Lessons Learned in the Implementation Phase of a E '
Large Ada™ Project

Carolyn E, 'Brophyl,, Sara Godfrey2, '
William W. Agresti®, and Victor R. Basilj!

1 Department of Computer Science 2
University of Maryland
College Park, MD. 20742

Code 552.1

Abstract

We need to understand the effects that introducing
Ada has on the software development environment.
This paper is about the lessons learned from an ongoing
Ada project in the Flight Dynamics division of the
NASA Goddard Space Flight Center. It is part of a
series of lessons learned documents being written for
each development phase.

FORTRAN is the usual development language is
this environment. This project is one of the first to use
Ada in this environment. The experiment consists of
the development of two spacecraft dynamics simulators.
One is done in FORTRAN with the usual development
techniques, and the other is done with Ada. The Ada
simulator is 135,000 lines of code (LOC), and the FOR-
TRAN simulator is 45,000 LOC. '

We want to record the problems and successes
which occurred during implementation. Topies ‘which
will be dealt with include (1) use of nesting vs. library
units, (2) code reading, (3) unit testing, and (4) lessons
learned using special Ada features.

It is important to remember that these results are
derived from one specific environment; we must be very
careful - when extrapolating to other environments.
However, we believe this is a good beginning to a better
understanding of Ada use in production environments.

Ada is a trademark of the U.S. Department of Defense - Ada Joint
Program Office.

Contact: Carolyn Brophy, Department. of Computer Science,
University of Maryland, College Park, MD 20742, (301) 454-
6154. .

Support for this research provided by NASA grant NSG-5123 to the
University of Maryland. :

Goddard Space Flight Center

Greenbelt, MD, ’20’771'

3 Computer Sciences Corporation
System Sciences Division
8728 Colesville Road -
Silver Spring, MD. 20910

Ada incorporates many software development con-
cepts;- it ‘is much more than “just another language”,
As such, we need to understand the effects of introduc-
ing Ada into the software. development environment.
This paper concentrates on the lessons. learned from an
ongoing Ada project in the Flight Dynamies Division of
the NASA Goddard Space Flight Center (GSFC). The
Ada project is sponsored by the GSFC Software
Engineering Laboratory (SEL). 1t is part of a series of
lessons learned documents being - written ‘for .each
development phase.

Environment

FORTRAN is the usual development language in
this environment. The flight dynamics applications
involve mission analysis and spacecraft orbit and atti-
tude determination and control. Many of the software
development projects are similar from mission to mis-
sion providing, for example, an attitude ground support
system or an attitude dynamics simulator. This pattern
of developing similar applications is important .for
domain expertise and for the legacy developed in this
environment for code, designs, expectations and intui-
tions. The similarity between projects allows a high
level of reuse of both design and code. Since the
problems are basically familiar -ones, the development
methodologies which involve much iteration do not seem
to be necessary. The waterfall development model is
basically used here, and seems to work. well in this case.
Lessons learned from the initial uses of Ada do not
include changing this basic methodology.

Project

The project was originally designed as a parallel
study with two teams. Each would develop a spacecraft
dynamics simulator, one with FORTRAN as the imple-
mentation language, and one with Ada as the implemen-
tation language. The specifications for each simulator
were the same, supporting the upcoming Gamma Ray
Observatory (GRO) mission. However, there are many

other differences between the projects which keep the
study from being truly “parallel”. The FORTRAN ver
sion was the production version, thus they had schedul-
ing pressures the Ada team did not have.. Without

scheduling pressures, the Ada team made enhancements ;
in their version not required by the specifications, which’

increased time spent on the project. This was also the

first time any of these tearn members had done an Ada -

project, while the FORTRAN team was quite experi-
enced with the use of FORTRAN. The Ada team
required training in the language and development

methodologies associated with Ada, while the F OR-

TRAN team did things in the usual way [McGarry,
Page et al. 83). The Ada team also experimented with
various design methodologies; this was necessary to find
which ones would work better for this development
environment. The FORTRAN team was working with
2 mature and stable enviroriment. In switching to Ada,
the legacy of reuse for design, - code, intuitions and
experience are gone, and will be rebuilt slowly in the
new language.

