SOFTWARE RECLAMATION:
improving Post-Deveiopment Reusability

John W. Bailey and Victor R. Basill

The University of Maryland Depantment of Computer Science
College Park, Maryland 20742 :

Abstract

This paper describes part of a muiti-year study of
software reuse being performed. at the University of Maryland.
The part of tha study which is raported here explores
techniques for the transformation of Ada programs which
preserva function but which resuit In program components
that are more independent, and presumably thersfore, more
rausable. Goals for the larger study inciude 3 precise
specification of the transformation technique and its
application in a large development organization. Expected
resuits of the largar study, which are partiaily covered here.
are the identification of reuse promoters and inhibitors both
in the problem space and in the soiution space, the
development of a set of metrics which can be applied to both
developing and completed software to raveal the degree of
raysability which can be expected of that software, and the
development of guidelines for both davelopers and reviewers of
software which can help assure that the deveiopad software
wiil be as reusable as desired. *

The advantages of transforming sexisting software into
reusable components, rather than creating reusabdle
components as an independent activity, include: 1) software
development organizations often have an archive of previous
projects which can yieid reusable components, 2) daveiopers
of ongoing projects do not need to adjust 1o new and possibly
unproven methods in an attempt lo develop reusable
compaonents, sG NG risk or davelopment cverhead is introduced,
3J) transformation work can be accomplished in parailel with
line developmants but be separately funded ({this is
panticuiarly applicable when software is being developed for
an outside customer wha may not be willing 10 sustain the
additional costs and rnisks of deveioping reusable code), 4) the
resulting components are guaranteed lo be relevant 0 the
appilication area, and 5) the cost is low and controilable.

,
Introduction

Broadly defined., software reuse includes more than the
repeated use of parnicular code modules. Other life cycie
products such as specifications or test plans can be reused,
software developmant processes such as verilication
techniques or cost modeling methods ara reusable, and even
intangible products such as ideas and experience contributa 0
the total picture of reuse {1,2]. - Although process and lool
reuse is commaon praclice, life cycle proauct reusa is sull in
its infancy. Ultimately, reuse of early lifecycte products
might provide the largest payotf. For the near term, however,

gains can be realized and further work can be guided by
understanding how softwara can be developed with a minimum
of newly-generated sourca lines of code.

The work covered in this paper includes a feasibility study
and some examples of generatizing, by transfarming, software
source code after it has been initially deveioped, in crder to
improve its reusability. The term software reclamation has
been chosen for this activity sincs it does not amount o the
davelopment of but rather to the distillation of existing
software. = (Reciamation is defined in the dictionary as
obtaining something from used products or restoring
something to usefuiness (3].) By exploring the ability to
modify and generalize existing softwara, characterizations of
that software can be expressed which relate to its reusability.
which in tum is related to its maintainability and ponability.
This stugy includes applying these generalizations to several
small exampla programs, o medium sized programs from
different organizations, and to several (airly large programs
from a singte organixation.

Eardier work has examined the principle of software
reclamation through generic extraction with smail examoles.
This has revealed the various lavels of difficuity which are
associated with generaizing vanous kinds of Ada dependencies.
For example, it is easier 10 generalize a dependency hat exisis
on encapsulated data than on visible data, and it is easier to
generalize a dependency on 3 visible array type than on a
visible record type. Following that work, some medium-sized
examples of existing software were analyzed for potential
generalization. The limited success of these efforts reveaied
additional guidelinas for cevelopment as well as limitations of
the technique. Summaries of this preceding work appear in
the (ollowing sactions.

Usea as data for the current research is Ada software from
the NASA Goadard Space Flight Canter which was written over
the past lhree years lo perform spacecraft simulations. Three

programs, each on the order of 100,000 (editor) lines, were - -

studied. Software code reuse at NASA/GSFC has been practiced
for many years, originally with Fortran developments, and
more recently with Ada. Since transitioning to Ada,
management has observed 3 steadily increasing amount of
software reuse. One goal which is introduced here but which
will be addressad in more detail in lhe larger study is the
understanding of the nature of the reuse being practiced there
and to examine the reasons (or the improvement seen with Ada.
Angther goai of this as well as ihe larger study is ., compare
the guidelines derived from the exarmination of how different
programs yieid 10 or resist generalization. Several questions

6109

8th Annual N2uc .al Conterence on Ada Technology 1990

are considered through this comparnison™inciuding the
unversality of guigelines denved from a single program and
whether the effect of the application domain, or probiem
spacae. on software reusability can be dgistinguishe~irom the
atfect of the impiementation, or solution space.)

Superficially, therefore, this paper describes a technique
for generalizing existing Ada software through the use of the
generic feature. However, the success and practicality of this
technique is greatly aflected by the styie of the software being
transtormed. The examination of what characterizations of
software are correlated with transtormability has ied 10 the
derivation of software development and review guidelines. it
appears that most. if not all, of the guidelines suggested by
this examination are consistent with good programming
practices as suggested by other studies.

Tha Basic Techni

By studying the dependencies among software elements at
the code level, a determination can be made ot the reusability
of those elements in other contexts, For exampie, if a
component of a program usas or depends upon another
component, then it wouid not normaily be reusable in another
program where that other component was not aiso present. On
the other hand, a component of a software program wnich does
not depend on any other softwara can be used. in theory at
lgast, in any arbitrary context. This study concentrates only
on the theoretical reusability of a component of software,
which is defined here as the amount of dependence that exists
between that component and other software components. Thus,
it is concemed only with the syntax of reusable softwara. It
does not directly address issuas of practical reusability, such
as whather a rausable component is useful enough 10 encourage
other developers 1o reuse it instead of redeveloping its
function. The goal of the procass is 1o identify and extract the
essential functionality from a program so that this extracted

essence is not dependent on external dectarations, information, -

or other knowiledge. Transformations are needed 10 derive
such componaents from existing software systems since
inter-component depandencies arise naturally from the
customary design decomposition and implementanon processes
used for software deveiopment,

ideal examples of reusable software code components can
pe defined as those which have no dependencias on other
software. Short of compiete independence, any dependencies
which do exist provide a way of quantifying the reusability of
the components. In other words, lhe reusability ot a
component can be thought of as inversely propofional o the
amount of extemal dependencs required by that component.
However, some or all of that dependance may be removabie
through transformation by generalizing the component. A
measure of a componenrs dependenca on its axtemnals which
quantifies the difficulty of removing that dependencs through
ransformation and generalization is slightly dilferent from
simply measuring the dependence directly, and is more
specifically appropriate to this stugdy. The amount of such
transformation constitutes a usefui -indication cf the effort to
reuse a body of software.

Both the transformation effort and the degree of success
with performing the transforms can vary from one example 10
the next. The identification of guidefines for developers and
reviewers was made possible by obsarving whal promoted or
impeded the transformanons. These guidelines can aiso heip in
the selection of rausaole or transformabie pants lrom existing

software. Since dependencies among softwars components can
typically be determined (rom the software design. many of the
guidelines apply 10 the design phase of the lile cycie, allowing
earlier analysis of reusability and enabling possibie
correclive action 10 be taken bafore a design is implemented.
Although the guideiines are written with respect to the
development and reuse of Systems written in the Ada language,
since Ada is the medium for this stugdy, most apply in general
lo softwars develooment in any language.

