VALIDATING THE TAME RESOURCE DATA MODEL¥

D. Ross Jeffery (1) & Victor R. Basili (2)

(1) University of New South Wales, Australia

(2) University of Maryland, College Park, MD 20742

Abstract

This paper presents a conceptual model of
software development resource data and validates
the model by reference to the published literature
on necessary resource data for development sup-
port environments. The conceptual model
presented here was developed using a top-down
strategy. A resource data model is a prerequisite
to the development of integrated project support
environments which aim to assist in the processes
of resource estimation, evaluation and control.
The model proposed is a four dimensional view of
resources which can be used for resource estima-
tion, utilization, and review. The model is vali-
dated by reference to three publications on
resource databases, and the implications of the
model arising out of these comparisons is dis-
cussed.

Keywords : software process, methods, tools,
conceptual model, resources, estimation, environ-
ments, software engineering database, validation

INTRODUCTION

To date, the approach taken to the accumulation
of knowledge concerning the software process has
been largely bottom-up. Studies have been carried
out to determine the existence and nature of pro-
ject relationships. These studies, such as [Wolver-
ton 74|, [Nelson 67{, [Chrysler 78], [Sackman et.al.
68|, [Basili, Panlilio-Yap 85], [Basili, Freburger
81|, [Basili, Selby, Phillips 83], [Walston, Felix
77]), [Jeffery 872,87b], and [Jeffery, Lawrence
1979, 1985] have explored the relationships
between project variables, searching for an under-
standing of the software process and product. For
example, relationships between effort and size,
errors and methods, and test strategy and bug
identification, have been found.

*This research was funded in part by NASA Grant

NSG-5123 to University of Maryland

0270-5257/88/0000/0187$01.00 © 1988 IEEE

187

This paper has two major aims:

1) To briefly present a top-down characterization
(TDC) structure of software project resource data,
which aims to facilitate :

1. Further accumulation of knowledge of pro-
ject resource characteristics and metrics within
a theoretical structure.

2. The storage of project resource data in a
generalized structured way so that estimation,
evaluation, and control can be facilitated using
an organized quantitative and qualitative data
base. '

2) To validate this structure against published
resource data models.

The characterization structure of resource data is
a prerequisite to the development of an Integrated
Project Support Environment (IPSE) in which it
is possible to:

1. Objectively choose appropriate software
processes.

9. Estimate the process characteristics such as
time, cost, and quality

3. Evaluate the extent to which the resource
aims are being met during development, and

" 4. Improve the software process and product.

The structure presented and validated here is a
part of the TAME (Tailoring A Measurement
Environment) project which seeks to develop an
integrated software project measurement,
analysis, and evaluation environment. This
environment is based in part on the evolutionary
improvement paradigm [discussed in Basili, Rom-
bach 87]. It is also based on the ”Goal-Question-
Metric” paradigm outlined in ([Basili 85] and
[Basili, Weiss 84|.

The aims of this paper are firstly to present the
TDC structure or model for the perception of
software development resources which will assist
in the process of taking those aims of, say, a
development manager and translating them into 2
set of questions and metrics which can be used to
measure the software process. It is meant to be
independent of the particular process model used

Recommended by: B. Boehm and J. Musa

for development and maintenance. A full deserip-
tion of the model, including its dynamic nature is
described in [Jeffery, Basili 87a and 87bl. The
paper secondly aims.to validate the model by a
comparison of the model with the resource data
models presented in the literature. '

2. THE PROJECT ENVIRONMENT
CHARACTERISTICS

Resources are consumed during the software pro-
cess in order to deliver a software product. The
software process has overall characteristics which
are super-ordinate to the resources consumed.
Therefore, before resource data can be character-
ized it is necessary that a process characterization
profile be established. This characterization
includes data on factors such as:

project type

organizational development conventions
project manager preferences

target computer system

development computer system

project schedules or milestones

project deliverables

In this data the broad project and its environment
characteristics are established. For example, is the
process using evolutionary development or a
waterfall method? Is the project to be developed
by in-house staff or external contractors? What
organizational constraints are being imposed on
the project development time? What management
constraints are being imposed, say on staffing lev-
els?

These factors form the environment in which the
software process must occur, and will therefore
determine, in many ways, the nature of that
software process. A simple example of this is the
question of the process model - evolutionary or
waterfall. This constraint establishes milestones
and the pattern of resource use, and therefore
partially determines the interpretation of the
resource data collected.

3. THE RESOURCE CLASSIFICATION

At the level below the characterization of the pro-
ject and its environment we are interested in clas-
sifying the resources consumed in the generation
of the software product. In this section of the
paper we present a structure for that
classification. This structure covers only the
resource aspect of the project and is therefore
only concerned with the software process and the
resources consumed or used in the process. The
model is not conc¢erned with the software product.
As stated above, the resource model was first
developed and presented in [Jeffery, Basili 87]

188

The model structure consists of a four dimen-
_smn’al view. This four dimensional view is divided
into two segments: .

1. resource type,.and
2. resource use

In a software process the two segments being
separated are (1) the nature and characteristics of
the resource, and (2) the manner in which we'look
at or consider the consumption of that resource.

3.1 Resource Type

In the first segment we are concerned with classi-
fying the nature of the resource; is it someone’s
time, or a physical object such as a computer, or
a logical object such as a piece of software? We
are also interested in describing the properties of
those resources. such as deseription, model
number, and. cost per unit of consumption.

By decomposing the resources into different types
different views of the resources can be provided.
for example, it may be important for operations
personnel to know a breakdown of .the hardware
resources used on a project according to. the
different physical machines being used, whereas
from a project manager’s perspective at a point in
time, the specific machine may not be of interest,
but the availability of a certain class of machine
may be critical. Resource managers will be
interested in the types of resources available (for
example, people) and the characteristics of those
resources for project planning purposes. Thus the
categorization provided here is the basis of the
resource management environment, in that it is in
this segment of the model that the resources: are
listed and described. L

The resources of a software project can be
classified as:

- hardware

- software

- human ,]

- support (supplies, materials,
communications facility costs, etc.)