The philosophies of development ~were quite
different. between the two projects. The Ada team con-
sistently applied the ideas of data abstraction and infor-
mation hiding to their design development. The FOR-

TRAN development used structural decomposition

methods.
Our goals with this project include:

(1) How is the use of Ada characterized in this
environment? '

{2) ' How should the existing development process be
modified to best changeover from FORTRAN to
Ada? : :

(3) What problems have been encountered in

development? What ways have we found to deal

with them?

Current Project Status

Both the FORTRAN and Ada teams started: in
January, 1985. The Ada team began with training in
Ada, while the FORTRAN team immediately began

requirements analysis. The FORTRAN team delivered

its product (45K) after completing acceptance testing in
June, 1987, The Ada team is scheduled to finish system
testing its 135K product in February, 1988. Discussions
of the product size differences and effort distributions
are presented in [McGarry, Agresti 88].

The lessons learned from major phases in the Ada "

development are being recorded in a series of SEL

reports: Ada training [Murphy, Stark 85], design [God-

frey, Brophy 87), and implementation [in preparation].
This paper presents some of the main results from the
implementation (code and unit test) lessons learned.

Lessons Learned
1. Nesting vs. Library Units

1.1 The flal structure produced by using Iz‘brdfy unils has
advantages over g heavily nested structure.

Nesting has many effects on the resulting product,
The primary advantage of nesting is that it enforces the
principle of information hiding structurally, because of
the Ada visibility rules. Whereas with library units, the

‘only way to avoid violations of information hiding is

through self-discipline. ‘In addition, the. dot notation
tells the package where a module is locatedy.

There are quite a few disadvantages to nesting,
however. Nesting makes reuse more difficult.: A second
dynamics simulator in Ada is now being ‘developed
which can reuse up to 40% of the Ada project’s code.
But in order to reuse’ it, the nested code has to be
unnested, since the new application only needs some of
the nested units. This is often a labor intensive opera-

~tion. Nesting also increases the amount of recompila-

tion required when changes are made, since Ada
assumes dependencies between even sibling nested
objects/procedures, even when the dependency is not
really there. This requires more parts of the system to
be recompiled than is necessary when more library units
are used. It is also harder to trace probléms back
through nested levels than it is through levels of library
units, There is no easy way to tell where a unit of code
was called from, when it is nested. But library units
have the "with” clauses to identify the source of a piece

‘of code. For this reason it is now believed that over use

of nesting at the expense of using more library units
makes maintenance harder. This is contrary to the
team’s earlier expectations. The team had used nesting
suceessfully before on a 5000 lines of code training pro-
ject. However, this kind of approach does not scale-up
well when developing large projects. :
Library units seem to have a lot of advantages.
Besides fewer recompilations when changes are made,
and easier unit testing, every library unit can easily be
made visible to any other library unit merely by use of
the "with” clause. In nested units this visibility does not
exist, and & debugger becomes essential to see what is
happening at the deeper levels that are not within the

" scope of the test driver. Library units allow smaller

components, smaller-files, smaller compilation units, and

less duplication of code. The system is more maintain-

able, since it is easier to find the unit desired. Reuse
with library units is also easier, since the parts of the

- system are smaller. Configuration control is also easier
- with library units since more pieces are separate (i.e.,

the ratio of changes to code segments modified is closer
to 1). The major disadvantage seems to be that a com-

 plicated library structure develops, which can lead to
. errors by the developers. However, if the Ada project

were to be done over now, the team would use more
library units, and nest less.

Advantages and Disadvan’tages of k
Nesting vs. Library Units

NESTING

Advantages

* information hiding

* visibility control

* type declarations in
one place

LIBRARY UNITS

Advantages

* fewer recompilations ;

* easier unit testing

* smaller components

* smaller files

* smaller compilation units

* less code duplication

* easier maintenance

* "with” clauses show source
of other code units used

* easier reuse :

* easier configuration control

{.2 The balance between nest:‘ng< and library units 4s an
important simplementation issue, not g design issue.

The issue of whether to use library units or nested
units first arises in the design phase. At least this is the
case if it is assumed that the design documents refiect
this aspect of implementation (i.e., the design docu-
ments indicate in some way when nesting is intended vs.
when library units should be used). - While it is
appropriate for the design to show dependencies, these
should not dictate implementation, as far as the library
unit/nesting question is concerned. The team con-
sidered the decisions concerning nesting/library units to
be an implementation issue.