One measure of the extent of the transformation required
is the number of ines of code that need to be added, aitered, or
deietsd {4]. However, some moditications require new
constructs 1o be added to the software while others merely
require syntactic adjustments that couid be performed
automatically, For this resason, a more accurate measure
weighs the changes by their difficulty. A component can

" contain depsndencies on axtemals that are so intractable that

removing them would mean also removing all of the useful
tunctionality of the component. Such transformations are not
cost-effective. in these cases, either the component in
question must be reused in conjunction with one or more of the
components on which it depends, or it cannot be generalized
into an independentty reusahie one. Therafore, for any given
component, there is a possibility that it contains some
dependencigs on externals which can be eliminated through
transformation and aiso a possibility that it contains some
dependencias which cannot be efiminated.

To guide the transformations, a model is used which
distinguishes Detween software function and the declarations
on which that function is performed. In an object-oriented
program (lor here, a program which usaes data abstraction),
data deciarations and associated functionality are grouped into
the same component. This component itself becomes the
dectaration of another object. This means the function /
dectaration distinction can be thought of as occurring on
multiple leveis. The intemal data deciarations of an object can
be distinguished from the construction and access operations
supplied 1o extemal users of the object, and the object as a
whole can be distinguished from its external use which applies
additiona! function (passibly establishing yet another, higher
lgvel object). The distinction between functions and objects is
more obvious where 2 program is not object-oriented since
declarations are not grouped with their associated
tunctionality, but rather are established giobally within the
program.

Al each level, geclarations are seen as application-specific
while the functions performed on them ara seen as the
potentially generalizabie and reusable parts of a program.
This may appear backwards initially, sincs data abstractions
composed of both declaratons and functions are often seen as.
reusable components. However, for consistency here,
lunctions and declarations within a data abstraction are viewed
as separavble in the same way as flunctions which depend on
declarations contained in external components are separabie
from those dectarations. In use, the reusabie, independent
functional componan's are composad with application-specific
declarations o form objects, which can further be composad
with other indepandent functional components o implement an
even larger portion of the overall program.

Figure ! snows ons way of representing this. All the ovals
are objects. The dark ones are primitives which have
predefined operauons, such as integer or Sootean. The white
ovais represent program-supplied tunctionaiity which is
composed with thewr contained objects 1o lorm a higher level

8th Annual National Conterence on Ada Technology 1990

6108

5-22

object. The intent of the model is to distinguish this program-
specific functionality and o attempt to represent it
independently of the objects upon which it acts.

icable funcoon
simple object
- ia bt itonal object
resuiting object ing object _

Figure 1.

Some Ada which might be represanted as in the above
figura might be:

package Counter is - resulting obiect
procedure Reset:

-= applicable functon ...
procedure Increment:

function Current_Value return Nacural;
end Countesx:; . :

package body Counter is
Count : Nacural := 0;
procedure Reset is
begin
Count := 0;
end Resec;
procedure Increment is
begin
Count := Count + 1;
end Increment:
function Current_Value retuzn Natural is
begin
ceturn Count.
end Currenc_Valuae:
end Councec:

-~ simpie object

package Max_Count is
proceadure Resec:
pro dure Incr ;
tunction Cucrrent_Value cetuzn Natural:
function Max return Natural:

end Max_Count;

-- resulting object
-~ applicable function ...

with Counter;
package body Max_Count is
Max_Val : Nacural := ¢:
procedure Reset i3
begin
Counter.Raset;
end Resec:
procedure I[acrement ias
beqgin
Councer. Incremant:
if Max_Val < Councer.Current_Value then
Max_-val := Counter.Current_Value:
and if:
end [ncremenc:
function Current_Value return Natural is
beqgin
recurn Counter.Current _Value:
and Current Value;

~- agditionat object

function Max return Natural is
begin
caturn Max_Val:
end Max:
end Max_Count:

In this example, the objects are properly encapsuiated,
though, they might not have been. Iif, for example, tha simple
objects were deciared in separats componants from their
applicable functions, the resuit could have been the same
(although the diagram might look different). In actual
practice, Ada programs are daveloped with a combination ot
encapsuiated object-operation groups as well as separately
declared object-operation groups. Often the lowest levels are
encapsulated while the higher level and iarger objects tend to
be separate from their applicable function. Perhaps in the
ideat case, all objects wouid be encapsulated with their apptied
function since encapsulation usually makes the process of
extracting the functionality at a later time easier. This,
therefora, becomes one of the quidelines revealed by this
model.

It the above example were transformed 1o separate the
functionality from each object, the following sat of components
might be derived:

generic
type Count_Object is (<>):
package Gen _Counter is -- resuiting object
procedure Raset; -~ applicabla hinction ...
qura I .
function Current _Value retugn Count_Object;
end Gen_Countar:

package body Gen_Counter is
Count : Count_Object -~ simpie object
‘= Count_Object‘firsc:
procedure Reset is
begin
Count := Count_Object'First:
end Reset:
pr dure Inc ias
begin
Count := Count_Object’'Succ (Counct);
ead Incremenc:
function Current_Value recurn Count_Object is
begin
cecurn Count:
end Currenc_VYalue;
end Gen_Countecr:

qenecic
cype Count_Object is (<>):

package Gen_Max_Count is ~-- resulling object
procedure Reset: -- applicable function ...
proceducze Increment:
function Current Value cetuzn Count Object:
function Max recurn Count Object:

end Gen_Max_Count:;

with Gen_Councaec:
pacxage body Gen_Max_Counc ia
Max_Val : Count_Object -- aoditional object
i= Count _Object 'Firsc:
package Counter is
new Gen_Countert (Count_Objecet):

»

R Y
8th Annual National Conference on Ada Technoiogy 1990

5-23
6109

procedure Reset is
began
Counter.Resec;
end Raset:
procedure Increment is
begin
Counter.lncrement:
if Max_Val < Counter.Currant_Value then
Max_Val := Councer.Current_Value;

end if;
and Increment:

fynction Current_Value return Natural is
begin
return Counter.Current_Valua;
end Current_Value: '
function Max return Natural is
begin
ceturn Max Val;
end Max:
end Gen_Max_Count;

with Gen_Max_Count:
procedure Max_Counc User is
package Max_Count is
new Gen_Max_Count (Natural):
begin
Max_Count.Reset;
Max_Count.lncremant;

end Max_Count Usexr;

Note that the end user obtains the same functionality that a
user of Max_Count has, but the software now aliows the
primitive object Naturai to be suppiied externally to the
algonithms that will apply to #t. Further, the user couid have
obtained anaiogous functionality for any discrete type simply
by pairing the general object with a ditterent type (using a
ditferent genseric instantiation).

This model is somewhat analogous 1o the one used in
Smailtalk programming where objecs are assembled from
other objects plus programmaer-supplied specifics. However,
it is meant 10 apply more generally 1o Ada and other languages
that do not have support lor dynamic binding and full
inheritance, features that are in general unavailable when
strong static type checking is required. Instead, Ada offers the
genenc feature which can be used as shown here to parually
oftset the constraints imposed by static checking.

Applying this model to existing software means that any
lines of coda which represent reusabie functionaiity must be
parameterized with generic formal parameters in order lo
make (hem independent from their surrounding deciaration
space (if they are not aiready independent). Generics that are
extracted Dy generalizing existing program units, through the
removai of their dependenca on external deciarations, can then
be otfered as independently reusable components for other
applications.

