UMIACS-TR-90-73 May 1990
CS-TR-2478 o

Ada Reusability and Measurement*

V.R. Basili, H.D. Rombach, J. Bailey, and A. Delis
Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742

ABSTRACT

The demand for software has exceeded the industry’s capacity to supply it. Although ad-
vances in software development technology have increased the efficiency of developers, none
have provided the dramatic improvements in quality and productivity which will be necessary
to meet the current and future demands. Software reuse provides an answer to this dilemma.
This paper describes two reuse studies performed at the University of Maryland Department of
Computer Science. The first study defines a means of measuring data bindings to characterize
and identify reusable (sets of) components of existing software. The second study defines ideal-
ly reusable components and a way of measuring the distance from that ideal for any given
component. One important result of both studies has been the identification of a set of guide-
lines which can be used to assist developers to create more reusable software, to select reusable
components from existing software, and to modify existing software to improve its generality
and reusability while preserving its functionality.

*Research for this study was supported by Airmics grant 19K-CN983-C to the University of Maryland. An earlier version of this
paper has been presented at the 6th Symposium on Empirical Foundations of Information and Software Sciences, Atlanta, GA, Oc-
tober 19-21, 1988. .

ADA REUSABILITY AND MEASUREMENT

V. R. Basili, H. D. Rombach,
J. Bailey, and A. Delis

Department of Computer Science
and
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

0. Introduction

The demand for software has exceeded the industry's capacity to
supply it. Projects are frequently scaled down, delayed or even
cancelled because of the time and effort required to develop the
software for them. Further, the demand for software will continue to
increase in the forseeable future. Although advances in software
development technology such as high level languages, interactive
cevelopment environments, and formal methods, have increased the
efficiency of developers, none have provided the dramatic improvements
in productivity which will be necessarv to meet the current and future

cemands.

Software reuseé provides an answer to this dilemma. Broadly defined,
software reuse includes more than the repeated use of particular code
modules. Other products such as specifications or test plans can be
reused, sofﬁware development processes such as verification technigues
or cost modeling methods are reusable, and even inténgible products
such as ildeas and experience contribute to the total picture of reuse.
Although process and tool reuse is common practice, lifecycle product
reuse is still in its infancy. Ultimately, reuse of early lifecvcle
products might provide the largést payoff, however for the near term,
gains can be realized and further work can be ggided by understanding
how software can be developed with a minimum of newly-generated source

lines of code.

This paper describes several parallel studies being conducted at the

University of Maryland Department of Computer Science which address

various related software reuse topics. Two of these studies are
covered in detail. One defines a means of measuring data bindings to
characterize and identify varibus reusable subsets of existing
software. Cluster analyses are performed to analyze the locations and
strengths of data bindings, resulting in a kind of contour map showing
the data binding strengths in the analyzed soft&are. The other study
defines theoretically highly reusable software and a way of measuring
distances from that ideal. The measure is based on the amount of
transformation required to modify existing code so that it approaches
that ideal. The extent of the transformations which are needed
constitutes a useful indication of the effort to reuse a body of
scftware. These two efforts support each other, since the
identification of data bindings contributes to an understanding of the
transformations required to maximize the independence of a unit of

software.

One important result of these efforts has been the identification of
a set of guidelines which can be used to aséist developers to create
more inherently reusable software, to select reusable parts from
existing software, and to modify existing software to improve its
generality and reusability while preserving its functicnality. The
guidelines which were derived from each of the studies have been
summarized at the end of their respective sections. Although they are
written with respect to the development and reuse of svstems written in
the Ada language, since Ada is the medium.for these studies, thev apply

generally to software engineering.

1. Related Reuse Projects

The two studies introduced above are part of a set of reuse-related
projects being conducted at the University of Marvland Department of
Computer Science. One of the other studies forms a foundation for the
rest of the projects by providing a scheme to describe and classify
reﬁse research according to several possible dimensions. The following
introduces two of the dimensions of that classification scheme. These
are then used to show how the other projects. can e given both context

and scope in terms of their contribution to issues of reuse.

Beginning with the distinction between software processes and
software products as.an organizational dimension, the study of reuse
can be described as the study of the creation and the use (processes)
of reusable software products. Although attempting to study just the
processes or the product alone necessarily involves at least some
knowledge and assumptions about the other, it is important to define at
least the central focus for a given research effort. For example, the
data binding and transformation measuring projects, the principal
studies in this paper, emphasize an understanding of what constitutes a
viable reusable product. Tﬁey do not emphasize reuse processes, such

as that of retrieving a reusable product when one is needed.

Another dimension which is useful for scoping a reuse research
effort is whether the work is more concerned with product syntax or

semantics. For example, the two principal projects in this paper do

H

not address the practical issues of whether a reusable product is
actually useful,‘but rather are limited to an examination of the
structure of a product in order to assess whether it is theoretically
usable in differenf'contexts. As with the process-product division,
there are interactions between syntactic and semantic research. For
example, a reusable product which is verv general and flexible, a
syntactic aspect, may not encapsulate a sufficient amount of
functicnality to make its use worthwhile, a semantic issue.
Nevertheless, it is necessary to develop our knowledge in one direction
at a time to avoid being overwhelmed by the total number of directions
that are available. For further details, this categorization of the

dimensions of software reusability has been outlined in [1].