Disadvantages

* enlarged code

* more recompilations

* harder to trace problems
through nested -
levels

* can’t easily tell where &
unit of code called
from -

* type declarations in one
place means problems
for reuse :

* harder maintenance

* debugger required

* larger unit sizes
inhibit code reading

* harder to reuse part of
the system

Disadvantages

* no information hiding

* complex library structure .

The library units in the Ada project went down
about 3 to 4 levels, while nesting went down many lev-
els below ‘that. Another view of the system shows the
Ada project had 124 packages and 55 library units,
During implementation most team members felt an
appropriate balance had been reached between nesting
levels and number of library units. However, in retros-
pect, several felt the nesting had been overdone.

1.3 It appears best to use library units at least down to

the subsystem level, and nesting at lower levels where

there is minimal interaction among a small number of
modules. '

Experiences with unit testing seem to indicate that
library units should at least go down to the subsystem
level. This makes testing easier. Below this leve] the
benefits of nesting sometimes become too important to
ignore. This is one heuristic which could be used to
help determine when the transition from library units to
nested units should occur. ‘

An additional way to determine when the transi-
tion should oceur is to examine the degree of interaction
between pieces. For modules which interact heavily,
library units are preferred. At the point where ‘the
interaction drops off, using nested units is preferable.
Sections with nested code are easier to deal with when
they are small. :

1.4 In mapping design to code, caution should be used in
applying too rigorous a set of rules for vistbility control.

In an attempt to control visibility, ‘two ‘features

appear to have been too rigorously applied. The first
feature is nesting. The design of the Ada project
seemed to suggest a particular nesting implementation.
But this created many objects within objects yielding a
high degree of nesting. The second way to control visi-
bility is through the use of many “call-through'’s (a pro-
cedure whose only function is to call another routine).
“Call-through”s were used to ‘group appropriate pieces
together exactly as represented in the design. They can
be implemented via nesting or library ‘units. Faithful-
ness to the design structure was maintained this way.

The design bad non-primitive objects with specific
operations. These objects were implemented as pack-
ages. To put the specific operations (subprograms) into
the objects (packages) the team used *call-throughs..
Thus a physical piece of code was created for every
object in the design. *Call-through”s are one of the
reasons for the expanded code in the Ada project when
compared to the FORTRAN version. It is estimated
that out of the 135K LOC making up the Ada system,
22K LOC (specifications and bodies) are because of
“call-through"s. - While “call-through”’s provide a good
- way to collect things into subsystems, these should be
limited to only two or three levels in the future.

If the implementation were to be done over now,
many of the existing ‘“‘call-through”s would be elim-

inated. Instead of creating actual code to correspond

with every object in the design, some objects in the

design would remain “logical objects”. No actual pack-

ages would -exist; instead, a logical object would be
made up of a collection of lower level objects.

2. Code Reading

Code reading is generafly done with unit testing.
The developer doing the code reading is not the one

who developed the code. Comments are returned to.the

. original developer. After code reading and unit testing,

the unit is put under configuration control.

2.1 Code reading helps in training people to use Ada.

Besides helping to find errors, code reading has the
benefit of increasing the proficiency of team members in

. Ada. Individuals can see'new ways to handle the algo-

rithms being encoded.. Code reading also allows another
person besides the original developer to understand a
given part of “the project. This insight should help
understanding and lead to better solutions of problems
in the future, ’

2.2 Code reading helps isolate style and logic errors.

The most common errors found in code reading
with- Ada were style errors. The style errors involved
adding or deleting comments, format changes, and
changes to debug code (not left in the final product).
Other types of errors found are initialization errors, and
problems with incompatibilities between design and
code. “This can be due to either a design error or a cod-
ing error.

Because the Ada compiler exposes many errors not
exposable by a FORTRAN compiler, code reading Ada
has a different flavor than code reading FORTRAN.

