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ABSTRACT

This paper reports on the data binding ro0l (dbr). It assists in Ada source code reusabili-
ty and system design assessment. Software system components are defined in the context of
the language using a flexible scheme. Data binding metrics are utilized to measure the inter-
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sability potential and design assessment of examined systems are examined.
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1 Introduction

Software demand has exceeded industfy’s capacity to supply it. Projects are often scaled down, delayed
and even abandoned due to cost and time constraints set on the development effort. Although we have
experienced a great number of innovations like the introduction of workstations and environments, the
production of software has not achieved a sufficient rate of productivity to satisfy the demand. It is

expected that the trend will continue at least in the near future [Sta84].

Software reuse offers a possible.solution to this problem. By reuse, we mean not only reuse of code
but also of other life cycle products, as well as processes. In certain environments, reuse of processes
is already a common practice. People follow a predefined path in their problem solving. Based on
previous project experiences, personnel and resources are allocated and schedules and milestones are

laid out.

Reuse of products still remains limited. Reuse of early software life cycle products could prove ex-
tremely profitable. Good system designs could be partially re-used in future system development

efforts. Reuse of source code remains an issue of critical importance.

The introduction of Ada [Def83] had two primary goals: to promote reusability of code through the
wealth of the language constructs and to assist the system design through its abstraction mechanisms.
The elementary building block of Ada is the subprogram structure [Boo87]. Ada offers packages, tasks
and generics as major structural elements. Packages provide the capability to extend the language
by creating new objects with their operations. Tasks provide concurrent interaction among language

objects. Generics offer a versatile mechanism for building reusable software components.

The purpose of this paper is to report on the development of an Ada based tool (Data Binding Tool
or dbt) and demonstrate how it can assist in the reuse of source code and system design assessment
of Ada systems. The tool has been developed around the idea of information flow among software
components. Data bindings [BT75] provide a measure of component or module interaction. They
evaluate the proximity of a system components. This ‘closeness’ is input to a mathematical taxonomy
(cluster analysis) method to construct a simple, unique tree diagram of the elements involved. This

diagram -usually called dendrogram— expresses element similarities and dissimilarities at a glance.

By examining dendrograms, one can determine what happens if certain components within a cluster

need to be migrated into a new environment. Designers can determine if clusters represent their design



and derive a deeper understanding of the system. The newly acquired knowledge can then be used to

attack design errors and promote better solutions to existing problems.

The tool has been applied to a number of software projects. Conclusions about reuse potentials were
drawn. Conformance of the obtained dendrograms with the initial designs of the systems is also

discussed.

The organization of the paper is as follows: In section 2, a review of related work and the concept of
data bindings are presented. The notions of a ‘component’ and data binding for Ada are discussed in
section 3. Section 4 briefly studies the concept of mathematical taxonomy and how the final output
(dendrogram) is produced. In section 5, the design of the tool and the major problems encountered
are examined. Sections 6 and 7 give a description of the test data and an explanation of the derived

dendrograms. Finally, we conclude with a summary and status of the tool.

2 Background

2.1 Related Work

Information flow metrics and ideas —similar to the one used in this paper- have been extensively used

in the literature for a broad range of goals. There are several reasons:

o They can be used in stages prior to detailed coding. Information flow metrics can be applied

during PDL design.
¢ They provide insight into complex programming structures.

¢ They can be automated readily since a rather not complicated instrumentation of the compiler

" is usually required.

In [HK81], the concept of information flow is defined formally and the notions of fan—in and fan—out
are introduced. Fan—in is the the number of flows into a procedure plus the number of data structures
from which a procedure retrieves information. Fan—out is the number of flows from a procedure to its
outside environment plus the number of data structures the procedure in question updates. Global
and local flows are being differentiated. Global flows are those due to the existence of global data

structures. Local flows are those occurring between subprograms calling each other. Based on these



concepts the authors speculate that the complexity of a procedure depends on the complexity of the
code and the environment. Measurement on the suggested metrics were taken in an attempt to locate
design and code problems. In the same work, information flow was used to quantify the strength of

connections between program modules.

Wilson and Osterweil [WO85] used information flow to detect mistakes in C programs. Code that
goes through the compilation phase successfully, may create problems in run—time. The main idea
behind this work is that variables follow a sequence of events: definition, reference, undefinition. If
a variable throughout the control flow of a function presents a pattern such as definition—definition,
definition—undefinition, undefinition-reference then a data flow anomaly has been detected. Pointers
are treated by performing reanalysis of every function at the point of its invocation. The main result
of this work is that information and data flow analysis may assist substantially in detecting possible

defects in the source code.

Barth [Bar78] used data flow techniques to perform interprocedural flow analysis. The goal of this
analysis was to determine information available at particular program segments. Segment semantics is
propagated through the program in a way that reflects the control structure. Generally, the problem
of global flow analysis is shown to be P-hard. In the same paper, a one pass algorithm is presented
that tries to gather complete interprocedural information. Recursive and non—recursive subprogram
calls are treated differently. The emphasis of this algorithm is on the computation of ‘modifies’ and
‘uses’ information for every object (similar to the notion used in data bindings, and in [WO85]). The
algorithm has been used in the construction of optimizing compilers and the generation of program

diagnostics.