In addition to this conceptual work o develop 2 reuse
classification scheme, there are five other reuse-oriented projects at
the Department. The second project is a model of the flows of reusable
information in the form of both processes and products which occur in a
software development brganization (2]. The third and fourth projects
.are general tool developments, including an Ada Static Source Code
Analyzer which accepts syntactically correct Ada and performs various
counts pertaining to the usage of Ada language constructs, facilities,
and capabilities of that code [3], and an Ada Test Coverage Analvzer
which instruments syntactically correct Ada éo that test coverage can

be computed at run time. These two are not strictly reuse-related

(5]

studies, however they contribute to needs that arise during the
selection, evaluation, and reuse of existing products and processes.
The final two projects, the Ada data binding analyzer and the
transformation-for-reusability technique introduced above, are partly
conceptual but are currently revealing guidelines to enhance reuse.
These guidelines, along with the need to automate the analyses, will
evolve into specifications for specific reuse-oriented tools. I: is

these two projects that are covered in the remainder of this paper.

2. Ada Data Binding BAnalysis

The first of the two projeécts which are covered in detail in this
paper is a data binding analysis technique for Ada. This research seeks
to evaluate the reusability of Ada software systems by analyzing the
interconnectivity among their components. An Ada Data Binding Analyzer
has been designed whose function is to accept syntactically correct Ada
source code as input and compute various data binding measures. Data
binding measures are used for characterizing the inter-module structure
{interfaces) of 2Ada programs, where any active program unit
{non-package, non-generic) can be considered a module. 1In addition,
cluster analysis is performed <o group modules of a system on the basis
of the strength of their coupling. The research involves.developing a
technigue to compute and weight coupling strengths, where coupling is
based on references to variables and parameters (data binding). It also

involves the interpretation and validation of those results.

The definition of a data binding given in [4] is:

Let x be a global variable and p and g program
components. If p assigns x and g references it, then
the triple (p, x, ¢) is a data binding between the two
program segments.

The existence of the data binding triple may mean that g 1is
dependent on the performance of p because of the global x . Clearly,
the order of the three elements is important since binding (g, x, p) is
not identical to (p, %, @) though it can be the case that both bindings
are present. The triple identifies a unidirectional communication path

between the two modules. The total number of bindings among the system

modules represents the degree of connectivity among the component pairs

within a system structure.

The above definition describes a particular form of binding, known

as an Actua
progressive

here:

1l Data Binding according to the classification of four

ly stronger bindings which are given in {5] and paraphrased

1. A Potential Data Binding (PDB) is defined as a triple (modl,
x, mod2) where modl and mod2 are modules which are both in
the static scope of the variable x. A PDB reflects the
potential of a data interaction between the two components
based only upon the locations of modl, mod2 and x.

2. A Used Data Binding (UDB) is defined as a PDB where both modl
and mod2 make use of x for either reference or assignment.
It reflects an active relationship between modl and mod2.
Generally speaking, UDB is harder to calculate than PDB since
the implementation of components must be analyzed to dlscover
the references or assignments to x.

3. An Actual Data Binding (ADB) is defined as a UDB where modl
assigns a value to x and mod2 references it. The ADB
relation is not commutative like the previous two since it
distinguishes between reading the value of x and updating

it.
more

Because of this distinction, the calculation of ADB is
complex that that of UDB. An ADB indicates that there

could be a flow of information from modl to mod2 via the
variable x. The relative order of the execution of usages of
% in the different modules is ignored, however.

o
.

A Control Flow Data Binding (C:DB) is defined as an ADB

where control can pass to mod2 after modl has had control.
To distinguish between an ADB and a CFDB, the possible
control flows through the program must be analvzed to decide

that

the value provided by modl could be referenced by mod2

at some time before the program terminates. Because of the
added control analysis, recognizing CFDB's is substantially

more

difficult than only recognizing ADB's.

Actual Data Bindings were first apﬁlied in the SIMPL family of

languages and described in [4] to examine issues of visibility. 1In [5],

Actual Data

Bindings were utilized to determine the modularity of

FORTRAN programs. However, these definitions need to be extended for an

Ada environment where the role of global variables can be minimized

through the

use of local scoping and persistent but hidden variables.

By extending the definition to include parameters as well as

variables,

is possible.

a more reasonable representation of data bindings in Ada code

Such a view of Ada software can provide useful information

about the viability of reusing various substructures within that code.

