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Abstract

One central feature of the structure of a software system is
the coupling among its components (e.g., subsystems, mod-
ules) and the cohesion within them. The purpose of this
study is to quantify ratios of coupling and cohesion and use
them in the generation of hierarchical system descriptions.
The ability of the hierarchical descriptions to localize errors
by identifying error-prone system structure is evaluated us-
ing actual error data. Measures of data interaction, called
data bindings, are used as the basis for calculating software
coupling and cohesion. A 135,000 source line system from
a production environment has been selected for empirical
analysis. Software error data was collected from high-level
system design through system test and from some field op-
eration of the system. A set of five tools is applied to cal-
culate the data bindings automatically, and cluster analysis
is used to determine a hierarchical description of each of
the system'’s 77 subsystems. An analysis of variance model
is used to characterize subsystems and individual routines
that had either many/few errors or high/low error correc-
tion effort. The empirical results support the effectiveness
of the approach for localizing errors. The approach is es-
pecially useful during software maintenance since the tools
require only the source code for automatic generation of a
hierarchical system description.

1 Introduction

Several researchers have proposed methods for relating the
structure of a software system to its quality (e.g., [BE82]
[HK81] [Eme84]). One pivotal step in assessing the structure
of a software system is characterizing its coupling and co-
hesion. Intuitively, the cohesion in a software system is the
amount of interaction within pieces (e.g., subsystems, mod-
ules) of a system. Correspondingly, coupling in a software
system is the amount of interaction across pieces of a sys-
tem. Cohesion may sometimes be referred to as “strength.”
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Various interpretations for coupling and cohesion have been
proposed {SMC74]). In this paper, we present an empirical
study that investigates hierarchical software system descrip-
tions that are based on measures of cohesion and coupling.
The study evaluates the effectiveness of the hierarchical de-

_ scriptions in identifying error-prone system structure. Our

measurement of cohesion and coupling is based on intra-
system interaction in terms of software data bindings [BT75]
[HB85]. Our measurement of error-proneness is based on
software error data collected from high-level system design
through system test; some error data from system operation
are also included.

Section 2 discusses the software project selected. The
data bindings software analysis and supporting tools are
described in Section 3. The data analysis appears in Section
4. Section 5 presents the interpretations and conclusions.

2 Selected Software Project

The software project selected for study is the next release
of an internal software library tool. The previous system
release contains approximately 100,000 source lines. The
production of the next release requires the development or
modification of approximately 40,000 source lines. Hence,
the total size of the next system release is approximately
135,000 source lines. The system is written in four lan-
guages: a high-level programming language similar to PL /1,
a language for operating system executives, a user-interface
specification language, and an assembly language. The
static source code metrics discussed later, including the data
bindings analysis, pertain to only the system portion written
in the high-level source language. This portion constitutes
approximately 70% of the lines in the system and the vast
majority of the system logic and intra-system interactions.
Project duration, including system and field test, spanned
approximately 16 months and maximum staffing included
23 persons. The error data were collected and analyzed at
the same time the project took place. An important goal
was to minimize the impact of the data collection process
on the developers. See [SB88] for a description of the data
collection process.

There are 163 source code files in the system containing
a total of 451 source code routines. A routine is a main
program, procedure, or function. The number of routines
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Figure 1: Example hierarchical cluster based on software
data bindings. Procedures and functions are denoted by p;,
and clusters are denoted by circles. The smaller clusters are
relatively tighter (and form earlier), while the larger clusters
are relatively looser (and form later). The clusters define a
system hierarchy in the form of a tree: the smaller clusters
at the leaf nodes and the largest cluster at the root node.

per source code file varies from 1 to 21. On the average,
there are 2.8 routines per source code file. There are 77 ex-
ecutable features in the system, referred to as subsystems in
the paper. These subsystems can be thought of as groups of
routines collected together to form functional features of the
overall system. The number of source files linked together
to form a subsystem varies from 1 to 82. On the average,
26.3 source files are linked together into a subsystem. The
same source file is bound into 12.4 different subsystems on
the average. Subsystems averaged 19,000 source lines in
size, including comments.