These categories are meant to be mutually
exclusive and exhaustive and therefore are able to
contain each instance of resource data in one or
other of the categories. S

Hardware resources encompass all equip-
ment used -or potentially able to be used in the
environment under consideration. (For example,
target and development machines, terminals,
workstations). '

Software resources encompass all previ-
ously existing programs and software systems
used or potentially able to be used in the environ-
ment under consideration, (For example, com-
pilers, operating systems, utility” routines, ‘previ-
ously existing application software). ¢

Human resources encompass all the people
uwsed or potentially able to be wused for
development, operations, and maintenance in the
environment under consideration whether internal
or external (subcontractors, consultants, etc)

Support resources encompass all of the
additional facilities such as materials, communrica-

tions, and supplies which are used or potentially

able to be used in the environment under con-
sideration.

The values associated with these resources may be
stored in both price and volume measures, where
volume means, for example, hours of use or avai-
lability, or the number of times a resource is
needed, and price refers to the $ values associated
with that resource. This may be a cost per unit
measure or a cost per period of time.

This four-way classification provides an initial
resource-type decomposition. The aim in this
decomposition is to separate the major resource
elements that are used in the software process in
order to provide manageability. This initial
separation is necessary because of the very
different nature of each of these resource types
and the consequent difference in attributes and
management techniques which are necessary in
the estimation, evaluation, and control of each of
these resource categories.

Further decomposition within this segment may
be desirable and will be dependent on the goals of
the responsible persons. The number of different
possibilities increase as the decomposition contin-
ues within each of the major resource categories.
For example, the exact nature of the resource
decomposition within the hardware category will
vary significantly from one organization to
another because of the different hardware utilized
and the organizational structure surrounding that
hardware utilization. For example, it may be
desirable to decompose hardware into target and
development hardware if there is a difference, and
software into operating systems and
languages/editors in order to model say the avai-
lability of cross-compilers.

3.2 Resource Use

Over the type segment we need to impose the
second segment; the "use” structure. The categor-
ization within this dimension allows the resources
consumption to be associated with different per-
spectives of the software process. For example, it
is through this use structure that we are able to
distinguish, for example,

between prior-project expectations of consump-
tion and resources actually consumed, or

between resources consumed in each phase of
the project, or

between the utilization of a resource and the
availability of that resource, or

189

between an ideal view of resource planning and
the resources actually available.

The use structure consists of :

1. INCURRENCE

1.1 Estimated
1.2 Actual

2. AVAILABILITY

2.1 Desirable
2.2 Accessible
2.3 Utilized

3. USE DESCRIPTORS

3.1 Work type
3.2 Point in Time
3.3 Resources Utilized

3.2.1 Incurrence

This category allows the resource information to
be gathered and used in a manner suitable to the
management of the resource. It is necessary, for
example, to store data on estimated resource
Eslage, resource requirements, and resource availa-
ility.

This data is necessarily kept separate from the

- actual resource incurrence or use, which is stored

via the actual category.

These two categories then permit process tracking

via comparisons between them and extrapolation
from the actual data. At the project summary
points, explanations and defined data accumula-
tions on estimated and actual resource use provide
feedback on the process. This feedback should
contain reasons for variance between the
estimated and actual so that a facility for cor-
porate memory can be established and the neces-
sary data stored to facilitate and explain any
updates of the current resource values. It needs to
be noted that the model proposed allows for
different estimates and actuals at different points
in time.

The two classifications are the basis for the struc-
ture proposed because they constitute significantly
different viewpoints on the process, and again pro-
vide mutually exclusive categorization which will
facilitate management estimation, evaluation, and
control.

This structure requires that process data, as it
changes in value during the project, will not be
lost but will be stored in an accessible manner so
that meaningful analysis of projects can be carried
out using a database that provides complete
details of the project history.

This philosophy specifically addresses the need for
a corporate memory concerning past projects. By
implementing such a structured project log the
basic data for such a memory is available in
numeric and text format.

3.2.2 Availability

This category allows storage of a resource use by :

- desirable
- accessible
- utilized

This categorization provides further refinement of
the resource data. Through this, and say the
incurrence category, it is possible to compare the
actual rescurces utilized with the estimated utili-
zation, and then trace possible reasons for vari-
ance through the desirable and accessible dimen-
sions. That is, differences between planned availa-

bility and actual availability of a resource will be

significant in understanding the software resource
utilization that occurred during the process.

Desirable is defined as all the resources
that are reasonably expected to be of value on the
project.

Accessible is a subset of desirable (when
considering the project resources only) and is used
to define the resources which are able to be used
on the project.

The difference between desirable and accessible is
those resources seen as desirable for the project
but which were not available for use during the
project. This difference may occur, for example,
because of budget constraints or inability to
recruit staff. The desirable resource list permits an
"ideal” planning view. When compared with
accessible it allows management to see the
compromises that were made in establishing the
project, thus facilitating a very explicit basis for
risk management within the resource database.
The database is thereby able to hold views of not
only the resources actually applied to the project
but also those resources which were considered to
be desirable along with the reasons for their use
or non-use. In this way the resource trade-offs are
made explicit.

Utilized is a subset of accessible and is
defined as the resources which are used in a pro-
ject.

The difference between accessible and utilized
represents those resources available for the project
but not used. This difference will arise because of
three possible reasons:

1. The resources prove to be inappropriate for
the project under consideration, or

2. The resources are appropriate but they are
excess to those needed

190

3. The resources are appropriate, and their use
is contingent on an uncertain future event.

The use of these storage categories is somewhat
complex and is explained in detail further below
in section 3.4.2.

Through this availability category we are able to
distinguish between:

(1) the resources which are reasonably expected
to be beneficial to the process (desirable),

(2) the resources which exist in the organization
ang are able to be used if needed (accessible),
an

3) the resources which are used in a project
utilized) '

Through this categorization it is then possible to
track resource usage and to pinpoint their use or
non-use and to ascribe reasons particularly to
their non-use as in the case of non-accessibility.
As in the INCURRENCE category, the reasons
for divergence between desirable, accessible, and
utilized are stored in a feedback facility.

3.2.3 Use Descriptors

This category provides a description of the con-
sumption of the resource item in terms of three
essential characteristics of the consumption that
item:

1. The Nature of the Work being done by
the resource: (e.g. coding, inspecting, or
designing) This category can be used in con-
junction with other views to distinguish
between process activities, such as Human
resources estimated to be desirable in design
work, or machine resources actually utilized
in ‘testing , or elapsed time implications of
mspections.