5

In theory, there should be some way of characterizing the production and
consumption of data values in a program which can provide guidance about
where reusable code in that program might be found. For example, in a
well~structured Ada program that lends itself well to the reuse of its
components, we might expect to find that references to any given
variable are localized (as would occur with state variables or data
structures in a package body) while references to a parameter of a
subprogram or entry are more widely distributed (as in the case of an

abstract data type).

Note that the analyses does not deal with problems of aliasing.
Currently, only one level of data bindings is examined. Resolving
aliasing would complicate the analysis task significantly, reguiring

data flow analysis techniques, and has not been attempted at this time.

In addition to the inclusion of parameters along with global
variables, the definition of a global variable needs to be extended for
Ada to mean not only variables with library-level scopes but also any
variable whose scope includes both of the modules under consideration.
This could be a variable which is local to one module but global to
another (where the second module is nested within the first) or a
variable which is external to both modules but is not necessarily at the

library level.

Moreover, the definition of a module must be determined when
analyzing Ada code for data bindings. For this, the Myers definition of
a module was used as a point of departure. In (6], a module is a set of

executable program statements that meet three criteria:

a. It is a closed subroutine; it implements a distinct piece of
computation
b. It can be called from any other module in the program

C¢. It can be compiled separately

Based on Myers' characteriétics, subprograms (procedures and
functions) qualify as modules. Ada subprograms are constructs of a
"closed subroutine™ nature, and with minor restrictions can be
separately compiled. Further, library unit subprograms as well as

subprograms declared in the visible part of a library unit package can

be called frdm any othefwﬁdaule in the system, assuming the use of an
appropriate context clause. By extending the definition to enclosed
scopes, any subprogram, library level or nested, qualifies as a module.
No differentiation is maderbetween the declaration and the body of a
subprogram, even if they are in different compilation units. Both are

considered to be part of the same module.

Tasks are also considered modules for the same reasons. Although
the calls to a task are actually calls to entries, similar to calls to
the visible operations of a package, the task itself is active, unlike a
package. Again, a task declaration and body are together considered a
single module. Unlike subprograms and tasks, packages are not active
and cannot be called, so they are not considered modules. Rather, they

constitute a (possibly empty) set of modules.

When performing data binding analyses for the purpose of examining
reusability, generics are not considered separately, but follow the same
classificatioh as their non-generic counterparts. Therefore, only
generic subprograms are considered, and the generic parts (generic
formal parameter lists) are disregarded in the analysis. It would also
be possible to examine the bindings between‘generic instantiations and
other modules, however the instantiations of a generic are not
varticularly interesting when the goal is to discover reusable portions
of the analyzed software. Other possible candidates for modules which
were rejected include block statements, package body initializations,
and accept statements. It would be theoretically possible to include
these structures as modules, however they did not fit easily into the

chosen definition by Mvers.

The following are two definitions which are specific to Ada and

which arise from the preceding discussion.

Definition I: Let modl and mod2 be two subprograms or tasks
where modl calls mod2, and let the object x be a part of the
mod2 interface (formal parameter list), then if modl assigns x
and mod2 references it the binding (modl, x, mod2) exists, and
if mod2 assigns x and modl references it the binding (mod2,
X, modl) exists.

Note that in Ada the mode of the formal parameter x limits the

availability of the possible bindings. The binding (modl, x, mod2) can

only exist if x is an in or in out parameter and the binding (mod2,
¥, modl) can only exist if x is an’'in out or out parameter. The
mode does not guarantee a binding, however, since both an assignment and

a reference must also be made.

Definition II: Let modl and mod2 be two subprograms or tasks
and let the the scope of object x extend to both modl and mod?2

If modl assigns x and mod2 references it, then the binding
(modl, x, mod2) exists.

Except for the removal of the stipulation that x be a global
variable, this second definition parallels the original definition in
[4]. Note that these definitions can be applied whether or not the
modules in question are visible at the library level or nested, or even
if they are nested inside one another. Note also that the defined
bindings are those that occur through execution and not through
elaboration (such as through initializations or default value

assignments) .

2.1 Cluster Analysis

After the set of data bindings in a program has been identified, a
cluster analysis is performed to identify which modules are strongly
coupled with other modules and therefore may not be good candidates for
reuse, and which modules are found to be independent of others and
therefore potentially useful on their own. A cluster analysis results
in a hierarchical system decomposition based on the strength of the data

bindings among the modules.

To perform a cluster analysis on a set of modules (typically a
complete program), first a matrix, B, is constructed that is of N X N
dimensions, where N is the number of components. Each matrix element
B(k,1) contains the total number of bindings between component k and
component 1. (The direction of the binding is no longer important, so

the matrix is symmetric with a zero diagonal.)

The algorithm used to identify clusters is then applied iteratively
in a bottom up fashion. The first clusters are identified as those
components that are bound with the highest strength, according to the

matrix. A cluster is then redefined as a single module, and a new

(smaller) matrix is computed. The process is repeated, each time
collapsing modules into single modules for the next iteration, building
a tree-gram of the system modules. Eventually, all the elements

coalesce in a single group that is the complete system cluster.