3 Cluster Analysis Using Data
Bindings ]

One primary goal for this study was to investigate the re-
lationship of “software data bindings” to software errors
[HB85). “Data bindings” are measures that capture the data
interaction across portions of a software system. The theo-
retical background for the measures is described in [HB85).
Earlier studies have revealed insights about the usefulness
of data bindings in the characterization of software systems
and their errors [BT75] [HB85).

A data binding is defined as an ordered triple (p,x,q),
where p and q are procedures and x is a variable within
the static scope of both p and q, and p assigns a value to
x and q references x. Data bindings reflect the possibility
of a data interaction between two components, based upon
P, 9, and x. Data bindings count occurrences where there
may be a flow of information from p to q via the variable
x. The possible orders of execution for p and q are not
considered. That is, there may be other factors (e.g., control
flow conditions) which would prevent such communication.

In {HB8S], this type of data bindings is called “actual data
bindings.” There are types of data bindings that measure

stronger levels of interaction. Actual data bindings were
chosen for this study since they seem to offer an adequate
measure of similarity while not requiring complex data flow
analysis that stronger levels need. Essentially, we are erring
in the direction of safety (as done, for example, by code
optimizers) by assuming that procedures may influence one
another unless we can show otherwise.

First, we calculated the data bindings in the system.
Then, we applied the statistical technique of clustering
[Eve80] to the data bindings information to produce a hi-
erarchical description for the software system (see Figure
1). The clustering takes place in a bottom-up manner. The
process iteratively creates larger and larger clusters, until
all the elements have collapsed into a single cluster. The
elements in the clusters are the procedures and functions
in the system. The elements with the greatest interaction,
in terms of data bindings, cluster together. For more de-
tails about the calculation of data bindings and hierarchical

“clusters in this study, see [SB88]. The technique of cluster-

ing has been applied previously to partition a large system
into subsystems in [BE82]. Hierarchical clusters have been
formally defined in [JS71].

Applicability During Software Mainte-
nance -

A set of five software tools was developed to calculate these
hierarchical, data bindings clusters and applied to the 77
subsystems in the selected project. For a description of
the tools, see [SB88]. The trees provide a form of system
documentation — they give & hierarchical view of the sub-
systems with respect to data usage (see Figure 1). The tools
require only the source code for automatic generation of a
hierarchical system description. Therefore, the approach is
especially useful during software maintenance since — all
too often — all that remains of a system is the source code
itself.

4 Data Analysis

4.1 Terminology

Throughout the analysis and interpretation, we use the
terms subsystems and routines as follows:

¢ Routine — A routine is a main program, procedure, or
function. There are a total of 451 source code routines
in the system.

o Subsystem — A subsystem is a large set of routines
that are linked together to form an executable system
feature. There are 77 executable features in the system.
They .average 19,000 source lines in size.

A routine is linked into 12.4 subsystems on the average.
Therefore, the total size of the whole system is not 77 x
19,000 = 1,463,000 source lines; the total size is approxi-
mately 135,000 source lines. See Section 2 for further de-
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Figure 2: Distribution of errors and error correction effort by subsystem coupling/strength ratios.

Subsystem Errors Error correction hours
coupling/ || per KLOC Total per KLOC Total
strength || Mean Std | Mean Std || Mean Std | Mean Std

High 1.54 395]| 044 0.99) 280 7.53| 0.88 2.69
Low 031 1164 0.15 0.52) 091 451 042 2.39
Overall 128 358 0.38 0.92 239 7.03] 0.78 2.63

Figure 3: Distribution of errors and error correction effort by subsystem size.

Subsystem Errors Error correction hours
size per KLOC Total per KLOC Total
Mean Std | Mean Std || Mean - Std | Mean Std
Large 1.52 394} 043 098 2.77 744 ( 0.86 2.61
Small 035 1.22| 017 0.58| 098 496| 049 2.71
Overall 1.28 3581 038 092) 239 7.03| 0.7 2863

scription of the subsystems and routines in the software sys-
tem.