Untortunately, declarative dependence is only one of the
ways that a program unit can depend on its external
environment. Removing lLa compiier-detectable deciarative
dependencies by producing a genenc unit is no guarantee that
the naw unil will actually be independent. There can be
depengencies on data values that are related {o vaiues in
neignboring software, or even dependencies on prolocols of

operation that are followed at the point whare a resource was
onginally used but which could be violated at a point of later
reusa. (An exampie of this kind of dependency is described in
the Measurement section.) To be compiets, the transformation
process wouid need to identity and remove these o ier typas of
dependence as well as the declarative dependenca. Although
Quidelines have been identified by this study which can reduce
the possibility for these other types of dependencies 1o enter a
system, this work only concentrates on mechanisms (o
measure and remove deciarative dependencs.

Mare Examples

in a language with Strong static type checking, such as Ada,
any information exchanged between communicating program
units must be of some type which is available 10 both units.
Sincg Ada enforcas name equivalence of types, where a type
name and not just the underiying structure of a type
introduces a new and distinct type, the deciaration of the type
used to pass information between units must be visible 1o both
ol those units. The user of a resourca, therefore, is
constrained 1o be in the scope of all type declarations used in
the interface of that resource. In a language with a fixed set of
types this is not a problem since ail possible types will be
giobally available to both the resource and its users.
However, in a language which allows user-dectared types and
enforces strong static type checking of those types, any
inter-component communication with such types must be
performed in the scope o! those programmar-defined
dectarations. This means that the coupling between two
communicating components increases from data coupling to
external coupling (or from level two 1o level five on the
traditional seven-point scale of Myers, where lavel one is the
lowest level of coupiing) [5].

Consider, for example, project-specific type deciarations
which often appear at low, commoniy visible levels in a
system. Hesourcas which buikd upon those dectarations can
then be used in turn by higher level appiication-specific
components. If a programmer attempts o reuse those
intermediate-ievel resources in a new context, it is necessary
10 also reuse the low-level deciarations on which they are
ouill. This may not be acceptable, since combining severa!
resources from difterent original contexts means that the set
of low-level type dectarations needed can be extensive and not
generally compatible. This situation can occur whether or not
data is encapsulated with its applicable function, but for
clanty, and to contrast with the previous examples, it is
shown here with the data and its operations dectared
separately.

For example, imagine that two existing programs each
contain cne of the foliowing pairs of compilation units:
- First program contains first pair:
package Va_l is
type Variable_String is

record
Data : String (1..80):
Length : Nacurzal;

end record;
function Variable String_Ffrom_Usec
recurn Variable_String:
end Vs_1:

8th Annual National Conference on Ada Technoiogy 1990

6109

5-24

with Vs_1;
package Pm_l is
type Phone_Message is

record
From : Vs_l.Variable_String;
To : Vs_l.Variable_String:

Daca : Vs_l.Vaziable_String;
end record;
function Phone_Measage_From_User
recurn Phone_Message:;
end Pm 1l;

~ Second program containg sacond pair:
package Vs_2 is
type Varciable String is
tecord
- Data : String (1..250) := (others=>' *};
Length: Natural := 0:
end record:
function Variable String From User
recugn Variable _String:
end Vs_2;

with Vs_2;
package Mm 2 is
type Mail Message is

record
From i Vs_2.Variable_sString;
To : Vs_2.Variable_string:
Subject : Vs_2.Variable_String;
Text : Vs_2.Variable_String:

end record:
function Mail Message_from_User
fegtuzn Majil Message;
end Mm 2;

Now, consider the programmer who is lrying to reusae the
above declarations in the same program. A reasonabie way (o
combine the use of Mail_Messages with the use of
Phone_Messages might seem to be as foilows:

with Vs_1:
with Pm_l;
with Mm_2:
procedure User is
Name : Vs_l.Variable_String:
Pm : Pm_l.Phone_Message :=
Pm_l1.2hone_Message f com_Usec:
Mm : Mm_2.Mail Message :=
Mm_2 .Mail Message_from _Usecr:
begin -
Name := Pm.To:
Mm.From := Name:
end User;

~= illegal

This will fail to compiie, however, since the types Vs_1.
Variable_String and Vs_2.Variable_String are distinct and
therefore values of one are not assignable 1o objects of the
other (the value of Name is of type Vs_1.Variabie_String ang
ihe record component Mm.From is of type Vs_2.
Variable_String). b

In the above exampie, note that the variable string types
were left visible rather than made private 1o make it seem
even more plausidie lor a programmer to expect that, at least
logically, the assignment aftempted is reasonanie. However,

the incompatibility between the underlying type declarations
used by Mail_Message and Phone_Message becomes a problam.
One solution might be o use type conversion. Howaever,
amploying type conversion between elements of the low level
variable string types destroys the abstraction for the
higher-lavei units. For instance, the user procedure above
couid ba written as shown below, but expasing the detait of the
imptementation of the variabie strings represants a poor, and
possibly dangerous, programming style.

with vs_1:
with Pm 1:
with tm 2
procedure Type_Conversion User is
Name : Vs_l.Variable String:
Pm : Pm_l.Phone Message :=
Pm_l.Phone_Message From User:
M o: Mm 2.Mail Message := .
Mm_2.Mail Message From User:
begin

Name := Pm.To:
M, From.Data (1..80) := Name.Data:
Mu,from.length := Name.Length;

- end Type_Conversion Usex:

Notics that we had to be careful to avoid a constraint error
at the point of the data assignment. This is one exampie of how
attempts to combine the use of rasources which reiy on
ditferent context deciarations is difficult in Ada.

Static type checking, therefore, is a mixed blessing. 1t
prevents many errors from entering a software system which
might not otherwise be detected until run time. However, it
limits the possible reusa of a module if 3 specific declaration
anvironment must also be reused. Not only must. the reuseg
modute be in the scope of those declarations. but so must s
users. Further, those users are forced t0 communicate with
that moduie using the shared external types rather than their
own, making the resource master over its users instead of the
other way around. The sat of types which facilitates
communication among the components of a program, therefore,
uitimately pravents most, it not all, of the developed
alqorithms from being easily used in any other program.

This study refers to deciarations such as those of the above
vanable sirng types as contexts, and 0 components which
build upon those dectarations and which are in turn used by
other comoonents, such as the above Mail_Message and
Phone_Message packages, as resources. Companents which
depend on resourcas are referred t0 as users. The above
illustrates tha general case of a context-resource-user
relationship. Il is possible for 3 component to be both a
resource at one level and aiso a contaxt for a still higher-ievel
resource. The dependencies among thesa three basic categones
of components can be illustrated with a directed graph. Figure
2 shows a graph of the kind of depenaency illustrated in the
example above.

A resource does not aiways need full lype infarmation
about ihe data it must access in arder to accomolish its task.
In the above examples, it wouki be possibie for the Mail and
Phone message rasources 10 implement their functions via the
lunctions exporied from the vanable string packages without
any further information about the structures of those lower
level vanabie siring lypes. Someumas, even less knowledge

8th Annuai National Conterence on Ada Technology 1990

6109

5-25

of the structure or funclionality of the types being
manipulated by a resource is required by that resource for it
10 accomplish its function.

user
A
resource i = A depends on B
B
context
Fiqure 2.