For example, the Ada compiler exposes such errors as

(1) wrong data types, (2) call sequencing errors, (3) vari-
able errors-- either the variable is declared and never
used, or it is used without being declared. - So, one
seasoned FORTRAN developer working on the Ada pro-
Ject noted that code reading is more interesting in FOR-
TRAN, since there were more interesting errors found in
code reading FORTRAN, not found in reading Ada
code. In general, logic errors are hard to find in this

- application domain, but enough logic errors are found to

make code reading worthwhile.

Some of the difficulty of code reading with Ada on
this project was due to the heavy nesting and the
number of ‘“call-through” units. Code reading would
bave been helped by & flatter implementation. The
SEPARATE facility makes it necessary to look in many
places at once to follow the code. However, code read-
ing in Ada was easier than in FORTRAN because the
code was more English-like, and hence, more readable.
Often the reused FORTRAN code is an older variety
without the structured constructs available in later ver-
sions, - ST :

Code reading tended to miss errors that spanned
multiple units. This would be expected with any imple-
mentation language as well. One example was a prob-
lem where records were skipped when they were being
output. The debugger actually found the problem.

Despite the implementation language, code reading
appears to be important for highly algorithmic routines.

Groups of routines that are used only to call others may
be checked to make sure the design’s purity is main-
tained.

3. Unit Testing

8.1 Unit testing was found to be harder with Ada than
-with FORTRAN.

The FORTRAN units are already relatively iso-
lated; this makes unit testing easy. Only the global
COMMONS need to be added to do the unit tests. On
the other hand, the Ada units require a lot of "with'd
in” code, and are much more interdependent. Another
very different Ada project had perhaps even more inter-
dependence between its modules than the Ada project
did, That team also found the interdependence made
unit testing very difficult. More interdependence exists
between Ada units because there are more relations to
express in Ada. There are textual inclusion (nesting),
with-ing in (librar¥ units), and invocation. FORTRAN
only has invocation. : '

3.2 The introduction of Ada as the implementation
language changed the unst testing methods dramatically.

Unit testing with Ada was done very differently.
Since one unit depends on many others, it is usually
hard to test a unit in isolation, so this was generally not
done. The Ada pieces were integrated up to the pack-
age level, and then unit testing was done. Then testing
was done with groups of units that logically fit together,
rather than actual unit testing. The integrated units
are tested, choosing only a subset of possible paths at a
time. 'The debugger is used to look at a specific unit,
since the test drivers cannot ”see” the nested ones.

With Ada projects a debugger becomes essential. This

is in contrast to the usual development in FORTRAN

where no integration occurs at all until after unit test- -

ing.

This shows that the biggest difference between the

way FORTRAN and Ada projects are done at this point

in development is incremental integration.” This actu~~
ally represents a change in the development lifecycle of

an Ada product; integration and unit testing are alter-
nately done rather than finishing unit testing before
integration.

3.8 The library unit/nesting level issue directly affects
the difficulty of unit testing.

The greater the nesting level, the more difficult
unit testing is, since the lower level units in the subsys-
tem are not in the scope of the test driver. This is the
primary reason a debugger becomes a required testing
aid with Ada projects. For this reason, more library
units and less nesting would have made testing easier.

~Library units have to go down to a level in the design .

that makes testing more feasible. With the Ada project
that would have meant taking library units down to a

lower level in the design, if the project were to be done -

over.

Two other ways to deal with the nesting during
unit test were tried and were not very successful. One
solution ‘pulls an inner package out, and includes the
types and "with'd in" modules the outer package used
in order to execute the inner one, This is difficglt to do
for each unit. The other solution is to modify the
specifications of the outer package so that nésted pack-
ages can be "seen” by the test driver. This solution
requires lots of recompilation. With more library units,
there would be less recompilation, because there would

© be fewer changes of specifications, Again however, the :

best way to test was to use the debugger on unaltered -
code. - '

3.4 The importance of unil testing seems to be more
relaled to application area than to implementation
language. . ; ; o
Whether the implementation is in FORTRAN or
Ada, does not seem as important as whether the appli-
cation has lots of calculations or has lots of data mani- -
pulations. Unit testing seemed more valuable with
scientific applications; perhaps because calculation errors
show up when only a small amount of localized code is
executed, But data manipulation errors require more of
the system to be operating before it is known if errors
are present. :

4. Use of Ada's Spe'ciayl‘ Features

4.1 Separation of specifications and bodies is quite

beneficial and easy to implement. ; :
The team entered the specifications first, whenever -

possible, before the rest of the code. This gave a high

level view of the system early -in the development.