We used the analysis tools mentioned in Section 3 to pro-
duce hierarchical descriptions for each of the 77 subsystems
(see Figure 1). The hierarchical descriptions are rooted,
connected trees that indicate the internal subsystem struc-
ture. Each routine in a subsystem occurs as a leaf node in
the tree exactly once. Subtrees indicate groupings of rou-
tines that form natural clusters based on the data bindings
criteria. There is a one-to-one correspondence between sub-
trees and clusters. A cluster can contain either routines or
other clusters. In other words, the root node of a subtree
can have as its children either leaf nodes (i.e., routines) or
the root node of another subtree (i.e., a subset of its own
routines that form a smaller cluster).

In the software system being analyzed, a routine may be
linked into more than one subsystem. Each of the 77 sub-
systems has a separate hierarchical description. Therefore,
a routine appears in the hierarchical description of each sub-
system into which it is linked. A routine may cluster with
different sets of routines in different subsystems.

Associated with each cluster in a subsystem is a number
that reflects the nature of the binding of the routines in the
cluster. This number is interpreted as the following ratio:

the coupling of the cluster with other clusters in
the subsystem

the internal strength of the cluster

That is, the number captures the coupling/strength ratio
for a cluster of routines within a subsystem. Software en-
gineering principles generally suggest that it is desirable to
have low coupling and high strength, which in this context
means a low coupling/strength ratio [SMC74).

The data bindings analysis produced 77 trees correspond-
ing to the subsystems. We calculated three different mea-

sures based on the clusters resulting from the data bindings
analysis. For each routine occurrence, we calculated:

o Routine coupling/strength ratio — The coupling/
strength ratio of the first cluster to form that included
the routine as a member. This metric is intended to
capture the relationship of a routine to other routines
in a subsystem in terms of coupling and strength.

¢ Routine location in subsystem’s data binding tree —
The depth in the tree of the first subtree (i.e., cluster)
to form that included the routine as a member. More
precisely, it is the depth in the tree of the root of that
subtree. This metric is intended to characterize the lo-
cation of a routine in a data binding tree. This location
information is useful to know when data binding trees
are used as an alternate form of system documentation.

For each subsystem, we calculated:

o Subsystem coupling/strength ratio — The median of
the coupling/strength ratios for the clusters within the -
subsystem. We use a non-parametric statistic here, i.e.,
a median, because the coupling/strength ratios are rel-
ative measures. This metric is intended to characterize
the overall coupling and strength within a subsystem.

4.2 Data Analysis Method

An analysis of variance model was used to characterize sub-
systems and routines that had either many/few errors or
high/low development effort spent in error correction.

4.2.1 Independent Variables

The analysis of variance model [Sch59] considered numer-
ous factors simultaneously: subsystem size (above/below
median); subsystem coupling/strength ratio (above/below
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Subsystem | Subsystem || - Errors Error correction hours
coupling/ size per KLOC Total per KLOC Total

strength Mean Std | Mean otd || Mean Std | Mean Std
High Large 166 4.12] 046 1021 299 7.71} 092 266
Small 045 141|021 0661 1.11 531 0.56 2.93
Low Large 036 127] 015 052 091 4.11| 039 2.07
Small 028 109|015 052l 090 4.75| 0.44 2.57
Overall 1.28 3.58] 038 0.92( 239 7.03] 0.78 " 2.63

Figure 5: Distribution of errors and error correction effort by routine coupling/strength ratios.

Routine Errors Error correction hours
coupling/ || per KLOC Total per KLOC Total
strength || Mean Std | Mean Std [ Mean Std [ Mean Std
4 Highest | 2.27 4.58] 0.59 1.04{ 586 10.98| 1.94 4.20
3_Higher || 1.15 3.13| 034 0.74| 219 6.84 | 072 2.54
9Tower || 1.45 4.19| 0.44 118 1.57 427 | 049 161
1.Lowest || 0.28 111} 0.15 049 021 1.09 [ 0.06 0.29
Overall 128 3.58| 0.38 0.921] 239 7.03 | 0.78 2.63
median); individual subsystem’s attributes (77 levels); rou- routine

tine size (above/below median); routine coupling/strength
ratio (split into four quartiles); routine location in subsys-
tem’s data binding tree (split into four quartiles); and two-
way interactions. When defining the levels for some of the
factors, non-parametric statistics (e.g., medians, quartiles)
were used since the coupling/strength ratios are relative
measures and the data bindings trees have different over-
all depths. Subsystem size and routine size are included
as factors in the analysis because earlier analyses have in-
dicated a relationship between size and software effort and
error data (e.g., [Boe81] [BSP83]). For a more complete
description of the factors and their levels, see [SB8S].