Information flow techniques were used in [Ste82] to advocate improvement in application development
productivity. Indeed, this is the first reference which views information flow techniques in conjunction
with reusability and system design assessment, as well as a mechanism for reducing complexity in

systems.

Belady and Evangelisti [BE81] used the interconnection of program modules and data structures
in terms of calls and references to determine system partitioning using clustering techniques. An
algorithm to perform automatic clustering of modules, and a metric to qualify the complexity of the

resulting module partioning, are proposed.



Hutchens and Basili [HB85] present an evaluation of system component interaction in Fortran using
data bindings. Bindings among system subprograms were input to a number of clustering algorithms
to derive system dendrograms. The purpose of that work was threefold : to find functional clusters,

perform error analysis involving changes in the code and compare some clustering techniques.

Selby and Basili [SB88] use data bindings to quantify ratios of coupling and cohesion. They subse-
quently use these ratios to generate hierarchical systems descriptions to localize errors by identifying

error-prone system structures during the development phase.

The work reported here is along tﬁe same lines as iﬁ [HB85] but is differentiated by two points. First the
language is Ada, which is much more complicated than those languages originally used (Fortran and
SIMPL). The concept of a segment and the definition of data binding need to be tailored accordingly
so that they work synergisticallyj within Ada. Second, data bindings are applied to assist in source

code reusability and assess system design.

2.2 Data Bindings

Data Bindings fall in the category of measures for data visibility [BT75]. They have been utilized to
measure the interaction among system segments ( a segment is a set of executable statements and
conceptually is very similar to the notions of module and component). The definition of data bindings

follows:

e Let o and 3 two program segments and variable v global to « and 8. If v is assigned by segment
o and accessed by 3 then there exists a data binding between these two program segments

denoted by the triplet (e, 7, 8).

This triplet basically describes a flow of information from the first segment to the second. It is also
possible, that another binding of the reverse type of flow exists (i.e. (3,7’,a) where v’ is a global
assigned by the second segment and referenced (accessed) by the first). Intra-segment bindings are
not considered to be of interest since they portray flow internal to the segment (i.e. (a, z, a) does not

count as an extra data binding).
Tn [HB85], the notion of segment was synonymous for the Fortran subroutine and function.

Several families of Data Bindings were identified in early work: potential, used, actual and control

flow. The definition given above is for ‘actual data bindings’. It is also the only one that has been



used so far in realistic measurement settings [BT75, HB85, SB88].

Potential bindings as the name suggests capture the ‘possibility’ that two segments communicate
through a variable that is located in their lexical scope. So if @ and § are two segments and 7 is in

the lexical scope of a and J then (a,v, () is a potential data binding.

Used bindings reflect the similarity of two segments with regard to the ‘use’ (that is either reference or
assignment) of a variable in their scope. Thus, if @ and 3 are two segments which use global variable

7 then there is a used data binding (o, v, §).

Finally, control bindings are an improvement over actuals in the sense that an extra condition is

required, namely: control from segment a is passed over to segment 3.

Naturally the number of potential bindings is the largest. As the definitions become more restrictive
smaller numbers of data bindings are found. Below, an example is given to demonstrate the various
data binding definitions (segments are assumed to be equivalent to procedures and functions; passing

of parameters is done by value).

procedure EXAMPLE is
A, B, D, E: INTEGER;

C : INTEGER :=0;
procedure BAR(G : in INTEGER) is
begin

C: =G+ B;
end BAR;

function COO(D, E : in INTEGER) return INTEGER is
TEMP : INTEGER := 0;

begin
TEMP :=D + E + C;
return (TEMP);
end COOQO;
procedure FOO(E : in INTEGER) is
begin
D:=2
A :=COO(D, E) + C;
BAR(A);
end FOO;
procedure MAIN is
begin
E:=1;
B:=2
FOO(E);
end MAIN;



begin
null;
end EXAMPLE;

According to the definition, the actual bindings found in this piece of code are:

(MAIN,E,FO0), (MAIN,B,BAR), (FOO,A,BAR)
(BAR,C,cC00), (Fo0,D,C00), (BAR,C,F00)

As mentioned before, potential bindings include additional triplets and their number is much higher
than that of the actuals. For example, (F00,B,BAR) would be a potential binding but not a used
data binding. (F00,C,C00) is a used data binding but not an actual data binding. Control flow
bindings are less than the actuals listed above. Specifically, the triplet (BAR,C,C00) is not a control
flow binding since there is no way control can pass from segment BAR to C00. Henceforth, data bindings

are assumed to mean actual data bindings.