2. Point in Calendar Time : This category
pinpoints the resource item by calendar
time. In this way resource items (estimated
or- actual; desirable, accessible, or utilized)
are associated with a specific point in time
or period of time. This facilitates tracing of
time dependent relationships and the com-
parison of resource values over time.

3. Resources Utilized : This category meas-
ures the extent of resource consumption in
terms of hours, dollars, units, or whatever is
the appropriate measure of use.

The Use Descriptors also provide the link to the
work - breakdown structure which is commonly
embodied in process models. This link is esta-
blished through the association of a particular
piece of work being done at a point in time with
the work package described in the work break-
down structure. This point is discussed further
below in Section 8, Validating the Model.

3.3 COMBINING THE VIEWS

The structure suggested here can be viewed as a
hierarchy for the purpose of explanation. Such a
hierarchy is shown in Figure 1.

@ (Description, milestones, target hardware
development hardware, deliverables, etc.)

consists of

D

consumes

(Hardware, software, human,
support plus attributes of the

TYPE resource)

{work nature, Calendar time
Measure of work)

AVAILABILITY

FIGURE 1. THE STRUCTURE OF THE TDC MODEL

In this figure we see that the proposed structure
views the software project (which has attributes
describing that project) consuming resources. The
resources are characterized as having four dimen-
sions of interest (type, use, incurrence, and availa-
bility). At the resource type level we describe each
resource as being one of hardware, software,
human, or support, and having various attributes.
The attributes for each of these four types will be
different in nature. For example, the human attri-
butes might include name, address, organizational
unit, skills, pay rate, unit cost, age, and so forth.
The attributes for hardware will be quite
different, describing manufacturer, purchase date,
memory capacity, network connections, or similar
types of characteristics.

At the next level in the diagram we model the use
of the resource. In the first instance this involves
the type of work that the resource is performing,
the point (or span) in calendar time at which the
work is being done, and the measure of the
amount of work done. This last measure (amount
of work) might be expressed in person-time,
execution-time, connect-time, or whatever is the
relevant measure of work for the resource
instance.

The use of the resource is then described as being
either estimated or actual, and both of these may
be desirable, accessible, or utilized. In this way
the following concepts are supported :

191

1. Estimated Desirable : The resources con-

sidered ”ideal” at i : .
process. at various stages of the planning

9. FEstimated Accessible : The resources
which are expected to be available for use in the
process, given the constraints imposed on the
software process (a contingency plan).

3. Estimated Utilized : The resources which
it is anticipated will be used in the software pro-
cess.

4. Actual Desirable : With hindsight, the
resources which proved to be the "ideal” consider-
ing the events that ogcurred in the software pro-
cess. A part of the learning process.

5. Actual Accessible : Again with hindsight,
the resources which were actually available and
could have been utilized. A part of the learning
process.

6. Actual Utilized : The resources actually
used in the software process.

Categories one through three are used initially for
planning purposes. The numeric and text values
associated with each of these three categories may
be derived from:

a. individual or group knowledge

b. a knowledge base

c. a database of prior projects, and/or
d. algorithmic models

At the very simplest level, the planning process
might establish only numeric values. in the
estimated utilized category based on individual
knowledge alone. In essence, this is the only form
of estimation used in many organizations, wherein
project schedules and budgets are established by
an individual, based on that individuals experi-
ence. These estimates represent the expected pro-
ject and resource characteristics for the duration
of the project.

The extensions suggested here allow these esti-
mates to be enlarged in the following dimensions :

The nature of the estimate
The source of the estimates
The timing of the estimates

1. The nature of the estimate. The model
allows project and resource managers to distin-
guish between desirable, accessible, and utilized
estimates as discussed above. The estimated desir-
able dimension would be used at a fairly high
level in the project planning process to outline the
hardware, software, people, and support resources
that are considered to be desirable for the project.
This may list specific pieces of hardware and
software which are desirable at certain points in
time. It might also be used to list characteristics
of the people (such as skills) that would be ideal
on the project. The accessible dimension would

then reflect the expected resources that will actu-
ally be available to be used. Again this could be
at a fairly high level, indicating the resources
available, the differences between these and those
desirable, and the reasons why the two categories
do mnot agree; reflecting cost constraints, or risk

attitudes which have been adopted as part of the

project management profile. The utilized category
would normally extend to a lower level in terms of
the project plan, detailing estimated resources
perhaps down to the work package level and short
periods of time.

9. The source of the estimates. It was sug-
gested above that there are four major possible
sources for these estimates; individuals or groups
of people, a knowledge base, a database of prior
projects, and algorithmic models of the process.
Each of these should be supported in a measure-
ment environment, and each has significant impli-
cations with respect to the design of such an
environment. The current state of the art appears
well equipped to support algorithmic models of
some parts of the estimation process (for example,
estimates of project effort based on one of the
many available estimation packages such as
COCOMO [Boehm 81], SLIM [Putnam 81], SPQR
[Jones 86)). Similarly the tools available in the
database environment allow the storage and
retrieval of numeric data on past projects. How-
ever the storage and searching of large volumes of
text data on prior projects, the use of a
knowledge base, and the support of group decision
support processes are all the subject of current
research (see for example, [Bernstein 87],
[Nunamaker, et.al. 86], [Barstow 87], [Valett 87]).

The timing of the estimates. In the struc-
ture suggested, all estimates may be made before
the commencement of the software process and
also at any point in time during the process. How-
ever there are certain points in time during the
process at which estimates are more likely to be
updated. These are:

1. at project milestones

9. at manager initiated points in time at
which major divergence between estimate
and actual is recognized by the manager

3. at system initiated points in time at
which the measurement system recognizes a
potentially significant divergence between
estimate and actual

The third possibility implies that the measure-
ment system is able to intelligently recognize the
existence of a problem with respeet to the com-
parison of actual and estimate. This facility is
suggested as needed because one of the major
management stumbling blocks is generally not
concerned with taking action once a problem is
identified, but the identification of the problem in
the first place. This identification problem occurs
because of the volume of data that needs to be
processed in order to recognize a potential prob-
lem state. It is the measurement environment

192

which is expert at processing the data volume. It
is t-he manager who is expert at taking corrective
action once the problem is highlighted.