A common exampie of a situation where a resource needs
no structural or operational information about the objects it
manipulates is a simpie data base which stores and retrieves
data but which does not take advantage of the information
contained by that data. it is possible 10 write or transform
such a resource so that the comenxt it requires (i.e., the type of
the object 1o be stored and retrieved) is supplied by the users
of that resource. Then, only the essential work of the moduie
needs to remain. This “essence onty” principle is the key to
the transformations sought. Onily the purpose of a module
remains, with any details needed to produca the executing code,
such as actual type deciarations or specific operations on those
lypes. being provided later by the users of the resource. In
!anguages such as Smailtalk which aliow dynamic binding, this
fn'ormation is bound at run time. In Ada, where the compiler
is obligated to perform all type checking, genencs are bound
at compilation time, eliminating a major source of run time
errors' caused by attempting to perform inappropriate
operations on an object. Even though thay are statically
checked, however, Ada genencs can chien afiow a ressurce lo

be written so as to iree it from depending upon extemal type
definitions.

Using the following arbitrary type dectaration and a
simplified data store package, one possible transtormation is
illustrated. First the example is shown before any
transformation is applied: .

- contaxt:
package Decls is
type Typ is -~ anything but limited private
end Decls: ’
-= resource:
with Decls:
package Store is
procedure Put (Obi : in Decls.Typ):
procedure Get Last (Obj : out Oecis.Typ):
end Store;

package body Store is

Local : Decls.lyp:

proceduze Put (Obj : in Decls.Typ) is
begin

y Local := Obj:;

end Put;

procedure Get_lLast (Obj : out Decls.Typ) i3
begin

Oby := Local;
oend Get_Last:
end Store;

The above resource can be transformed into the following
one which has no dapendencies on external declarations:

- genegralized resource:
ganeric .
type Typ is privace;
package General Store is
procedurs Put (Oby : in Typ):
procedure Get_last (Obj : out Typl:/
end General_Store;

package body General_Store is

Local : Typs
procedure Put (Obj : in Typ) is
begin

Local := Obj:
end Put;
procedure Get_Last (Obj : out Typ) is
begin

Obd := Local:
end Get_Last;
end General_Store:

Note that. by naming the generic formal parameter
appropriately, none of the identifiers in the code needed 10
change, and the expanded names were merely shoriened to
their simple names. This minimizes the handling required to
perform the transformation (aithough automating the process
would make this an unimpornant issuel. This transformation
required the removal of tha context clausae, the addition of two
lings (the generic part) and the shonening of the expanded
names. The modification required to convert the package to a
theoretically independent one constitutes a reusability
measure. A user of the resource in the original form wouid
need 10 add the following deciaration in order o ootain an
appropriate instance of the resourca:

package Stors i3 new General Store (Decls.Iyp):

Formal rules for counting program changes have aiready
been proposed and vaiidated (4], and acaptations of these
counting rules (such as using a lower handling vaive for
shortening expanded names and a higher one for adding genernc
tormals) are being considered as part of this work.

The eardier example with the variable string types can
also be generalized 10 remove the dependencies between the
mail and phone message packages (rasourcas) and the variable
string packages (contexts). For example, ignoring the
implementations (bodies) of the resourcaes, lhe lollowing
would functionaity be equivaient to those examples:

8th Annual National Conterence on Ada Technology 1990

5-26

6109

- Contexts, as before:
package Va_l is
type Variable_String is
record
Daca : sString (1..80):
Len : Natural:
end record:
function Variable_String_From User
return Variable String:
end Vs_1:

package Vs_2 is
type Variable_string is

zscord
Data : String (1..250) := (othexs=>' ');
Len : Natural := 0;

end record;
function Variable_Stzing_From User
return Variable_String;
end Vs_2;

~ Resources, which no longer depend upon
~ the above context declarations:
generic
type Component is privace:
package Gen_Pm 1 is
type Phone_Message is
cecord
From : Component;
To : Component;
Data : Component:
end record:
function Phonc_maauqo_r:on_u:u:
return Phone_Message:
end Gen_Pm_1;

generic

type Component is private;
package Gen _Mm 2 is

type Mail Message is

record
from : Component:
To : Component;
Suby : Component:
Text : Component:

end record;
function Mail Message_from_Usaer
recurn Mail Message:
end Gen_Mm_2:

Now, the programmer who is lrying to reuse ihe above
dectarations by combining the use of Mail_Maessagas with the
use of Phone_Messages has another option. Instead of trying (o
combing both contexts, just one can be chosen (in this case,
Vs_2):

wich va_2:
wich Gen_Pm_L:
with Gen_Mm _2:
procedure User is
packuge Pm_l i3 new
Gen_Pm_l (Vs_2.Vaciable_String):
package Mm_2 i3 new '
Gen_Mm_2 (Vs_2.variable_String);
Name : Va_2.Variable_String;

Pm : Pm_l.Phone_Message :=

. Pm_l.Phone Message From User:

Mm o Mm 2. Mail Mo::aqc [

Mm_2.Mail Message From User:

begin

Name := Mm,.from:

Pm.TO := Name:
end Userz:

- now OK

An additional complexity is required for this example. The
resources must be able to obtain component type values from
which to construct mail and phone messages. Although this is
not obvious from the specifications only, it can be assumed
that such functionality must be available in the body. This can

be done by adding a genaeric formal function parameter to the
generic pans, requiring the user to supply an additional
parameter to the instantigtions 2s well:

generic
type Component i3 private:
with function Component_from_User
zeturn Component;
- parametertess for simpiicity
package Gen_Pm_1 Lis
type Phone_Message is

record
From : Component:
To : Component;
Data : Componenc:
end rzecozd:;

function Phone_Message_from_User .
. fetuzn Phone_Message:
end Gen_Pm_l;

Although the above examples show the context, Ihe
resource, and the user as library level units, declaration
depenaenca can occur, and transformations can be applied, in
situations whare the three components are nested. For
exampie, the resource and user can be co-resident in a
declarative area, or the user can contain the resource or vice
versa. .

This reiterates the earier ciaim that, at least for the
purpasa of this model, it does not matter if the data is
encapsulated with its applicadble function. it just makes it
easier 10 find if it is. In the programs studied. he lowest level
data types. which were often property encapsulated with their
immadiately available operations, were used to construct
higher level resources specific 1o the problem being soived. It
was unusual lor those resources to be wntten with the same
level of encapsulation and independence as the lower lavel
lypes, and this resulted in the kind of contexi-resource-user
dependencies illustrated above.

For example, in Ihe case of the generalized simpie data
base, the funchonaiity of iNe data appears in lhe resourca
while the dectaration of it appears in the context. The only
piace where the higher-level object comes into exisience is
inside the user component, at the point where the instantiation
is dectared. If desired, an additional iransiormation can be
aoplied to rectity this problem of ine apparent separanon ot
the object from ils operations. Instead of leaving (he
nstantiation of the new genanc resource up 10 the client

8th Annual National Contarenca on Ada Technoiogy 1990

6109

5-27

softwace, an intermediale package can be created which
combines the visibility of the context deciarations with
instantiations of the generic resource. This package. then,
becomes the direct resourca for the client software,
introducing a layer of abstraction that was not present in the
original (non-general) structure.