Another benefit is that this helped clarify the interfaces
early. Separating the specifications and bodies also
reduces the amount of recompilation required when
changes are made. ' :

4.2 Generses wc‘rc‘/airly casy to im’plcment“and they

- reduce the amount of code required.

The only problems encountered were with: correct
compilation of the generics in some cases, due to com-
piler bugs in an early version of the compiler, rather
than incorrect code. As Ada matures, this will not be a
problem at all.

4.8 Using too many types increases coding difficully.

The strong typing was very difficult to get used to,
when one is accustomed to weakly typed languages such
as FORTRAN. It was easy to create too many new
types as well. : o

Often a brand new type was created with a strict
range appropriate for one portion of the application.
Then in other areas where subtypes could have been
used, the range on the original type was found to be too
restrictive, so another brand new type was created
instead to handle the new situation. Then 2 whole new

set of operations had to be created as well for the addi-
tional new type.. Next time the team would recommend
creating a more general new type, and using many
different subtypes of the original type, rather than
creating more new types. In this way operations can be

reused and there are far fewer main types to keep track’

of. Designers need to spend time developing families of
types that inherit properties from one another.

‘The strong typing presented some problems when

testing units, though it prevents some kinds of errors,

also. It was harder to write test drivers that could deal

with all the types in the units being tested. It was also
harder to do the I/O, since so many types had to be
dealt with. -

4.4 Tasking was difficult to code and test, however, this
seems due lo concurrency in general and not Ada
specsfically.

Tasks were used in the user interface part of the
project. The user was given many options which made
the interactions between the tasks of the subsystem
very difficult to plan and execute correctly.

It was harder to code tasks from the design than it
was to code other types of units. However, this is not
really due to Ada, but rather it is the nature of con-
currency problems. The language made the use of task-
ing easier, and encouraged the developers to use tasking
more than they would have otherwise. The dynamic

relationships of concurrency cannot be represented in
the design (termination, rendezvous, multiple threads of

control). Correctness was very difficult to assure, as is
ususl with these kinds of problems, and deadlock was
hard to avoid. Functional testing was done, which is
the usual type in this environment.

The major problem the developers had was with

exceptions. - These are no worse with tasking than they.

are with any other program unit, however.

4.5 Ezception handlers have to be coded carefully.

The key problem with exceptions is deciding the
best way to handle them. Errors and the sources of

errors can be hard to find if the exception handlers are

not coded carefully. Suppose a particular procedure will

call another unit, expecting some . function to be per-. -

formed, and certain kinds of data to be returned. If an

exception is raised and handled in the called unit, and it -

is pon-specific for the problem raising the exception
(e.g., “when others”) , the caller gets control back

without the required function being performed. But the -
exception was handled and data was returnied, so the

call looks successful. Yet as soon as the caller tried to
use the data from the routine where the exception was
raised and handled, it fails. Because of propagation, it
can be very difficult to trace back the error to the origi-
nal source of the problem. 3

" ‘Several members of the team would recommend
incorporating the way exceptions are to be handled into
the design, rather than leaving this until implementa-
tion. Put into the design (1) what exception would be
raised, {2) where it will be handled, and (3) wuat should
happen. T o e

- Ada Features*
implementation
ease . benefit
. tasking .. +
generics N + =
-strong typing 0 o0
exception : ~ :
handling , 0 +
fiesting o R S -
separate , :
specs/bodies ++ ++

* This figure represents a subjective assessment
based on team member interviews

Summfary

. We have learned several important things about
four major areas in implementation. There are many
advantages to using library" units, though nesting can
have” its usefulness at some point below the subsystem
level. Code reading helps train people in Ada, and helps
to isolate style and logic errors. Unit testing was sub-
stantially changed by using Ada: the first stages of
integration often began before unit testing proceeded.
Some Ada features are quite powerful and should be

_carefully used.