The iteration process is documented in the form of a tree-gram that
expresses the differences and similarities (with respect to data
bindings) of the components involved in the analysis. The specific
cluster analysis technique used in this project is more completely

described in [5].

2.2. Reuse Guidelines Based on Data Bindings

The data binding metrics and cluster analysis techniques introduced
above have been manually applied to a limited set of small Ada programs.
Based upon this experience a set of guidelines has been derived for
developers to keep in mind when designing and building reusable Ada

components:
* Avoid multiple level nesting in any of the language constructs.

Multiple .level nesting of components.results in a deeply clustered
tree-gram from which it is difficult to extract reuse candidates. The
use of a single level of components results in very flat tree-grams and,

therefore, reusable components can be extracted much more easily.
* The use of the "use" clause is not recommended.

Data binding analysis becomes more complicated in the presence of
"use" clauses since naming and visibility mechanisms must be employed in
order to decide upon the correct binding of names. Further, the

readability of programs is increased when expanded names are used.

* The interfaces of the subprograms should use the appropriate
abstraction for the parameters passed in and out.
The abstraction of the interface components should be at the

appropriate level. In this way a large number of parameters in the

formal parameter list which could make the analysis complicated can be

avoided.
* Components should not interact with their outer environment.

The software should not deal with globals, should be free of

side-effects and should reference objects at a local level.

* Appropriate use of packaging could greatly accommodate

reusability.

Packaging is a logical way to group homogeneous collections of
objects, subprograms and tasks. Even though subprograms from the same
package sometimes do not cluster together due to the nature of the
implemented concept (abstract data types often exhibit this tendency
since they often share one or more type definitions but not variables)
it is still true that reasonable packaging can assist enormously in the

effort to reuse software.

3. Reuse Through Generalization: Measurement and Transformation

This project seeks to define transformation technigues which can be
applied to existing Ada software in order to extract reusable
functionality from it. By measuring‘the amount of transformation which
must be performed to convert an existing program into one composed of
maximally reusable components, an indication of the reusability of that
program can be obtained. After applying all of the transformations
which are reasonable or practical, if there remain desired
transformations that cannot be performed cost effectively, then those
unapplied trénsformations constitute a measure of the latent

non-reusability of the software.

The advantages of transforming existing scoftware into reusable
components, rather than creating reusable components as an independént
activity, include: 1) software development organizations are likely to
have a large supply of previous projects which could yield reusable
components, 2) developers of ongoing projects do not need to adjust to
new and possibly unproven methods in an attempt to develop reusable

components, so no risk or development overhead is introduced, 3)

transformation work can be accomplished in parallel with line
developments but be separately funded (this is particularly applicable
when software is being developed for an outside customer who may not be
willing to sustain the additional costs and risks of developing reusable
code), 4) the resulting components are guaranteed to be relevant to the
application area and recognizable to the developers, and 5) the cost is

low and controllable.

As discussed in the first section, this project only attempts to
identify theoretically reusable software. Thus, it is concerned only
with the syntax of reusable software. It does not address issues of
practical reusability, such as whether a reusable component is useful
enough to encourage other developers to reuse it instead of redeveloping
its function. The goal of the transformations is to identify and
extract compohents from a program which are not dependent on external
declarations, information, or other knowledge. Transformations are
needed to derive such components from existing software systems since
inter-component dependencies arise naturally from the customary design
decomposition and implementation integration processes used for software

development.

To guide the transformations which will result in increased
independence among the components of a program, a model is used which
distinguishes between software function and the declarations on which
that function is performed. The functions become the independently
reusable parts and the declarations become the application-specific
parts of the software. However, this is not to say that only strict
functions are extracted for reuse since the model is recursive. A
declaration (also known as an object) can be seen as being constructed
from lower level declarations onto which some functionality has been
grafted. Similarly, this new declaration can be combined with other
declarations and functionality to yield yet another declaration which
solves an even larger portion of the overall problem'being solved. This
model is somewhat analogous to the one used in Smalltalk programs where
objects are assembled from other objects plus programmer-supplied
specifics. However, it is meant to apply more generally to Ada and
other languages that do not have support for dynamic binding and full
inheritance, features that are in general unavailable when strong static

type checking is required.

Applying this model to existing software means that any lines of
code which represent reusable functionality must be encapsulated and
parameterized in order to make them independent from their surrounding
declaration space (if they are not already independent). The language
construct in Ada which enables this transformation is, of course, the
generic. Génerics that are derived by generalizing existing program
units, through the removal of their dependence on external declarations,
can then be offered as independently reusable components for other

applications.

Unfortunately, declarative independence is just one way that a
program unit can rely on its external environment. Removing the
compiler-detectable declarative dependencies and producing a new generic
unit is no guarantee that the new unit will actually be independent.
There can be dependencies on data values that are related to values in
neighboring software, or even dependencies on protocols of operation
that are followed at the point where a resource was originally used but
which might not bé followed at a point of later reuse. (An example of
these kinds of dependencies is given later in this section.) To be
completely useful, the transformation process would need to identify and
remove this other dependence as well as cdeclarative dependence. For
now, however, this work only acknowledges these additional dependencies
while concentrating on mechanisms to measure and remove declarative

dependence.