For example, the following transformation to the second
example above combines the resource General_Siore with tha
context of choice, type Typ from package Decls. The
daciaration of the package Object parforms this servics.

generic
type Typ is private:
package General Store is
procedure Put (Obj : in Typ):
procedure Get_Last (Obj : out Typ):
end General_Store:

package Decls is
cype Typ is ...
end Decls:

with Decls:
with General Store:
package Object is
subtype Typ is Decls.Typ:
package Store is new General_Store (Typ):
procedure Put (Obj : in Typ)
cenames Store.Put;
procedure Get_last (Obj : out Typ)
renames Store.Get Lasct:
and Object:

with Object:
procedure Client is
Item : Object.Typ:
begin
Object.Put {(Item):
Object.Get Last (Item);
end Clientc:

Note that no body for package Object is required using the
style shown. If it were preferable to ieave the implementation
of Object fiexible, so that users would not need to be
recompiled if tha context used by the instantiation were to
change, the context clauses and the instantiation couid be made
lo appear only in the body of Object. An altemate, admittedly
more complex, exampls is shown here which accomplishes
this flexibility:

package Object is

type Typ Ls private;

funetion Initial return Typ:

procedure Put (Obj : in Typ):

procedure Get_Last (Obj : in Typ):
privace

type Designaced:

type Typ 13 access Designated:
end Object:

with Decls:
with General_store;
package body Object is

type Typ is new Decls.Typ:
function Initial return Typ is
begin
. return new Designated:;
wad Iajitial: . N
" package Store is new General Store (Typ):
procedure Put (ObJ : in Typ) is :

begin
Store.Put (Obj.all):
end Put;
procedure Get Last (Obj : in Typ) is
begin

Store.Get_Last (Obj.all);
end Get_Last:
end Object:

In the altarnate example, note that the parameter mode for
the Get_Last procadure needed 10 be changed to aliow the
reading of the designated object of the actual access parameter.
Aiso, a simple Initialization function was supplied to provide
the client with a way of passing a non-nuil access object to the
Put and Get_Last procedures. Normaily, there would already
be initialization and constructor operations, so this additional
operation wouid not be needed. The advantage of this
alternative is that the implementation of the type and
operations can change without disturbing the client software.
However, the first aiternative couid be changed in a
compilation-compatible way, such that any client software
wouid need recompilation but no modification.

It is also possible to provide just an_instantiation as a
library unit by itseif. but this requires the user to acquire
independently the visibility to the same context as that
instantiation. This solution resuits in the reconstruction of
the original situation, where the instantiation becomes the
resource dependent on a contaxt, and the user depends on both,
The important ditferencs, however, is that now the resourcs
{the instantation) is not viewed as a reusabie component. It
becomes application-specific and can be routinely (potentially
automatically) generated from both the generalized reusable
resource and the context of choice, while the gensric from
which the instantiation is produced remains the independent,
reusable component. The advantage of this structure ligs in
thg abstraction provided for the user component which is
insulated from the complexities of the instantiation of the
reusable generic. -Sincs the result is similar 1o the initial
architectures, the overall software architecture can be
preserved while utilizing genenc resources. The following
iliustrates this. ’

package Decls is

type Typ is ...
end Decls:

generic
type Typ i3 privace;
package General_Store is
procedure Put (Obj : in Typ):
procedure Get_Last (Obj : out Typ):
end General Store;

with Decls:
with General Store:
package Object is new General_ Store(Decls.Typ):

8th Annual National Conferencs on Ada Technoiogy 1980

5-28

6109

ow

with Decls:
with Object:
procedure .Client is
Item : Decls.Typ:
begin
Object.Put (Item):
Object.Get_Lasc (Item):
end Client:

8y modifying the generic rasource to “pass through* the

generic formal types, the user's relianca on the contaxt can be
removed:

generic
_type Gen_Typ is private:
package General Store is
subtype Typ is Gen_Typ: - pass the lype through
procedure Put (Obj : in Typ):
procedure Get_Last (Obj : out Typ):
end General Store;

package Dacls is
type Typ is ...
end Decls;

with Decls:
with General Store:
package Object is new General Store(Decls.Typ);

with Object;
procedurs Client ias
Item : Object.Typ:
begin
Object.Put (Item):
Object.Get_Last (Item):
end Clienc:

Measurement

In the above examples, the context componsnis were never
modified. Resource components were modified to eliminate
their dependence on context components. User components
were modified in ordar to maintain their functionality given
the now general resource componaents, typically by defining
generic actual parameter cbjects and adding an instantiation.
In the case of the encapsuiated instanuations, an intermediate
companent was introcuced o free the user component of the
complexity of the instantiation. It is the ease or difficulty of
modifying the resource components that is of primary interest
here, and the measurement of this modification effort
constitutes a2 measurement of the reusability of the
components. The usability of the generalized resources is aiso

- of interest, sinca some may be difficult to instantiate.

Considering the above examples again, the simple data base
resource Slore required the removal of the context clause and
the creation of a2 generic part (ihese being typicat
modifications for aimost all transformations of this kind). In
addition, the formal parameter types for the two subprograms
were changed to the genenc format private type, causing a
change !o botfy the subprogram specificaton and body. No
turther changes waere required.

-- original:
with Decls:
package Store is
procedure Put (Obj : in Decls.Typi:
procedure Get_Last (Obj : out Decls.Typ):
end Store; .

package body Store is
Local : Decls.Typ:
procedure Put (Obj : in Decls.Typ) is

begin
local := ObYy;
end Put:
procedure Get Last (Obj : out Decls.Typ) is
begin

Obj := Local;
end Get_Laat;
end Store;

- transformed:
generic

type Typ is private; - change
package General_Store is

procedure Put (Ob§ : in Typ): - change

procedure Get_Last (Obj: out Typ): - change
end General Store:
package body General Store is

Local : Typ:

procedurs Put (Obj : in Typ) is - change

begin

Local := Obj;

end Puc:

procedure Get Last (Obj: out Typ) is - change

begin

Obj := Local:
end Get_laat;
end General_Storae;

The Phone_Maessage and Mail_Message resources required
the deletion of the context ciausa, the addition of a generic pan
consisting of a formal private type parameter and a formal
suborogram parameter, and the replacament of three
occurrences (or four, in the case of Mail_Message) of tha type
mark Vs_1.Variable_String with the generic formal type
Component.

- original:
with Vs _1l;
pacxage Pm_1 ia
type Phone_Message is

tecord .
From : Vs_l.Variable_sString:
To : Vs_l.Variable_String:

Daca : Vs_l.Variable_String:
end record:
function Phone_Message_from_User
recurn Phone Message:
end Pm_1;

- transformed:
generic
type Component is private: - change
witn function Component _From_User '
cetuzn Component: - change

8th Annual Nauonal Conference on Ada Technoiogy 1990

6109

5-29

package Gen_Pm_1 is
type Phone_Message i3

record
from : Component; - change
To : Componenc: - change
Data : Component; - change

end record:
function Phons_Message_From User

Teturn Phone Message:
end Gen_Pm_1:

Generalizing the bodies of Gen_Pm_t and Gen_Mm_2
would invoive replacing any calls 1o the Variable_String_
From_User functions with calls to the generic formai
Component_From_User function. In the casa of the simpie
bodies shown before, this wouid require three and four simpie
substitutions, for Gen_Pm_1 and Gen_Mm_2, respectively.