Categories four (actual desirable) and five (actual
accessible) of the structure exist to provide a feed-
back and learning dimension to the project data-
base. These values would be determined after the
project is complete. And in the comparison of the
estimates made at various stages of the process
and these two categories, a process is facilitated in
which the organization can learn based on the
variance of expectations and actual which have
occurred in the past projects. As with the esti-
mates, the categories of desirable and accessible
are used in order to allow the comparison of
"actual ideal” with “actual available” so that an
ex-post view of the management of the process
can be captured. The question being asked here is;
z’How could we have handled resources better?” It
is a learning mechanism to generate explicit new
knowledge for the knowledge and data bases, and
also to improve individual and group knowledge.

Category six (actual utilized) will be the most
active category within the structure, carrying all
of the values associated with the resources of the
project. These values will be updated on a regular
basis throughout the software process, and will be
the source of the triggering process mentioned in
the discussion of updates to the estimates.

The data collected during the project should be
able to:

. increase individual and group knowledge

. improve the knowledge base

. add to the prior project database, and/or

. support the algorithm determination
process in the individual organization.

[N R

In summary, the model proposed is a four dimen-
sional view of resource data. The four views in the
data model are:

1. RESOURCE TYPE: which is a mutually
exclusive and exhaustive categorization
which captures the nature of the resource.

9. INCURRENCE: which is also mutually
exclusive and exhaustive describing actual or
estimated resources. It carries an additional
feedback element to contain the corporate
memory explaining the difference between
the category values and differences over
time.

3. AVAILABILITY: in which each category
is a subset of the the higher category, allow-
ing desirable, accessible, and utilized
resources. Again feedback is used to explain
the differences between categories and over
time.

4, USE DESCRIPTORS: which categorizes
specific elements in the nature of the
resource use. These are the nature of the
work done by the resource, the point in time
of the work, and the amount of that work.

3.4 USING THE TDC STRUCTURE
3.4.1 At the project level

Discussion so far has applied the proposed 4D

structure to mesource classification. It is appropri-
ate to also copsider using this structure, or a part
of it, for the Project Environment Characteristics
outlined in section 2 above. In this way the con-
straints acting on the software process can be
identified as applying:

to a particular type of resource,
either estimated or actual

with a stated availability

at a point in time,

concerning a particular type of work

An overall model of the software project is shown
in Figure 2. In this figure the meta-entity project
is decomposed into a number of tasks or con-
tracts, each task consuming the meta-entity
resource and producing the meta-entity product.
In the implementation of this model the meta-
entities will require many entities to characterize
them.

consists of

/

consumes proquces

FIGURE 2. AN OVERVIEW OF THE SOFTWARE PROJECT

Thus the project has characteristics, as do the
tasks and subtasks, the resources, and the pro-
ducts. Characteristics at all of these levels need
to be stored.

Through the storage of the project characteristics,
the constraints acting on the product or process
determined at any time before or during the pro-
ject can be tracked for consistency, and any
changes noted to facilitate a relationship analysis
between the project and the resource occurrence
values accumulated during the process.

193

A simple example of the application of this struc-
ture would be where the process organization is
changed during the development, say a change
toward greater user involvement. This change
would be reflected in a difference between the
estimated project characteristic and those at the
point in time at which the change occurred. This
information is then used to explain variances that
occur in the process data, such as a changed pat-
tern in staff utilization.

Examples of the data stored at the project level
would include:

- the type of project
e.g.real time, business application

- the project elapsed time

- the total project effort

- the total project cost

- the type of development process
e.g. evolutionary

- the target computer

- the development computer

- the project deliverables

- the project milestones

- the project risk profile

The application of the TDC model at this level
provides a mechanism for storing estimates, accu-
mulating actual values, and facilitating feedback
and learning at the level of the project and its
development environment.

If we take the project milestones as an example
and assume that the milestones apply equally to
all resource types, then the model suggests we
store:

- estimated desirable milestones. This is an
”ideal world” view of the project milestones;
the dates at which we could deliver if we were
not constrained.

- estimated accessible milestones. Given the
constraints we will be working under, these are
the dates at which we could deliver if it were
necessary.

- estimated utilized milestones. These are the
dates at which we expect to deliver, taking into
a.cbclount the dimensions of desirable and acces-
sible.

These three views, in their values and difference,
provide a perspective on the risk associated with
the project; the smaller the difference between the
categories, the higher the risk. More specifically,
the difference between estimated desirable and
estimated accessible shows the extent to which
elapsed time could be changed if the constraints
could be modified. For example, if the estimated
final desirable milestone were June 30th and the

estimated final accessible milestone was August
30th, the difference of two months measures the
estimate of the extent to which the project could
be compressed if the restricting constraints could
be be removed.

The difference between the estimated accessible
and the estimated utilized provides a measure of
the available slack in the milestones. This
difference is the extent to which the milestones
could be compressed, without modifying the pro-
ject constraints. In the example above, the
estimated utilized final milestone might be say
November 30th. In this case the difference
between accessible and utilized of three months
reveals the amount of elapsed time compression
that is possible on this project without changing
constraints.

In these relationships we see some of the dynamic
nature of the project characteristics. This suggests
that for the TAME measurement environment, if
a change in project characteristics such as the
nature of the process occurs, then this should
trigger the review of the project milestone and
effort values, which will also be reflected at the
lower level in the task and resource data values.

In the actual category we need to store the :

- actuel desirable malesiones. As explained
above, this category is used for feedback and
learning. It carries the values calculated after
project completion based on the knowledge
gained about the project during its completion.
This value is again an "ideal world” value.

- actual accessible milestones. This is also a
feedback and learning category which says,
based on the constraints which did eventuate
in the process what milestones could have been
achieved?

- actual utilized milestones. This category stores
the dates of the milestones achieved.
Differences between actual and estimated are
stored in a feedback facility to provide a
mechanism for learning and a mechanism for
calculating the actual desirable and accessible
at project end.