3.1 Declarative Dependence

In a language with strong static type checking, such as 2ada, any
information exchanged between communicating program units must be of
some type which is available in both units. Since Ada enforces name
equivalence of types, where a type name and not just the underlving
structure of a type introduces a new and distinct type, the declaration
of the type used to pass information between units must be global to
both of those units. The user of a resource, therefore, is constrained
to be in the scope of all type declarations used in the interface of
that resource. 1In a language with a fixed set of types.this is not é

problem since all possible types will be globally available to both the

resource and its users. However, in

user-cdeclared types, any inter-module
be performed in the scope of those pr
This means that the coupling between
from data coupling to external coupli
on the traditional seven-point scale
lowest level of coupling) [6].
Static type checking, therefore, f{
many errors from entering a software
detected until run time. However, it
module if a specific declaration envi:
only must the reused module be in the
80 must its users. Further, those usg
that module using those external types
resource master over its users instead
common to use a set of global tvpes tg
the components of a program, however t
all, of the developed sgftware £rom be

The following is an abstraction of sug

context:

package Global Types is
type Typl is

end Global Types;

- resource:

with Glocbal Types;

package Useful Functions is
procedure Proc (Pl

end Useful Functions;

-- user:
with Global Types:;
with Useful Functions;
procedure User is

Objl Global Types.Typl:
begin

Useful Functions.Proc (Objl);
end User;

The above illustrates the general
relationship. The dependencies among

illustrated with a directed graph.

to the data binding dependencies discuy

dependence on type declarations and no

ng

ronment must also be reused.

2rs are forced to communicate
5 rather than its own,

1 of the other way ardund.

out Global_ Type

Th

a language which allows

communication with such types must

ogrammer-defined declarations.

two communicating units increases

(or from level two to level five

of Myers, where level one is the

s a mixed blessing. It prevents

system which might not otherwise be

limits the possible reuse of a
Not

-
[

scope of those declarations, bu
with
making the

It is
faéilitate communication among

his practice prevents most, if not
2ing used in any 6ther program.

h a situation:

N

s.Typl);

case of a context-resource-user
these three units can be

is form of dependency i related
it is a

ssed earlier. However,

t on object declarations that is

1

important here. Nevertheless, the theory of data binding and cluster
analysis could be extended to cover any relationship defined between
modules, whether object dependence, type dependence, or any other. A

graph of the dependency in the example above would be:

context’

N

[ow

resource = A depends on B

user

A resource does ncot always need full type information about the data
it must access in order to accomplish its task. A common example would
be 2 simple data base which stores and retrieves data but which does not
take advantage of the information contained within that data. In cases
such as this, it is pcssible to write or transform the resource so that
any context or dependencies it regquires are supplied by its users.

Then, only the essential work of the module needs to remain. This
"essence only"” principle is the key to the transformations sought. Oniv
the design of a module remains, with any details needed to produce the
executing code, such as actual type declarations or specific operations
on those types, being provided later by the end users of the resource.
In languages such as Smalltalk which allow dynamic binding, this
information is bound at run time. In Ada, where the compiler is
obligated to perform all type checking and thereby eliminate many of the
problems that can occur with dynamic binding, generics that are bound at
compilation time can be used to free the text of a resource from

depending directly on external type definitions.

Using the following package declaration and body, which is an
abstraction of a hypothetical but structurally typical Ada package, one

transformation is illustrated:

—= resource:
with Decls;
package Store is

g

procedure Put (Obj : in Decls.Typ):
procedure Get_Last (Obj : out Decls.Typ):
end Store;

package body Store is
Local : Decls.Typ; :
procedure Put (Obj : in Decls.Typ) Ais

begin
Local := Obj:
end Put;
procedure Get Last (Obj : out Decls.Typ) is
begin
Obj := Local;

end Get Last;
end Store;

The above component can be transformed into the following one which

has no dependencies on external declarations:

-- generalized resource:
generic
type Typ is private; : 3
package General Store is
procedure Put (Obj : in Typ):
procedure Get_ Last (Obj : out Typ):
end General Store;

package body General Store is
Local : Typ;
procedure Put (Obj : in Typ) is

begin
Local := Obj:
end Put;
procedure Get Last (Obj : out Typ) is -
begin
Obj := Local:;

end Get_Llast;
end General Store;

Note that, by naming the generic formal parameter appropriately,
none of the identifiers in the code needed to change, and the expanded
names were merely shortened to their simple names. This minimizes the
handling required to perform the transformation (although automating the
process would make this an unimportant issue). This transformation
required the removal of the context clause, the addition of two - lines
(the generic part) and the shortening of the expanded names. The
modification required to convert the procedure to a theoretically
independent one constitutes a reusability measure. Formal rules for
counting program changes have already been proposed and validated (7],
and adaptations of these counting rules (such as using a lower handling

L . "
value for shortening expanded names and a higher one for adding generic

15

formals) are being considered as part of this work.