In addition to measuring the reusability of a unit by the
amount of transformation required 1o maximiza its
independencs, reusability can aiso be gauged by the amount of
residual dependency on other units which cannot be
efiminated, or which is unreasonably difficult to eliminate, by
any of the proposed transformations. For any given unit,
therafore, two values can be obtained. The first reveals the
number of program changes which would be required to
perform any applicable transformations. The second indicates
the amount of dependancs which would remain in the unit even
after it was transformed. The original units in the examples
above wouid score high on the first scale since the handling
required for its conversion was negligible. implying that its
reusability was already good (l.e., it was aiready independent
or was easy 10 make independent of extemal declarations).
Alter the transformation, lhere remain no latent dependencies,
so the transformed genenc would receive a perfect reusability
score. ’

Note that the object of any reusability measurement, and
therefore, of any lransformations, need not be a single Ada
unit. If a set of library units were intended 10 be reused
together then the meltncs as weil as the iranstormations couid
be applied to the entire set. Whereas there might be
substantiat interdependence among the units within the sat, it
still might be possible to aliminate ali dependencies on
external declarations. .

In the above exampies, one reason that the transformation
was trivial was that the only operation performed on objects
of the extemal type was assignment (except for the mail and
phone message examples). Therefore, it was possible lo
replace direct visibility 1o the external type dafinition with a
generic formai private type. A second exampie illustrates a
slightty more difficult transformation which inciudes mare
assumptions about ihe extemally deciared type. In the
lollowing example. indexing and component assignment are
used by the resourca.

Before transformation:

-~ context
package Arr is
type Item_Array is
array (Integer range <>) of Nacural:
end Arc:

-~ resource

with Arzz:)
procedure Clear (Item : out Arr.Item Array) is
begin A

for ! in Item‘Range loop
Item (I) := 0;
end loop:
end Claar:

- user
with Arz, Clear:
procedure Client is
X : Arz.Item Arzay (1..10):
begin
Clear (X):
end Client:

After transformation:

~ context (same)
package Arr is
type Item Array is
arzay (Integer range <>) of Natural:
end Axr:

- generalized resource
genaeric

type Component is range <>:

type Index is range <>;

type Gen_Array is

array {(Index range <>) of Component’

procedurs Gen_Clear (Item : out Gen_Arzay);
procedure Gen_Clear (Item : out Gen_Array) is
begin

for I in Item’'Range loop

Item (I) := O;

end loop:

end Gen_Clear:

- user

with Arx, Gen_Clear:

procedure Client is
X : Azz.Item_Acrzay (1..10);
procedure Clear is new Gen_Clear

(Nacural,
Integer,
Arz.ltesm Arrzay):
begin
Clear (X):

end Client;

The above transformation removes compilation dependen-
cies. and allows the generic procedure to dascribe its essantal
function without the visibility of extemnal dectarations. As
befora, an intermediate object could be created to free the user
procedure from the chore of instantiating a Clear procedure,
which requires visibility to both the context and the resourca.
However, it aiso illustrates an important additional kind ot
dependenca which can exist between 3 resource and its users,
namely information dependence.

In the previous exampie, the literal value 0 is a clue (o the
presence of information that is not general. Therefore, the
following would be an improvement over the transiormation
shown above:

8th Annual National Conterence on Ada Technology 1990

5-30

6109

.

generic

type Component is range <>:

type Index is range <>;

type Gen_Array is

array (Index range <>) of Component:

Init_Val : Comp := Comp ‘Fizst;
procedure Gen Clear (Item : out Gen_Array):
procedure Gea_Clear (Item : out Gen_Array) is
begin

for I in Item'Range loop

Item (I) := Init_Val:

end loop;

end Gen_Clear:

Note that the last transformation allows the usar 10 supply
an initial value, but also provides the lowest value of the
componant type as a default. An additional refinement wouid be
to make the-component type privata which would mean that
Init_Val could not have a default valus. Information
dependencies such as the-one illustrated hera ara harder to
detect than compilation dependencies. The appearance of
literal values in a rasourca Is often an indication of an
information dependencs.

A third form of dependence, called protocol dependencs, has
also been identified. This occurs when the user of a resourcs
must cbay cenain ruies to ensure that tha resource behaves
property. For example, a stack which is used 1o buffer
information between other users couid be impiemented in a

* not-so-abstract fashion by exposing the stack array and lop

pointer directly. in this case, all users of the stack must
follow the same protocoi of decrementing the pointer before
popping and incrementing aftar pushing, and not the other way
around. Beyond the recognition of it, no additional treatment

of this form of dependence between components will appear in

this study.

E - Transt .

The following is a formalization of the objectives of
transformations which are needed 10 remove declaration

dependenca.
1. Let P represent a program unit.

2. Lat D represant the set of n cbject declarations, dy .. da,
directly referenced by P such that d; is of a type declared
externaily to P.

3. Lat Q4 .. On be sets of operations where Oy is the set of
operations applied to ¢ inside P.

4. P is completely transformabie if each operation in each of
e sets, Oy .. On can be replaced with 3 precafined or genenc
formai operation. ;

The earlier example transformation is reviewed in the
context of thesa definitions:

1. Let P represant a program unit.
P = procsdure Clear (ltam : out Ar.ltem_Array) is ...

2. Lat D represant the set of n object declarations. dy .. dn,
directly raterenced by P such that d; is of a type deciared

extemaily to P.
D= (Amrltem_Armay }

3. Lot Oy .. Oy be sets of oparations where O; is tha set of
operatons applied to d insida P.

01 -
{ indexing by integers, integer assignment to components }

4. P is completely transformable if each operation in each of
tha sets, Oy .. On can be replaced with a predefined or generic
formal operation.)

Indexing can be abtained through a generic formal array
type. Although no constraining operation was used, the forma
type could be either constrained or unconstrained since the
only declared object is a formal subprogram parameter.
Since componant assignment is required, the component type
must not be limited. Therefore, the following generic formal
pans ara possible:

type Comp is <>;

type Ilndex i3 cange <>;

followed by aither:

type Gen_Arzay is arzay (Index) of Component:
or:

type Gen_Array is
array (Index cange <>} of Component:

Notica that some operations can be repiaced with generic
formal operations more easily than others. For exampte,
direct access of array structures can generally be replaced by
making the array type a generic formal type. However, direct
access into record structures (using °dot” notation)
complicates transformations sinca this operation must be
replaced with 2 user-defined access function.

Apglication to Sxtemat Software

To tast the feasibility of the transformations proposed, a
6,000-line Ada program written by seven professional
programmers was examined for reuse (ransformation
possibilities. The program consisted of six library units,
ranging in size from 20 to 2,400 ilines. OQf tne 30
theoretically possible dependencies that could exist among
ihese units, ten were required. Four transtormations of the
sofnt described above were made o three of the units. These
required an additional 44 lines of ¢ode (less than a 1%
increase) and reduced the number of dependencies from ten to
five, which is {he minimum possible with six units. Using one
possible program change dafinition, each (ransformation
required between two and six changes.

8th Annuai Nationai Conferanca on Ada Technology 1989

6109

5-31

A fifth modificaton was made 10 detach a nasted unit from

its parent., This required the addition of 15 lines and resulted -

in a 10tal of sgven units with the minimum six dependencies.
Next, two other tunctions were made independent of the other
units, Uniike the previous transtormations which were
targeted for later reuss, however, these transformations
resulted in a net reduction in code since the resuiting
components wers reused at multipie points within this
program. Substantial information dependency which wouid
have impaired actual reuse was identified but remained within
the units, however.

A second medium-sized project was studied which
axhibited such a high degree of mutual dependencs between
pairs of library units that, instead of selecting smaller units
for Qeneralizations, the quastion of non-hierarchicat
dependence was studied at a systam level. The general
conciusion from this was that loops in the dependency
structure (whers, for example, package A is referenced from
package body 8 and package B is referenced from package body
A) make generalization of those components difficult. The
program was instead analyzed for possibie rastructuring to
remove as much of the bi-directional dependence as practical.
This was partially successful and suggests that this sort of
tedesign might appropriately precade other reuse analysas.