3.4.2 At the resource level

The description of the use of the TDC structure
at the resource level amounts to a process model
of resource planning and use in software develop-
ment. This process can be described as an
interacting three-stage process involving the sub-
processes of:

1. planning
2. actualization
3. review

The planning process establishes and records the
resource expectations or estimates before and dur-

194

ing the software project, and the actualization
process tracks and records the actual use of
resources during the software project. The review
process compares actuals with estimates for the
purposes of modifying the estimates and learning
from experience. In this way the feedback referred
to above provides information for an historic
resource database for future planning and estima-
tion. Details of this process model are given in
[Jeffery, Basili 87].

Application of the planning and review
cycles

In any particular organization, it may be deemed
sufficient to use only a part of the planning and
review processes outlined here, and therefore only
a part of the TDC structure presented in this
paper.

For example organizations may not wish to use
project reviews, or they may not consider it
appropriate to carry out formal contingency plan-
ning or risk management. At the simplest level
only the estimated utilized and the actual utilized
may be used, perhaps providing input to an infor-
mal project learning process which occurs at the
individual level.

Specifically, it is most likely that in software
environments with very little uncertainty (say an
implementation of the twentieth slightly different
version of a well known system) there may be no
need to explicitly consider the desirable or even
accessible dimensions: of the resource model. If
uncertainty is very low, the utilized level of the
model may capture all the necessary data. The
advantage of the model in this case is that the
data excluded is done so in the knowledge that
there is no information in those levels not used.

In higher uncertainty environments, the model
prompts the estimator to think explicitly of the
resource risks and uncertainty of the development
process, and to quantify or express that risk as a
part of the resource database.

4. VALIDATING THE MODEL

Three significant pieces of work in the literature
which provide definitions of the types of data
needed to support the measurement of the
software process are [Penedo, Stuckle 85|,
[Tausworthe 79}, and [Data & Analysis Center for
Software 84, STARS Measurement DID Review].

Penedo and Stuckle (P&S) provide an excellent
structure and content of a project database for
software engineering environments which can be
used here to test whether the model resulting
from the top-down methodology employed is able
to encapsulate all of the process data suggested by
them as needed in a project database. Table 1
lists the entities identified by Penedo and Stuckle
and associates the particular model categories
which would be used in the model derived here to
describe them.

The first aspect which is noticed when mapping
the 31 P&S entity types to the TDC model is that

the broad structure presented in section 2 above -

(The Project Environment Characteristics) is an
important link between the software process and
product. The P&S list contains entities for the
project, task, product, and resource categories of
Figure 2. In table 1 the P&S entities such as the
requirement and risk have been categorized as
project characteristics, while entities such as data
component, external component, document, inter-
face, product description, product, and software
component have been categorized as product
instances.

But the focus of this paper is not on the project
or the tasks which go together to make up that
project. Rather the focus is the resources con-
sumed by those tasks. In this respect we notice
that only a subset of the available TDC categories
are used in the P&S entities. For example, at the
Resource Type level we see instances of all four
categories (Hardware, Software, Human, and Sup-
port), but at the next level it appears that the
P&S model concentrates on actual values. It is
difficult to see how the P&S model stores values
for estimates, and particularly how the informa-
tion explaining divergence between estimate and
actual can be stored. The same applies to the
Availability level of the TDC structure. The P&S
model appears to concentrate on the Utilized
aspect and does not appear to model the other
availability dimensions presented in the TDC
structure. This may well be because these dimen-
sions of resource data were considered not to be
necessary in the environment of the P&S study.

195

Table 1. P&S Database Entities in The Model Structure

Penedo & Stuckle
Entities

Top Down Model
Categories

Accountable Task
and Contract

Change Item
Consumable Purchase

Data Component
Dictionary

Document

Equipment Purchase
External Component
Hardware Architecture
Hardware Component
Interface

Milestone

Operational Scenario
Person

Problem Report
Product

Product Deseription
Requirement

Resource

Risk

Simulation

Software Component
Software Configuration

The task and contract are the

convergence of process

and product and subsets of the project.

It is in a contract

or task that resources are consumed

to produce the product. They are not,
therefore, resource entities.

This item is generally associated

with a product change.

*Support resource, incurrence and availability
not specified.

Product Entity

*Software resource, or perhaps product entity
Product Entity

*Hardware resource

*Hardware resource or perhaps Product Entity
*Hardware resource or perhaps product entity
*Hardware resource or product entity
Product Entity

*Project Entity

Product Entity

*Human Resource

*Process as part of feedback or Product entity
Product Entity

Product Entity

Project Entity

*Sypport resource

*Project Entity

Product entity

Product Entity

Product Entity

Software Executable Task Product Entity

Software Purchase *Software resource

Test Case *Software resource and/or product entity

Test Procedure *Task or project characteristic

Tool *Software resource

WBS Element Project Decomposition Entity, may be the same
as accountable task and contract

It remains to be seen, of course, whether all of the
categories available in the TDC structure are
deemed necessary in any particular environment.
However, the advantage of such a structure is
that exclusion of certain categories of data occurs
explicitly rather than implicitly.

The second model suggested as a means of testing
the TDC model is that provided by [Tausworthe
79]. In this work the model’s entities are not
presented in a list form, but are included in text
discussion and report forms. For this reason it has
been necessary to convert the form to a list of
entities. In doing so it is always possible that
misconceptions of Tausworthe’s ideas may be
present. However, even if incomplete, it provides
another test of the suitability of the TDC model.

The Tausworthe structure is very much oriented
towards a decomposition of the project into tasks
and the association of resources with those tasks.
Thus the modelling approach used by Tausworthe
is somewhat at a tangent to the modelling
approach used here since once again our focus is
on resources, not the activities which consume
those resources. This is not to say, however, that
it is not necessary to associate resources with
tasks, but that it may be necessary to model
resources apart from the tasks that consume them
in order to better understand all of the dimen-
sions of resource data.

The entities listed here are a partial list derived
from the work breakdown structure, the software
technical progress report, the software change
analysis report, and the software change order of
Tausworthe’s model. From these sources the fol-
lowing resource data, among others, were
identified as necessary to establish a resource
database. Only some of the Tausworthe entities
have been listed here. This has been done to the
extent that is necessary to illustrate the conclu-
sions drawn.