4.2.2 Dependent Variables

There were four dependent variables examined with the
analysis of variance model.

1. Total errors — The total number of inspection, Trouble
Report (TR), System Trouble Report (STR), and Error
Summary Worksheet (ESW) errors in a routine®

2. Total errors per KLOC — The total number of inspec-
tion, TR, STR, and ESW errors in a routine per 1000
lines of source code

3. Error correction effort — The total amount of effort
(in hours) spent correcting TR and ESW errors in 2

3Inspections were held during the high-level and low-level design
phases and after the completion of unit testing. Error Summary Work-
sheet (ESW) errors were recorded during the coding, unit testing, and
integration testing phases. System Trouble Report (STR) errors were
recorded during system testing. Trouble Report (TR) errors were re-
ported against working, released code during and after field testing.

4. Error correction effort per KLOC — The total amount
of effort (in hours) spent correcting TR and ESW errors
in a routine per 1000 lines of source code

In general, the discussion will focus on the errors per
KLOC and the error correction effort per KLOC measures
of the routines as opposed to the absolute numbers. This
factors out possible underlying correlations between source
lines and number of errors or amount of error .correction
effort. The statistics for all four measures are reported,
however. The discussion will tend to highlight results that
demonstrated a statistically significant difference, as op-
posed to those where there was no statistical difference. All
results discussed are statistically significant at least at the
a < .05 level, .

4.3 Characterization of High-Error and
Low-Error Subsystems

In the source code portions of the system (see Section 2),
there was a total of 299 distinct errors recorded from inspec-
tions, error summary worksheets (ESW’s), system trouble
reports (STR’s), and trouble reports (TR’s). Data on the
effort required for error correction were available for 204
distinct errors recorded on ESW’s and TR’s. In the subse-
quent figures, all inspection, ESW, STR, and TR errors are
counted equally.

Figures 2, 3, and 4 present the errors and error correc-
tion effort in the routines in subsystems with: different
coupling/strength ratios, different sizes, and different com-
binations of coupling/strength ratio and size, respectively.
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Figure 6: Distribution of errors and error correction effort by routine size.

Routine Errors Error correction hours
size per KLOC Total per KLOC Total
Mean Std | Mean Std {| Mean Std | Mean Std
Large 1.19 254 047 099 3.22 872 1.20 3.42
Small 1.39 455 026 080 1.36 3.81( 0.26 0.71
Overall | 1.28 358, 038 092} 239 703 0.78 2.63

Figure 7: Distribution of errors and error correction effort by routine location in data binding tree.

Routine Errors Error correction hours
tree per KLOC Total per KLOC Total

location Mean Std | Mean Std || Mean Std | Mean Std
4_Root 0.88 282 030 077} 1.30 4.82( 0.37 1.59
3 Shallower | 1.78  4.44] 0.51 112 355 8.88| 1.19 3.36
2 Deeper 096 248 027 063 251 7.39] 0.83 2.82
1 Deepest 128 3.73| 038 0.96| 1.76 5.08} 0.57 1.95
Overall 128 358 0.38 092 239 7.03| 0.78 2.63

Graphical plots of the data are presented in [SB8S].

Summary of Results 1.
1. Large subsystems with high coupling/strength ratios

had routines with the most errors per KLOC.

Large subsystems with high coupling/strength ratios

had routines with six times as many errors per KLOC

than did small subsystems with low coupling/strength
ratios.

. Large subsystems with high coupling/strength ratios
had routines with ten times as many unit and inte-
gration test (ESW*) errors per KLOC than did small
subsystems with low coupling/strength ratios.