The NASA Projecis

Currently, the research project is examining Several
spacacraft flight simulation programs from the NASA Goddard
Space Flight Canter. These programs are each more than
100,000 editor lines of Aca. They have been deveioped by an
organization that originally developed such simulators in
Fortran and has been transitioning 10 the usa of Ada over the
past several years. Because all the programs are in the same
application domain and were developed by the same
organization there is considerable opportunity for reuse. In
the past, the deveiopment organization reported the ability to
reuse about 20% of earlier programs when a new program
was baing developed in Fortran. However, sinca becoming
familiar with Ada, the same organization is now reporting a
70% reuse rate, of better.

After gaining an understanding of the nature of the reuse .

accomplished in Fortran and later in Ada, and how similar or
different reuse in the wo languages was, we would lika to test
saveral theories about why the Ada reuse has been SO much
greater. We already know that the reuse is accomplished by
modifying eariier components as required, and not, in general,
by using existing software verbatim. Because of this reuse
moda, ona theory we will be testing is that the Ada programs
are more reusable simpiy because they' are more
understandable. '

For the current study, the programs were studied to
reveal opportunities 1o extract generic components which, had
ihey been avaiiable when the programs were being developed
originally, could have been reused without modification.

There is an additional advantage to working with this data.
however, since, as mentioned above, the several programs
already exhibit significant functional similarities which can
be studied for possible generalization. in other words,
whereas he initial discussion of generic extraction has

focussed on attempts 10 compietely free the essentiai function
of a component from its static dectaration context, this data

. gives exampies of similar components in two or more ditferant

program contaxts and therefore allows us to siudy the
possibility of freeing a component from only its progran ‘
specific context and not from any context which remains
constant across programs, ’

This gives rise 1o the notion of domain-specific generic
extraction as opposed to domain-independent generic
axtraction. Given the problems associated with extracting a
completely general component, as examined earlier, a case can
be made to generalize away only some of the dependence,
leaving the rest in plasce. The additional probiem, then,
bacomas how to determine what dependenca is parmissible and
what shouid be removed. The permissible dependence would be
common across projects in a certain domain, and wouid
therefore be domain-specific while the dependence to be
removed woulkd be the problem-specific context. When
reusad, then, these components wouid have their problem-
specific context suppiied as generic actual parameters,

This is currently a largely manual task, since the
programs must be compared to find corresponding
tunctionality and then examined to determine the intersection
of that functionality. Interastingly, on the last project the
developers themseives have aiso been davising generic
components which are instantiated only one time within that
program. This implled to us that some effort was being spent
1o maks components which might be reusable with no, or
perhaps only very fittle, modification in the next project. We
have confimmed with the deveiopers that this is in fact the case.
By comparing the resuits of our generalizations with those
done by the developars, we find that ours have much more
complex generic parns but correspondingly much less
dependence on other softwara. This is a reasonable result,
since the davelopers already have some idea about the context
for each reuse of a given genenc: what aspects of that context
arg likely to change from project 1o project and what aspects
are expected to remain constant across several programs. The
program-specific context, only, appears in the generic pans
of the genarics "writtan by the developers, while our
generalizations have generic pans which contain declarations
of types and operations which apparently 0o not need to change
as long as the problem domain remains the same. In other
woras, when our generc parts are davised by analyzing only a
singia instance of a component, we cannot distinguish between
program-specific and domain-specific generalizations.

One interesting question we wouid like 10 answer is

whether we can derive the generic pan that makes the most
sanse within this domain by comparing similar components
from difterent programs and generalizing only on their
difterences, leaving the software in the intersection of the
components unchanged. !n this way, a component would be
darived which wouid not be compietety independent but, like
the deveioper-written generics, wouid be sufficiently
independent for reusa in the domain. Then, a comparison with
the generics deveioped within the or¢anization wouid be
revealing. If the generics are similar then our procass might
be useful on other parts of the software that have not yet been
generalized by the deveiopers. However, i thay difter
greatly, it would be useful to characterize that difference and

8th Annual National Conterence on Ada Technology 1990

5-32

6109

<

v

understand what additional knowledge must be used in
generalizing the repeated software. Unforunately, there is
not enough reuse of the devseloper's generics yet to make (his
final comparison but a project is currently in progress which
should supply some of this data.

The following exampie illustrates the complexity of the
generic parts which were required to compietely isolate a
typical unit from its context. Here, the procedure
Check_Header was removed from a package body and
generaized to ba able 10 stand aione as a library level generc
procedure.

genacic

cype Time i3 private:
type Duracion is digits <>;
with function Enable return Boolean:
type Hd_Rec_Type ls privacae;
with procedures Set_Start

(# : in out Hd _Rec_Type; To : Duratiosn):
with function Get_Start

(H : Hd_Rec_Type) recurn Duration;
with procedurs Set_ Stop

(K : in out Hd_Rec_Type: To : Duration):
wich function Get_Stop

(4§ : Hd_Rec_Type) rsturn Duration:
type Real is digits <
with function Get_Att_Int

(# : Hd_Rec_Type) return Real:
with function Conv_Time

(D_float : Duration) return Duration:
Header Rec : in out Hd_Rec_Type:
Goesim Time Step ! in out Duration:
with function Seconds_Since_1957

(T : in Time) return Duration:
with procedure Debug_Write (Qutput : String):
with procedure Debug_Ead_Line:
type Direct_File_Type is limited privace;
with procedure Direct Read

(File : Direct_Fflle Type):
with procedure Dizect_Get

(File : in DOirect_Ffile_Type:

Item : out Hd_Rec_Type):
with function Image_Of Base l0

(Item : Duration) return String:
with procedure Header_Data_Error;

procedure Check Header Generic

(Simulacion_Start _Time : in Time:
Simulacion_Stop_Time : in Time:
Simulacion_Time_step in Duration:
Hiscory_Flle : in out Direct File_Type):

The instantiation of Ihis generic part is correspondingly
compigx:

procedure Check_Headar_lInstance is new
Check_Headaer_Generic

(Abstract _Calendar.Time,
Abstract_Calendar.Duration,
Cebug_Enaoie,
Atcitude_History Types.Header Record,
Sec_stare,
Gec_Stars,
Set_sStop,
Get_Stop,
Utilities.Read,
Get_Act_Hisc OQuc_Int,

Converted Time,

Hiscory Data.Header Rec,
History_Dacta.Goesim _Time Step.
Timer.Seconds_Since_l957,
Error_Collector.Write,
Error_Collector.End_Line,
Dizect_Mixed_Io.File Type.
Direct_Mixed Io.Read,
Get_From_Buffer,

Image_Of Base_l0,
Raise_Header_Data_trxor);

In contrast, a typical generic part on a unit which was
developed and delivered as part of the most recent completed
project by the developers themseives is shown here:

with Css_Types;
genecric
Number_Of_Sensors : Natuzal := °
Cs3_Types.Number Of_Sensors:
with function Initialize_Sensor
getuzrn C.ss_".‘ypes.C::_Da:abase_‘.‘ype is <>
package Generic_Coarse_Sun_Sensor is

cae

Note that by allowing the visibility of Css_Types, the
generic part was simplified. Being unfamiliar with the
domain, had we attempted to generalize Coarse_Sun_Sensor by
examining only the non-generic varsion of a comresponding
component in another program we would not be able lo tell
whether the dependsnca on Css_Types was program-spacific
or domain-specific. Here, however, the deveioper ieads us 0
pelieve that Css_Types is domain-spacific while the number
of sensors and sensor initialization is program specific.