It is important to remember that these results are
derived from one specific environment. We must be
very careful when extrapolating to other environments.
There are also many questions still left to be answered.
Studies of this project will continue, and other Ada pro-
jects are being started. These will help us evaluate the
effects on longer term issues such as reuse and maintai-
nability of the Ada projects. We believe this ptoject is
a good beginning to a better understanding of Ada use

in production environments. o i

 Acknowledgements
The 'Ada experiment is managed by Frank
McGarry of NASA/GSFC. The authors would like to

thank him and the Ada team for their cooperation and
assistance, :

References

[Agresti 85
Agresti W., “Ada Experiment: Lessons Learned
(Training/Requirements Analysis Phase)”, Goddard
Space Flight Center, Greenbelt, MD 20771, August
1985,

[Godfrey, Brophy 87) ' :
SEL-87-004, “Assessing the Ada Design Process and
Its Implications: A Case Study”, Godfrey 'S., ‘and

Brophy C., Goddard Space Flight Center, Green-
belt, MD 20771, July 1987.

MeGarry, Agresti 88]
“Measuring Ada for Software Development in the
Software Engincering Laboratory”, Hawaii Iuterna-
tional Conference on Systems Science, Jenuary,
1988.

[McGarry, Nelson 83
McGarry F., and Nelson R., “An Experiment with
Ada - The GRO Dynamics Simulator Project
Plan,” Goddard Space Flight Center, Greenbelt,
MD 20771, April 1085.

[McGarry, Page et al. 83] ;
SEL-81-205, “Recommended Approach to Software
Development”, McGarry F., Page J,, Eslinger 8.,
Church V., and Merwarth P., Goddard Space
Flight Center, Greenbelt, MD 20771, April 1983.

Murphy, Stark 85)
SEL-85-002, “Ada Training Evaluation and Recom-

mendations from the Gamma Ray Observatory Ada -

Development Team”, Murphy R., and Stark M.,

Goddard Space Flight -Center, Greenbelt, MD -

20771, October 1985.

 Biographies

o Carolyn E. Brophy is a graduatquresea}chassis—

“tant at the University of Maryland, College Park. Her
* research interests are in software engineering, and she is

working with the NASA Goddard Sofyware Engineering

Laboratory. - Ms." Brophy received a B.S. degree from

the University of Pittsburgh in biclogy and pharmacy.
She is'a member of ACM. : B ‘

Sara H. Godfrey is with Goddard Space Flight
Center in Greenbelt, Maryland, where she has been -
working with the NASA Goddard Software Engineering
Laboratory. She received a B.S. degree from the
University of Maryland in mathematics, (picture miss-
ing) :

William W, Agresti is with’ Computer Sciences

~Corporation in Silver Spring, Maryland. His “applied

research and development projects support the Software
Engineering Laboratory at NASA's Goddard Space:
Flight Center. His research interests are in software }
process engineering, and he’ recently completed the
tutorial text, New Paradigms for Software Development,
for the IEEE Computer Society. From 1973-83 he held
various faculty and administrative positions at the
University of Miéhiga.mDeayrbom. He received the B.S.
degree from Case Westers Reserve University, the M.S.

~and Ph.D. from New York University.

~ Victor R. Basili is Professor and Chairman
of the Computer Science Department at the Univer-
sity of Maryland, College Park, Maryland, He was
involved in the design and development of several
software projects, including the SIMPL family of

~programming’ languages. He is currently - measuring

and evaluating software development in industrial
and government settings ‘and has consulted with many

-agencies and = organizations, ~including IBM, GE,

CSC, GTE, MCC, AT&T, Motorola, HP, NRL,

- NSWC, and NASA.

He is one of the founders and principals in the Software Engineering Labora-
tory, a joint venture between NASA Goddard Space Flight Center, the University of
Maryland and Computer Sciences Corporation, established in 1976. He ‘has been
working on the development of quantitative approaches for software management,
engineering and quality assurance by .developing - models and metrics for the
software development process and product. ‘

Dr. Basili has authored over 90 papers.- In 1982, he received the ‘Out- -
standing Paper Award from the IEEE Transactions on Software Engineer-
ing for his paper on the evaluation of methodologies.

He was Program Chairman for several conferences including the 6th Interna--
tional Conference on Software Engineering. He serves on the edijtorial boards of
the Journal of Systems and Software and the IEEE Transactions on Software
Engineering and is currently Editor-in-Chief of TSE. He is a member of the Board
of Governors of the IEEE Computer Society.