From Table 2 it is clear that the focus of atten-
tion in the Tausworthe work is the project and
the decomposition of that project into its com-
ponent parts. Thus we see that the resource data
is assoclated with particular tasks and activities.
In viewing the data in this way a structure is pro-
vided which is excellent for control purposes, in
that it establishes units of accounting which are
more easily estimated and controlled. What is not
clear from the structure, however, is how ques-
tions of desired versus accessible resources can be
modelled, nor exactly how actual versus estimated
can be compared and conclusions stored for use in
later project estimates. It is also difficult to see
how the model proposed in the WBS can easily
facilitate the analysis of resources consumed on a
particular activity type (say inspections), regard-
less of the project phase in which the inspections
were done or the project task in which they were
done. Thus questions such as the value to the pro-
ject of using a particular form of inspection may
be difficult to answer because the data model may
make this data difficult to isolate.

Table 2. Tausworthe Derived Entity List

Tausworthe - Top Down Model
Entities Categories
Staff: Human resource, estimated or actual
Staff LD.
Stafl Name
Staff Phone
Task Activity: The dollar value may be a sum of all resources -
Task LD. consumed on a task-activity, estimated or actual
Task Activity LD,
Budget §
Task: The value is a sum of all resources, estimated
Task 1D. and/or actual
Task Name
Task Deser
Task M'ger

Task Budget $, ETC.
Software Change Order

S/ware ID

Change Order #

Activity ID

Person ID

Description

Start Date, ete.

may be any type, estimated or actual.

However, it is clear that the resource data sug-
gested as necessary by Tausworthe are readily
modelled in the TDC structure. The importance
of the application of the TDC model to the pro-
ject and task level is highlighted by Tausworthe
and also Penedo & Stuckle, so that the associa-
tion of resource data and project work breakdown
structures can be facilitated.

The focus is again on the activity. The resources

196

Perhaps the most detailed resource data collection
forms developed so far has been that of the
STARS Measurement Data Item Descriptions.

The information which follows in Table 3 was
derived from stars Software Development
Environment Summary Reports DI-E-SWDESUM,
DI-F-RESUM, DI-F-REDET, [06 JULY 1984].
These reports contained information most
relevant to the task of validation of the TDC
model. The data suggested as necessary by these
reports concerned aspects of the project, the pro-
cess, and the product. In this paper only those
aspects concerning the project and the process
have been listed. As with the Penedo and the
Tausworthe models, the data model implied in the
work appears not to have been developed on the
basis of a theoretical structure, but rather from a
pragmatic evaluation of those data items deemed
necessary for project management. In addition,
because the data items are

listed in the context of data capture forms, some
rearrangement of these items has been carried out
in the following data list in order.to provide a
clearer presentation of these items.

TABLE 3. STARS Measurement Data Items

Descriptions

A.PROJECT NAME

Project Name
Contractor
Contract No.
Start date, Finish Date
Software Level (System, Subsystem, CsCI)
Application Type
Application description
Revision of current project (y/n)
Revision -version no.
% of software redeveloped
Total no. lines of source code
Initial development {y/n)
if y - Total no. lines source code
no. of instructions
no. of data words
System Structure-
single overlay
multiple overlay
(# overlays, avg. size bytes
independent subsystems
(# subs, avg.size bytes
virtual memory system
(amount of addressable memory, size bytes
Progamming language and % used
Constraints -
Execution Time, rating
Main memory size, rating
Product Complexity, rating
Database size, rating
Methodology, rating
required reliability, rating
Other, rating
Concurrent Hardware development (y/n)
Operational site development (y/n)
Maultiple site development (y/n)
no. of development sites
no. of test sites (if different)
Other Constraints .(text).
cost estimation assumptions made
cost estimation methods used and supporting
rationale
rationale for discrepencies between current
estimates and all previous estimates

197

B. SITE CONFIGURATION INFORMATION

Site ID
Description (development, test)
Computer manufacturer
Model name
Model no.
no. of persons accessing site
no. of input terminals
Terminals in each programmers office (y/n)
Input terminals in central area (y/n)
no. of card readers
no. of printers
no. tape drives
no. disk drives
other peripherals.(specify).
no. documentation sets on hardware/software
environment available
no. site support personnel
amount of storage in development computer
main memory real
main memory virtual
aux memory

DEVELOPMENT SITE ACCESS

Site LD.
Access type: % batch
% interactive
Average job turnaround time
no. hours per day development site available
no. days per week development site available
no. hours per day utilized
no. days per week utilized

TEST SITE ACCESS

Site 1.D.

no. hours per day test site available
no. days per week test site available
no. hours per day test site utilized
no. days per week test site utilized

C. PROJECT PHASE INFORMATION
lexamples]

requirements

Development system used (y/n)

Documents maintained on the dev. system (y/n)

Methodology (formal spec., functional spec.,
procedural spec., english spec., none, other)

Tools/Formalisms (requirements analyzer, word
processor, on-line editor, ¢.m.t., librarian,
spec lang, PDL, none, other)

start and finish date

deliverables

design

Development system used (y/n)
Documents developed/maintained on system (y/n)
Methodology (top down, bottom up, hardest
first, prototyping, iterative enhancement,
none, other)
Tools/Formalisms (software dev. folders,
design reviews, walkthru’s, flow charts,
HIPO, ete.)
start and finish date
deliverables

implementation

Development system used (y/n)

Documents maintained on development system (y/n)

Unit testing performed on dev. system (y/n)

Methodology (top down, cpt, prototyping, etc.)

Tools/Formalisms (code reading, pre-compiler,
dbms, etc)

start and finish date

deliverables

test and integration

Testing performed on development system (y/n)
Documents maintained on system (y/n)

Level of testing performed on dev system
Methodology (spec driven, top down, none, etc)
Tools/Formalisms (......)

start and finish date

deliverables

D. PROJECT PERSONNEL INFORMATION

[these values can be derived from more detailed
records]

Project Name

Job Classification (supervisor, consultant,
analyst, programmer, site operator,
librarian, other)

Avg. no. years application experience

Avg. no. years experience with software

Avg. no. yrs software training

Avg. no. yrs programming language experience

Avg. no. yrs hardware experience

Avg. capability rating

communication

Regular project status meetings (y/n)

How often?