Although the above illustration shows the context, the resource, and
the user as library level units, declaration dependence c¢an occur, and
transformations can be applied, in situations where the three components
are nested. For example, the resource and user‘can be co-resident in a
declarative area, or the user can contain the resource or vice versa.
For clarity, the examples in this paper will always show the components

at the library level.

In addition to measuring the reusability of a unit by the amount of
transformation required toc optimize its independence, reusability can
also be gauged by the amount of residual dependency on other units which
cannot be eliminated, or which is unreasonably difficult to eliminate,
by any cf the proposed transformations. For any given unit, thérefore,
two values can be obtained. The first reveals the number of program
changes which would be required to perform any applicable
transformations. The second indicates the amount of dependence which
would remain in the unit even after it was traﬁsformed. The original
unit in the example above would score high on the first scale since the
handling required for its conversion was negligible, implving that its
reusability was already good (i.e., it was ‘already independent or was
2asy to make independent of external declarations). After the
transformation, there remain no latent dependencies, so the transformed

generic would receive a perfect reusability score.

Note that the object of any reusability measurement, and therefore,
of any transformations, need not be a single Ada unit. If a set of
library units were intended to be reused togethe£ then the metrics as
well as the transformations could be applied to the entire set. Whereas
there might be substantial interdependence among the units within the
set, it still might be possible to eliminate all dependencies on

external ‘declarations.

In the above example, one reason that the transformation was trivial
was that the only operation performed on objects of the external type
was assignment. Therefore, it was possible to replace direct visibility
to the external type definition with a generic formal private type. A

second example illustrates a slightly more difficult transformation

which includes more assumptions about the externally declared type. 1In
the following example, indexing and component assignment are used by the

resource.

Before transformation:

-- context
package A is

type Item Array is array (Integer range <>) of Natural;
end A;

-— resource
with A;
procedure B (Item : out A.Item Array) is
begin

for I in 1..10 loop

Item (I) := 0;

end loop:

end B;

~-- user
with A, B;
procedure C is

X : A.Item Array (1..10):
begin

B (X}
end C;

After transformation:
—-— context
package A is _
type Item Array is array (Integer range <>) of Natural;
end A;

-— generalized resource
generic

type Component is range <>;

type Index is range <>;

type Gen Array is array (Index range <>) of Component;
procedure Gen_B (Item : out Gen_Array);
procedure Gen_B (Item : out Gen_Array) is
begin '

for I in 1..10 loop

Item (I) := 0;

end loop;

end Gen_ B;

-- user
with A, Gen_B;
procedure C is

X : A.Item Array (1..10);

procedure B is new Gen_B (Natural, Integer, A.Item Array);
begin

B (X);
end C;

1

The above transformation removes compilation dependencies, and
allows the generic procedure to describe its essential function without
the visibility of external declarations. However, it also illustrates
an important additional kind of dependence which can exist between a

resource and its users, namely information dependence.

3.2. Information Dependence

In the previous example, the literal value 10 is a clue to the
presence of information that is not general. 1In fact, even the
appearance of the literal value 0 (the value assigned to the components)
is not even necessarily general. Therefore, either of the following

would be an improvement over the transformation shown above:

generic

type Component is range <>;

type Index is range <>;

type Gen_Array is array (Index range <>) of Component;
procedure Gen_B (Item : out Gen_ Array);
procedure Gen B {(Item : out Gen_Array) is

begin
for I in Item'Range loop
Item (I) := Component'First:;
end loop;

end Gen_ B;
- or -

generic
type Component is range <>;
type Index is range <>; ,
type Gen_Array is array (Index range <>) of Component;
Init_val : Componeént := Component'First;

procedure Gen B (Item : out Gen_Array);

procedure Gen_B (Item : out Gen_ Array) is

begin
for I in Item'Range loop
Item (I) := Init_Val:
end loop;
end Gen_ B;

Note that the last transformation allows the user to supply an
initial value, but also provides the lowest value of the component type

as a default. An additional refinement would be to make the component

type private which would mean that Init_Val could not have a default
value. Information dependencies such as the one illustrated here are
harder to detect than compilation dependencies. The appearance of
literal values in a resource is often an indication of an information

dependence.