. Large subsystems with high coupling/strength ratios
had routines with eight times as much error correc-
tion effort per KLOC from unit and integration test
(ESW) errors than did small subsystems with low cou-
pling/strength ratios.

. Large subsystems had routines with more errors per
KLOC than did small subsystems.

2,

4.4 Characterization of High-Error and
Low-Error Routines

As mentioned in Section 4.3 there were 299 distinct errors,
counting all inspection, ESW, STR, and TR errors equally;
204 of them had data on error correction effort. Figures 5,
6, and 7 present the errors and error correction effort in the
routines with: different coupling/strength ratios, different
sizes, and different data binding tree locations, respectively.
Various graphical plots of the data are presented in [SB88].

4Errors during the coding and unit and integration testing phases
were reported on error summary worksheets (ESW's).

Summary of Results

The routines with the highest coupling/strength ratios
(4-HIGHEST) had the most errors per KLOC and the
most error correction effort per KLOC.

. The routines with the lowest coupling/strength ratios

(1_.LOWEST) had the fewest errors per KLOC and the
least error correction effort per KLOC.

. The routines with the highest coupling/strength ratios

had over eight times as many errors per KLOC than
did routines with the lowest coupling/strength ratios.

. The routines with the highest coupling/strength ra-

tios had over 27 times as much error correction ef-
fort per KLOC than did routines with the lowest cou-
pling/strength ratios.

. Routines in data binding tree location region

3_SHALLOWER had more errors per KLOC and more
error correction effort per KLOC than did routines in
the other tree regions.

. Routines that had both the highest coupling/strength

ratios (4 HIGHEST) and a location in the “central por-
tion” of the data binding tree (3.SHALLOWER or
2.DEEPER) had the most error correction effort per
KLOC.

. Small routines had more unit and integration test

(ESW) errors per KLOC than did large routines.

. Large routines had more error correction effort per

KLOC than did small routines when either all errors
or just unit and integration test (ESW) errors were
considered.

. Large routines tended to have a higher average amount

of correction effort per error for unit and integration
test (ESW) errors than did small routines.
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5 Interpretations and Conclusions

In this study, we have merged two goals:

o To collect and analyze data from an ongoing software
project without negatively impacting the software de-
velopers; and

o To investigate hierarchical system descriptions based
on the software engineering principles of coupling and
strength (or cohesion) and their relationship to software
errors and error correction effort.

This study highlights and empirically supports several soft-
ware engineering principles. The interpretations span sev-
eral areas: coupling/strength, system structure, and size.

Coupling/Strength

Low coupling/strength ratios are desirable (i.e., these re-
sults empirically support the software engineering principle
of desiring low coupling and high strength).

¢ Routines with the lowest coupling/strength ratios had
8.1 times fewer errors per KLOC than routines with
the highest coupling/strength ratios and errors were
27.9 times less costly to fix.

e Large subsystems with high coupling/strength ratios
had routines with 4.6 times more errors per KLOC than
did the other categories of subsystems.

System Structure Hierarchy: Data Bind-
ings View

The structure of the system at the highest level, i.e., initial
stages of problem decomposition, and lowest level, e.g., for-
mulation of abstract data types, appear to be better under-
stood than the intermediate levels of abstraction and spec-
ification.

o The errors were 50% less costly to fix in routines at
the shallowest (4_ ROOT) and deepest (1. DEEPEST)
levels of the data bindings view of the system structure
hierarchy than at the middle levels, and there were 21%
fewer errors per KLOC. .

Size
Subsystem size seems to be at least as important, if not more

important, than routine size. Hence, maybe the software
community has been worrying about the wrong issue.

¢ Smaller subsystems had routines with 4.3 times fewer
errors per KLOC than did larger subsystems.

¢ Smaller routines had a slightly higher average of er-
rors per KLOC than did larger routines, although the
difference was not statistically significant. When just
unit and integration test errors are considered, how-
ever, smaller routines had significantly more errors per
KLOC than did larger routines. Overall, errors in
smaller routines were 2.4 times less expensive to fix.
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