Persons typically in attendance
(classification, No.)

198

E. RESOURCE EXPENDITURE ATTRIBUTES

summary level
[these values may be derived]

Project name

total system cost, estimated, actual

total software cost, estimated, actual

total labour cost $, estimated, actual

total software labour cost $, estimated, actual |

total labour hours, estimated, actual

total software labour hours, estimated, actual

total staff size, start, finish, estimated,
actual

total software staff size, start, finish,
estimated, actual

total computer costs $, estimated, actual

total software computer costs $, estimated,
actual

total computer hours, estimated, actual

total travel costs $

total material costs $

total miscellaneous costs $

[these may be divided by milestones or activities]

labour costs
[these values may be derived]

labour category id

total hours

no. of people, start, finish
cost $

computer hours
computer costs $

computer costs
[these values may be derived]

no. of computers used
no. of different types of computers
total computer hours

x for each computer*

computer i.d.

number of Hours

total computer costs $
cost of each computer $

task costs
[these values may be derived]

task 1.d.
definition
personnel costs
software costs
hardware costs
supplies costs

*xkfor each task*** *¥kkfor each task*¥k*
¥+for each labour category****

total cost of labour

total hours total hours of labour

no. of people, start - finish total cost of computer
cost § total hours of computer
computer hours total cost of travel
computer cost $ total cost of materials
travel cost § total cost of miscellaneous

emeepr—

The Table provides data items to describe the
project, development and test site configurations
and access, project phases, personnel assigned to a
project, and resource expenditure summaries. The
detail shown here has been selected to highlight
the volume of data items which will be necessary
in a measurement system.

In terms of the TDC model, the STARS list shows
recognition of the need to store resource availabil-
ity in that the development and test site access
data includes an accessible and a utilized dimen-
sion. There appears, however, to be no facility for
storing the desirable dimension suggested in the
TDC model. The STARS list also shows extensive
use of the incurrence dimension in section E -
Resource Expenditure Attributes, wherein
estimated and actual resource use is tracked. The
USE DESCRIPTORS of work type, point in time,
and resource utilized are also extensively used in
the STARS list. It is not possible from the docu-
mentation, however, to determine the reasons that
the availability dimension was not applied more
extensively in the data model (for example acces-
sability of personnel or specific hardware or
software items are not modelled). It can be
assumed that it was considered to be innappropri-
ate for entities other than site access.

The STARS data list provides considerable sup-
port for the theoretical structure provided in the
TDC model. It reveals a considered need for the
storage of :

1. Project information

2. Resource type information
3. Incurrence information

4. Availability information and
5. Use descriptors

Of considerable significance is the fact that none
of the three schemas considered here have sug-
gested data entities or items which cannot be suc-
cessfully modelled using the TDC structure. It
appears that the schemas considered here may be
incomplete when compared with the TDC struc-
ture, but the reasons for the apparent exclusion of
data entities and items are not known, but may
be based on purely pragmatic reasons.

5. CONCLUSIONS AND IMPLICATIONS
AT THE RESOURCE DATA LEVEL

The model presented here is meant to be general
and provide a perspective for project manager and
organization in identifying and tracking resources.
It should help in better understanding the
compromises made in resource’ allocation. How-
ever, it is assumed that any project (or even
organization) will work with a subset of this
model. For example, one might limit the number
of availability views, such as combining desirable
and accessible, or track only a subset of the
resource categories. The subsetting process pro-
vides feedback on what has not been tracked. The
actual data collected is driven by the
goal/question/metric paradign based upon the
goals set by the project and the organization.

199

The conclusions to be drawn from this research
can be divided into two categories: those concern-
ing the model itself, and those concerning the
validation of that model.

In terms of the model itself, the discussion has
suggested storage of resource data of a type which
has significant storage and access implications;
that of numeric and non-numeric project and
resource data. It has been assumed in the discus-
sion that the resource database is able to store
not only numeric resource values, but also reasons
for those values along with the resource environ-
ment characteristics.

A system using these suggestions should be able
to efficiently search the numeric and non-numeric
data in a manner which will eventually enable the
system to propose reasons for numeric variances
which occur in the database. In this way the sys-
tem must be able to not only highlight a
significant variance, say between an estimated
and an actual resource occurrence value, but it
should also be able to search the project charac-
teristic database and the numeric and non-
numeric resource classification database in order
to propose or associate reasons for the variance.

It can be said that the model presented here has

four broad implications : ,

1. It proposes a resource categorization
which will allow project database designers to
explicitly consider the content of that database
against a model of the resource environment. In
this way, a particular individual’'s view of the
resource data can be positioned in a context and
compared with other external views of the same
data. This model should motivate the resource
data user to consider the measures that may be
beneficial in seeking improvement in the particu-
lar process goals.

2. It suggests a project management
system’s environment which will be able to
achieve far more in terms of management support
than any known environment available today. It
is able to do this because of the extent and
dynamic nature of the model of the resource data
proposed.

3. It provides a resource categorization
which can be used when considering relationships
between tasks or contracts and resources.
Specifically it provides a focus for the considera-
tion of the resources consumed within a task.

4. Tt provides assistance when applying the
Goal/Question/Metric process paradigm, so that
questions which answer the resource purpose of
the study are highlighted and the measures
appropriate to those questions are suggested.

In terms of the validation of the data model we

have seen by reference to three published models
that the proposed theoretical structure for
resource data is able to encompass all that has
been suggested as necessary for resource manage-
ment. Also of significance, is the fact that each of
the publications used contains different views of
the necessary data and that each one omits cer-
tain elements that the other appears to consider
of benefit. This is, of course, the norm in compar-
ing different external views in a database design
exercise. One advantage of the TDC model is that
it is able to act as a data model template, sug-
gesting the data categories which need to be con-
sidered when designing a resource data schema. If
it is used in this way the data items excluded
from the particular resource model instance will
have been excluded on the grounds that they are
deemed unneccesary in the particular environ-
ment, rather than being excluded because the
category of data (for example, estimated desir-
able hardware for testing) was not noticed by the
data base designers as necessary.