3.3. Protocol Dependence

A third form of dependence has been identified, known as protocol
dependence, where the user of a resource must obey certain rules to
ensure that the resource behaves properly. For example, a stack which
is used to buffer information between other users could be implemented
in a not-so-abstract fashion by exposing the stack array and top pointer
directly. 1In the following illustration, all users of the stack must
follow the same protocol of decrementing the pointer before popping and

incrementing after pushing, and not the other way around:

-—- resource:
package Bad Stack is
Data : array (1..100) of Character;
Pointer : Integer range 1..101 := 1;-
end Bad Stack;

-~ Push user example:
with Bad_Stack; -
use Bad_Stack:
procedure Push is
begin
if Pointer <= 100 then
Data (Pointer) := '@';
Pointer := Pointer + 1;
end if;
end Push;

-- Pop user example:
with Bad_Stack;
use Bad_Stack;
procedure Pop is
X : Character; - .

begin
if Pointer > 1 then
Pointer := Pointer - 1;
X := Data (Pointer);
end if;
end Pop;

Notice that in addition to the protocol dependence, an information

dependence is indicated by the appearance of the literal values 1, 100,
19

and 101 (but not the '@' since that is only data in the user code).
Notice, also, that one could argue that the dependence on type Character
from package Standard might be considered a declaration dependence which
ought to be removed. Although the mention of Standard in a context
clause is unnecessary, meaning the resource and its users are already
compilation-independent, the identification and removal of the use of
Character in the resource (by replacing it with a generic formal private

type) would improve the generality of the resource.

3.4. Formalizing the Technique

The following is a formalization of the objectives of

transformations which are needed to remove declaration dependence.

1. Let P represent a program unit.

Let D represent the set of n object declarations, d(1)
d{n), directly referenced by P such that d(i) is of a type
declared externally to P, but not in package Standard (for
library units, this wvisibility must be obtained through a
"with” clause).

o8]

w

Let O(1) . . O{(n) be sets of operatiocns where O(i) is the set
of operations applied to d{(i) inside P.

b

3
e

P is completely transformable if sach O(i) (j) can be replaced
with a predefined or generic formal operation.

The earlier example transformation is reviewed in the context of

these definitions:

1. Let P represent a program unit.
P = procedure B (Item : out A.Item Array) is ...
2. Let D represent the set of n declarations, d(1) . . d(n),

directly referenced by P such that d(i) is of a type declared externally

to P, but not in package Standard.

3) Let O(1) . . O(n) be sets of operations where 0(i) is the set of
operations applied to d(i) inside P.
oLy = { indexing by integer types, integer assignment

to components }

4) P is transformable if each 0O(i

predefined or generic formal operatio

Indexing can be obtained through a
Although no constraining operation wa
either constrained or unconstrained s
formal subprogram parameter. Since ¢

the component type must not be limite

type Component is range <>;
type Index is range <>;
followed by either:
type Gen_Array is étray (Index) of

or:

type Gen_Array is array {(Index ran

Notice that some operations can be

operations more easily than others.

structures (illustrated earlier) can
array type a generic formal type. Hoy
structures (using "dot" notation) comg

operation must be replaced with a use:

3.5. Experience with Transformations
To test the feasibility of the tra
6,000-1line Ada program written by seve
examined for reuse transformation posg
of six library units, ranging in size
theoretically possible dependencies th
ten were regquired. Fou# transformatig
were made to three of the units. Thes
of code (less than a 1% increase) and
from ten to five, which 1s the minimun
one possible program change definitior

between two and six changes.

A fifth modification was made to d

2
P

1

~

vever,

sibilities.

n possible with six units.

) (j) can be replaced with a

n.

generic formal array type.

5 used, the formal type could be
ince the only declared object is a
omponent assignment is required,

d.

Component;
ge <>)

of Component;

replaced with generic formal

or example, direct access of array

generally be replaced by making the

direct access into record

plicates transformations since this

r~-defined access function.

nsformations proposed, a

2n professional programmers was

The program consisted

from 20 to 2,400 lines. Of the 30

1at could exist among these units,
»ns of the sort described above

se required an additional 44 lines

reduced the number of dependencies

Using

1, each transformation required

etach a nested unit from its

parent. This required the addition of 15 lines and resulted in a total
of seven units with the minimum six dependencies. Next, two other
functions were made independent of the other units. Unlike the previous
transformations which wére targeted for later reuse, however, these
transformations resulted in a net reduction in code since the resulting
components were reused at multiple points within this program.
Substantial information dependency was identified but remained among the

units, however.

3.6. Reuse Guidelines Based on Dependencies

As with -the data binding analysis, manual application of the
principles and techniques of generic transformation and extraction has
revealed several interesting and intuitively reascnable guidelines

relative to the creation and reuse of Ada software.

* Avoid direct access into record components except in the same

declarative region as the record type declaration.

Since there is no generic formal record type in Ada (without dynamic
binding such a feature would be impractical) there is no straightforward
way to replace record component access with a generic operation.
fnstead, user-supplied access functions are needed to access the
components and the type must be passed as a private type. This is
unlike array types for which there are two generic formal tfpes
(constrained and unconstrained). This supports the findings of others
which assert that direct referencing of non-local record components

adversely affects maintainability [87.
* Minimize non-local access to array components.

Although not as difficult in general as removing dependence on a

record type, removing dependence on an array type can be cumbersome.

* Keep direct access to data structures local to their

declarations.