" Guideli

The manual application of the pnnciples and techniques of
generic transformation and axtraction has reveaied saveral
intaresting and intuitively reasonabte guidelines reiative to
Ihe creation and reuse of Ada software. [n general, thess
guidelines appear to be applicable to programs of any size.
However, the last guideline in the list, concerning program
structure, was (he mast obvious when dealing with medium 1o
large programs.

. Avoid direct access into record components except in the
same declarative region as the record type deciaration.

Since thare is no generic formal record lype in Ada
(without dynamic binding such a feature would be
impractical) there is no straighttorward way 10 replace
record component accass with a genenc operation. instead.
usar-supplied access functions are needed 1o access (he
components and the type must be passed as a private type.
This is uniike array types lor. which there are two genenc
formal types (constrained and unconstrained). This supporns
Ihe findings of others which assert that direct reterencing of
non-local record components adversely atfects maintainaoility
[61.

. Minimize non-local access o array components.

Although not as difficult in generat as removing dependence

6109

8th Annual Nationai Conference on Ada Technology 1890

5-33

on a record type, removing dependance on an &ray type can be
cumbersome.

« Keep direct access to data structures iocal to their
declarations.

This Is a stronger conciusion than the previous two, and
reinforcas the philosoply of using abstract data types in all
situations where a data type is avallable outside its local
declarative region. Encapsuiated types are far easier to
saparate as resources than giobally declared types since the
operations are localized and contained.

* Avoid the use of literal vaiues except as constant vaiue
assignments.

information dependence is almost always associated with
the use of a literal vaiue in one unit of software that has some
hidden relationship to a literat value in a different unit. If a
unit is generalized and extracted for reuse but contains a
literal vaiua which indicates a dapendencs on some assumption
about its original context, that unit can fail in unpredictable
ways when reused. Conventional wisdom applies here, and it
might be reasonable o relax the restriction to aliow the use of
0 and 1. However, experniencs with a2 considerable amount of
software which makes the erroneous assumption that the first
indax of any string is 1 has shown that even this can lead to
problems.

- Avoid mingling resources with application specific contexts.

. Although the purpose of the transformations is to saparate
resourcas from application specific software regardless of the
program structure, certain styles of programming result in
programs which can be transformed more easily and
compietely. By staying conscious of the uitimate goai of
separating reusable function from application declarations,
whether or not the functionality is initlally programmed 1o be
generic, programmers can simpiify the eventual
transformation of the code.

. keep interfacas abstract.

Protocol dependencias arise from the exportation of
impiementation details that shouid not be present in the
interface to a resourcs. Such an interface is vuinerable
because it assumes a usage protocol which doas not have to be
foliowed by its users. The bad stack example illustrates what
can happen when a resource interfaca requires the use of
implementation details, however even resources with an
appropriately abstract interface can export unwanted
additionat detail which can lead to protocol dependenca.

» Avoid direct relerence 10 package Standard.Float

Even when used lo define other floating point types, direct
referance o Float establishes an implementation dependence
that does not occur with anonymous floating point deciarations.
Especially dangerous is a direct reference 10
Standard.Long_Float, Standard.Long_integer, etc., since they
may not even compile on difterent impiemantations. Some
care must also be taken with integer, Positive, and Natural,

though in general they were not associated with as much
dependance as Floal. Note that fixed point types in Ada are
constructed as needed by the compiler. Perhaps the same
philosophy should have been adopted for Float and Integer.
Reference to Character and Boolean is not a probiem s-nm they
are the same on all implememations. .

* Avoid the use of "Address

Even though it is not necassary 10 be in the scope of
package System to use this atiributa, it sets up a dependency
on System.Address that makes the software non-portable. |f
this arttribute is needed for some iow-level programming than
it should be encapsulated and never be exposed in the interface
lo that level.

+ Consider the inter-component depandence of a design

By understanding how functionally-equivalent programs
can vary in their degree of inter-component dependence,
designers and davelopers can make decisions about how much
dependence will ba permitted in an evoiving system, and how
much effort will be applied to limit that dependenca. For
system developments which are expected to yieid reusable
componants directlty, a decision can be made to minimize
dependencies from the outsst. For developments which are not
able to make such an investment in reusability, a decision can
be made to allow certain kinds of dependencies to occur. In
particular, dependancies which are removable through
subsequent transtormation Mmight be allowed while thosa that
wouid be too difficuit to remove later might be avoided. A
particularly cumbersome type of dependenca occurs when two
library units relerence each other, aither directly or
indirectly. = This shouid be avoided if at all possible. By
making structural decisions explicitly, surprises can be
avoided which might otherwise result in unwanted fimitations
of the deveioped software,

Acknowledgements

This work was supported in part by the U.S. Army
institute for Research in Management information and
Computer Science under grant AIRMICS-01-4-33267, and
NASA under grant NSG-5123. Some of the software analysis
was performed using a Rational computar at Rational's eastern
regional office in Calverton, Maryland.

Befersnces

1. Basili, V. R. and Rombach, H. D. Software Reuse: A
Framework. in preparation.

2. Basili, V. R. and Rombach, H. D. The TAME Project:
Towards Improvement- Oriented Software Environments.
IEEE_Transactions op Software Engineering, SE-14. June
1988.

2 Funk & Wagnalls. Standard College Dictiopary, New York,
1977.

4. Myers, G. Composite/Slructured Design, Van Nostrand

Reinhoid, New York, 1978.

8th Annual National Conference on Ada Technology 1990

6109

5-34

S. Dunsmore, H.E. and Gannon, J.D. Experimental
Investigation of Programming Complexity. In Proceedinas

Saftware, Washington 0.C., June 1377.

6. Gannon, J.D., Katz, E. and Basili, V.R. Charactenizing Ada
Programs: Packages. In

Barformance, Los Alamos National Laboratory, Los Alamos,
New Maxico, August 1983,

John W. Bailey is a Ph.D. candidate at the University of
Maryland Computer Sciance Department. He is a part-time
employee of Rational and has been consuiting and teaching in
the areas of Ada and software measuremaent for sgven years. In
addition to Ada and software reusa, his interests inciude
music, photography, motorcyding and horse support. Bailey
recaived his M.S. in computer science from the University of
Maryland, where he aiso eamed bachetors and master's
degrees in ceilo performanca. He is a member of the ACM.

Victor R. Basili is a professor at the University of Maryiand,
College Park's Institute for Advanced Computer Studies and
Computer Science Department. His rasearch interests include
measuring and evaluating software development. He is 3
founder and principal of the Software Engineenng Laboratory.
which is a joint ventura among NASA, the University of
Maryiand and Computer Sciences Corporation. Basili recerved
his 8.S. in mathematics from Forgham College, an M.S, in
mathematics from Syracuse University and a Ph.0. in
computer science from the university of Texas at Austin. He 15
a fellow of the the IEEE Computer Society and is editor-in-
chief of lESE Transactians on Softwars Enqineering,

.
s

8th Annual National Conterence on Ada Technology 1990

5-35
6109

’w