Thus we can be confident that the theoretical
model proposed in the TDC structure can contain
all of the project and resource data so far sug-
gested in the literature as necessary in a resource
management environment. In addition it appears
that there may be project and resource informa-
tion of use in resource management which has not
been included in prior models. The practical need
for this additional information has not been
justified in this piece of research but is the subject
of other current work by the authors.

We have begun to apply the model independent
of TAME in a couple of industrial environments
and have found it provides a useful framework for
planning and tracking resources throughout a pro-
ject. We have not yet reached the stage where we
have been able to evaluate the feedback process,
however.

6. REFERENCES

[Barstow 87] D. Barstow, ”Artificial Intelligence
and Software Engineering,” Proc. 9th Intn’l. Conf.
on S'ware.Eng. IEEE, Monterey, April, 1987,
pp.200-211.

[Basili 85] V.R.Basili, ” Quantitative Evaluation of
Software Engineering Methodology,” Proe. First

Pan Pacific Computer Conference, Melbourne,
Australia, September, 1985.

LBasili, Freburger 81] V.R.Basili, K.Freburger,

Programming Measurement and Estimation in
the Software Engineering Laboratory,” The Jour-
nal of Systems and Software, 2, 1981, pp. 47-57.

Basili, Panlilio-Yap 85] V.R.Basili, N.M.Panlilio-

ap, "Finding Relationships Between Effort and
Other Variables in the SEL,” Proc. 9th COMP-
SAC Computer Software & Applications Confer-
ence, Chicago, October, 1985, pp. 221-228.

200

Basili, Rombach 87] V.R.Basili, H.D.Rombach,
Tailoring the Software Process to Project Goals
and Environments,” Proc. 9th Intn’l. Conf. on
S'ware Eng. Monterey, April, 1987, pp. 345-357.

Basili, Selby, Phillips 83] V.R.Basili, R.Selby,

.Y.Phillips, "Metric Analysis and Data Valida-
tion Across FORTRAN Projects,” IEEE Trans. on
Software Eng. Vol. SE-9 No.6, November, 1983,
pp.652-663.

Basili, Weiss 84] V.R.Basili, D.M.Weiss, *A
ethodology for Collecting Valid Software
Engineering Data,” IEEE Transactions on
Software Engineering, SE10,3, November,1984,
pp.728-738.

gBernstein 87] P.A.Bernstein, "Database System
upport for Software Engineering,” Proc. 9th
Intn’l. Conf. on S'ware. Eng., Monterey, April,
1987, pp. 166-178.

E?)oehm 81] B.W.Boehm, Software Engineering
conomics, Prentice-Hall Englewood Cliffs, New
Jersey, 1981.

[Chrysler 78] E.Chrysler, "Some Basic Deter-
minants of Computer Programming Produc-
tivity,” Comm. of the ACM, 21,6, June, 1978, pp.
472-483.

L]zata & Analysis Center for Software 84] STARS
easurement Data Item Descriptions, Data &
Analysis Center for Software, RADC/COED,
Griffiss AFB, NY. July, 1984.

LJeffery 87a] D.R.Jeffery, "The Relationship
etween Team Size, Experience, and Attitudes
and Software Development Productivity,” Proc.
COMPSACS7, Tokyo, October, 1987,

[Jeffery 87b] D.R.Jeffery, A Software Develop-
ment Productivity Model for MIS Environments,”
Jul. of Systems And Software, June, 1987.

Jeffery, Basili 87] D.R.Jeffery, V.R.Basili,
?Characterizing Resource Data: A Model for Logi-
cal Association of Software Data,” Technical
Report TR-1848, University of Maryland, May
1987, 35pp.

LJeﬁ’ery, Lawrence 79] D.R.Jeffery, M.J.Lawrence,
An Inter-Organizational Comparison of Program-
ming Productivity,” Proc. 4th Intn'l Conf. on
S'ware. Eng. Munich, 1979, pp.369-377.

Jeflery, Lawrence 85] D.R.Jeffery, M.J.Lawrence,
"Managing Programming Productivity,” The
Journal of Systems & Software, 5,1, February,
1985, pp. 49-58.

gJones 86] T.C.Jones, SPQR/20 User Guide V1.1,
oftware Productivity Research Inc. January,
1986.

lNelson 67] E.A.Nelson, »Management Handbook
or the Estimation of Computer Programming
Costs,” System Development Corporation, Santa
Monica, March, 1967.

&Nunamaker, Applegate, Konsynski 86)
F.Nunamaker, L.M.Applegate, B.R.Konsynski,
"Facilitating Group Creativity: Experience with a
Group Decision Support System,” Proc. 20th
Annual Hawaii Intn’l. Conf. on System Sciences,
Hawaii, January, 1987, pp.422-430.

LPenedo, Stuckle 85] M.H.Penedo, E.D.Stuckle,
PMDB - A Project Master Database for Software
Engineering Environments,” Proc. 8th Intn’l.
Conf. on S'ware. Eng., London, August, 1985, pp.
150-157.

Putnam 8111 L.H.Putnam, "SLIM A Quantitative

ool for Software Cost and Schedule Estimation,”
Proc. NBS/IEEE/ACM Software Tool Fair, San
Diego, CA, March, 1981, pp. 49-57.

Sackman, FErikson, Grant 68] H.Sackman,

.J Erikson, E.E.Grant, "Exploratory Experimen-
tal Studies Comparing Online and Offline
Programming Performance Comm. of the ACM,
11,1, 1968, pp. 3-11.

Tausworthe 79] R.C.Tausworthe, Standardized

evelopment of Computer Software: Part II Stan-
dards, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1979.

[Valett 87] J.D.Valett, "The Dynamic Manage-
ment Information Tool (DYNAMITE): Analysis of
the Prototype, Requirements and Operational
Scenarios,” M.Sc. Thesis University of Maryland,
1987.

[Walston, Felix 77] C.E.Walston, C.P.Felix, "A
Method of Programming Measurement and Esti-
mation,” IBM Systems Journal, 16,1, 1977, pp.54-
73.

Wolverton 74] R.Wolverton, ” The Cost of
eveloping Large Scale Software,” IEEE Transac-
tions on Computers, 23,6, 1974.

201

| &Y