This is a stronger conclusion than the previous two, and reinforces

the philosophy of using abstract data types in all situations where a
data type is available outside its local declarative region.
Encapsulated types are far easier to separate as resources than globally

declared types.

* Avoid the use of literal values except as constant value

assignments.

Information dependence is almost always associated with the use of a
literal value in one unit of software that has some hidden relationship
to a literal value in a different unit. If a unit is generalized and
extracted for reuse but contains a literal value which indicates a
dependence on some assumption about its original context, that unit can
fail in unpredictable ways when reused. Conventional wisdom gpplies
here, also, and it might be reasonable to relax the restriction to allow
the use of 0 and 1. However, experience with a considerable amount of
software which makes the erroneous assumption that the first index of

any string is 1 has shown that even this can lead to problems.
* Avoid mingling resources with application specific contexts.

Although the purpose of the transformations is to separate resources
from application specific software regardless of the program structure,
certain styles of programming result in programs which can be
transformed more easily and completely. By staying conscious of the
ultimate goal of separating reusable funétion from application
declarations, whether or not the functionality is initially programmed
to be generic, programmers can simplify the eventual transformation of

the code.
* Keep interfaces abstract.

Protocol dependencies arise'from the exportation of implementation
details that should not be present in the interface to a resource. Such
an interface is vulnerable because it assumes a usage protocol which
does not have to be followed by its users. The bad stack example
illustrates what can happen when a resource interface requires the use
of implementation details, however even resources with an appropriately

abstract interface can export unwanted additional detail which can lead

23

to protocol dependence.

4. Conclusions and Future Directions

Two ongoing research projects seeking to characterize and measure
aspects of reusability in Ada software have been described. The first
project applies for the first time the results of earlier data binding
work to the Ada language [4]. The second project motivates the
transformation of Ada software to yield reusable components and
describes a technique to accomplish that transformation. Both projects
yield measures that provide visibility into Ada software for the pufpose

of identifying and evaluating portions of it for reuse.

By applying the principles described by each of the studies, several
guidelines concerning the structure of reusable Ada code were revealed.
All of the guidelines discovered so far are intuitively satisfying in
that they complement rather than contradict conventional software
engineering wisdom. Not all have been previously associated with
promoting reusability, however. Instead, most have been previously

recommended with respect to promoting readability and maintainability.

Several tools have been identified and described as a result of
these studies. A tool to calculate data binding metrics could be used
to highlight regions of reusability in existing software. Then, a tool
to assist in the identification of inter-unit dependence as well as one
to perform the necessary modificatiéns to a unit in order to extract it
as a reusable component could be used. Similar tools could alsoc be used
to characterize the software in order to provide feedback to the
developers on the reusability of their code. Such tools would serve a
purely measurement function. For example, the two methods of measuring
reusability relating to the transformability of software (measuring both
initial dependence and latent unremovable dependence) could be automated
in order to guide a developer to write resources that are properly
encapsulated and interfaces that are sufficiently abstract. Although
this research does not propose to develop these tools, it is currently
specifying their operation as a way of more clearly defining the

techniques and principles involved in the study.

1]

[1b]

References

Basili, V. R. and Rombach, H. D. "Towards a Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment”, Technical Report, Dept. of Computer
Science (CS-TR-2158) and Umiacs (UMIACS-TR-88-92), University of Maryland, College
Park, MD 20742, December 1988.

Basili, V. R. and Rombach, H. D. "Towards a Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes”, Technical Report, Dept. of Computer Sci-
ence (CS-TR-2446) and Umiacs (UMIACS-TR-90-47), University of Maryland, College Park,
MD 20742, April 1990.

Basili, V. R. and Rombach, H. D. "The TAME Project: Towards Improvement-Oriented
Software Environments”, [EEE Transactions on Software Engineering, SE-14, June 1988,

Doubleday, D. L., "ASAP: An Ada Static Source Code Analyzer Program,” Dept. of Com-
puter Science (CS-TR-1895), University of Maryland, College Park, MD 20742, August 1987.

Hutchens, D. and Basili, V. R., ”System Structure Analysis: Clustering with Data Bindi‘ngs”.
IEEE Transactions on Software Engineering, SE-11, August 1985.

Basili, V. R. and Turner A., "lterative Enhancement: A Practical Technique for Software
Development,” IEEE Transactions on Software Engineering, SE-1, December-1975.

Myers G., "Composite/Strcutured Design”, Van Nostrand Reinhold, New York, 1978.

Dunsmore, H. E. and Gannon, J. D., "Experimental Investigation of Programming Complex-
ity”, Proc. ACM/NBS 16th Annual Technical Symposium on Systems and Software, Wash-
ington, D.C., June 1977.

Gannon, J. D, Katz. E. E. and Basili, V. R, ?Characterizing Ada Programs: Packages”.
Proc. Workshop on Software Performance, Los Alamos National Laboratory. Los Alames.
New Mexico, August 1983.

