1984,

V. R. Basilj, E. E. Katz, N. M. Panlilio-Yap, C. Loggia
Ramsey, S. Chang, "Characterization of an Ada Soft-
ware Development,” IEEE Computer, vol. 18, no. 9,
September 1985, pp. 53-65.

V. R. Basili, "Quantitative Evaluation of Software
Engineering Methodology,” in Proc. First Pan Pacific
Computer Conference, Melbourne, Australia, September
1985. [also available as Technical Report, TR-1519,
Dept. of Computer Science, University of Maryland,
College Park July 1985].

V. R. Ba,s1li, ”Measuring the Software Process and Pro-
duct: Lessons Learned in the SEL,” in Proc. Tenth
Annual Software Engineering Workshop, NASA God-
dard Space Flight Center, Greenbelt MD 20771,
December 1985.

V. R Bamh, R. W. Selby, Jr., ”Comparing the
Effectiveness of Software Testing Strategnes ” Technical
Report TR+1501 Dept. of Computer Science, University
of Marylanll College Park, May 1985.

V. R. Basili, A. J. Turner, "Software Development Pro-
cess Models,” Technical Report, Department of Com-
puter Science, University of Maryland, College Park,
MD, forthcoming.

V. R. Basjli H. D. Rombach, "The TAME Project:
Motivation, Background, Ideas and Objectives,” Techn-
ical Report‘ TR-1764, TAME Report TAME-TR-1-1987,
Department of Computer Science, University of Mary-
land, Janugry 1987.

V. R. Ba.slll, M. Daskalantonakis, A. Delis, D. Double-
day, L. Mark K. Reed, H. D. Rombach, D. Stotts, J. A.
Turner, S. Wang,'L. Wa, S. Xlao-Hong, *The TAME
Project: Requlrements and System Architecture,”

Technical l{eport TR-1765, TAME Report TAME- TR-
2-1987, Department of Computer Science, University of
Maryland anuary 1987,

V. R. Ba.s:li H. D. Rombach, ”TAME: Tailoring an Ada,
Mea.suremept Env:ronment” Proc. of the Joint Ada
Conference; Arlington, VA, March 16-19, 1987.

B. W, Boehm, "Software Engineering Economics,”
Prentlce-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[14]

(18]

[16)

(7}

T. Gilb, ”Software Metrics,” Winthrop Publishers, Inc.,
Cambridge, Massachusetts, 1977.

"JEEE Standard Glossary of Software Engineering Ter-
minology,” IEEE, 342 E. 47th St., New York,
Rep.IEEE-Std-729-1983, 1983.

W. L. Johnson, St. Draper, E. Soloway, ”Classifying
Bugs is a Tricky Business,” in Proc. Seventh Annual
Software Engineering Workshop, NASA, Goddard
Space Flight Center, Greenbelt MD 20771, December
1982.

M. Lipow, "Prediction of Software Failures,” The Jour-
nal of Systems and Software, vol. 1, no. 1, 1979, pp.
71-76.

57

(18]

(19}

[20]

T. J. Ostrand, E. J. Weyuker, "Software Error Data
Collection and | Categorization,” in Proc. Seventh
Annual Software Engineering Workshop, NASA,
Goddard Space |Flight Center, Greenbelt MD 20771,
December 1982.

»Software Engineering Laboratory (SEL): Data Base
Organization and User’s Guide,” NASA, Goddard Space
Flight Center, Greenbelt MD 20771, SEL-81-102, July
1982. .

R. H. Thayer, A. Pyster, and R. C. Wood, "The Chal-
lenge of Software Engineering Project Management,”
IEEE Computer| Magazine, vol. 13, no. 8, August 1980,
pp 51-59.