3 Concepts in Ada

3.1 Segments

System segments in [HB85] are called either modules or components. The term module is overloaded
in the literature. There is disagreement on what a module (component) is. Myers in [Mye78] proposes
that a system module (component) is a set of executable statements that should satisfy the following

criteria:

e it is a closed subroutine
e it has the potential to be called from any other module in the program

¢ it has the potential of being independently compiled

The last two requirements are more suggestive than defining. Fortran subprograms generally comply
with all the above criteria. Since, subprograms are the only constructs for abstraction in Fortran,

their utilization as system components in [HB85] is justified.

Hammons in [HD84] defines Ada modules as non-nested subprograms. However, subprograms encap-

sulated in package bodies are not characterized as modules. The claim is that since such subprograms



can not be called from any random point in the system (except the package body scope) they do not
qualify as modules. Tasks do not qualify either.

Ada provides a wealth of programming constructs and it is generally difficult to identify one of them
as the general modularization mechanism. Packages mainly accommodate the need for encapsulation
and abstraction. The main routine that ‘drives’ an Ada system is a subprogram. Therefore, it
is difficult to differentiate between packages and subprograms. A flexible scheme, called Ada data
Binding Components (ABC’s thereafter), for defining Ada constructs as components is proposed here.
ABC’s offer a two level module definition capability. At the first level, subprograms ( functions and
procédures ) as well as task entry bodies constitute the system components. At the second, level
certain components of the first level are viewed as integrated entities. For instance, one could view
the subprograms encapsulated in a package as making up a unique and indivisible system component.
On the other hand, one may view nested subprograms, not as separate components, but as parts of

their incorporated construct.

ABC’s of the first level are the essential building blocks of the language and of our analysis. It is

interesting to note that these ‘low level’ components comply with Myers’ laws.
g p ply y

There is not much syntactic difference between a task entry call and a procedure call. Although the
nature of tasking is dynamic, information flow among task entries can be modeled and analyzed from
a static perspective. Indeed, the data binding concept could be applied to the entries. Entries are
considered to behave much like procedures. Entry parameter lists correspond to formal parameter

lists. In addition, bodies of task can be compiled separately.

A substantially distinct view of a system under analysis could be taken by recognizing there is no
need for units within a package to be ana,lyzed separately. That would change the formulation of the
participating ABC’s in the analysis. There are occasions where packages implement abstract data
types and are required to be seen as unique (integrated) components. The same applies in the case
of nested functions, subprograms as well as tasking constructs encapsulated either in subprograms
or packages. Thus, a mix of higher level components (packages) with elementary ones (procedures,

functions) may be obtained, providing a more diversified view of the system.

The ability to express second level ABC’s is supported by the tool. If nothing is .explicitly demanded,
then the analysis will be carried out assuming that only first level components are elaborated. Natu-

rally, second level ABC’s build on knowledge acquired by the analysis performed on the first level of



Ada data Binding Components.

Block statements are not considered ABC’s of either level. They are rather part of the Ada Binding
Components which contain them within their scope. Package body initializations are also not ABC’s.
Initializations are considered to be part of the package as a whole and therefore, are covered by the

Ada Binding Components of the second level.

Generics offer a great utility for reusable software. Therefore, it is important to understand and
classify the interaction of instantiated generics with the rest of the system. Thus, instantiated ABC’s

generics are identified and their data interaction with other Ada Binding Components is evaluated.

3.2 Data Bindings in Ada

The definition of Data Bindings, in light of the Ada Binding Component scheme, is somewhat modified

as follows: _

There exists a Data Binding (abc_i,x,abcj) between two ABC’s abc_i, abc_j if and only if:
e abc.i calls abc j.
e object x is part of the abc_j interface (formal parameter list).

o abc_i assigns to x and abc_j references it.

Note that in Ada, the mode of the formal parameter x limits the availability of the possible bindings.
The binding (abc.i,x,abc_j) may exists only if x is either an IN or IN OUT type of parameter.

There exists a Data Binding (abc._j,x,abc_i) between two ABC’s abc_i, abc_j if and only if:
¢ abc.i calls abcj.
e object x is part of the abc_j interface (formal parameter list).
e abc j assigns to x and abc_i references it.

The binding (abc_j,x,abc.i) exists only if x is either an OUT or IN OUT parameter.

Finally, there exists a Data Binding (abc.i,x,abcj) between two ABC’s abc_i, abc_j if and only if:

e Object’s x scope extends to both abc.i and abc._j.



o abc_i assigns to x and abc_j references it.

Except for the removal of the stipulation that x be a global variable, this last definition parallels
the original one [BT75]. Note that these definitions can be applied whether or not the components
in question are visible at the library level or nested inside one another. The selected level of ABC
for a particular construct clarifies exactly what the scope of each segment is. Note also that the
defined bindings are those occurring through execution and not through elaboration (such as through

initializations or default value assignments).

4 Mathematical Taxonomy

A Mathematical Taxonomy (or Cluster Analysis) is used to group similar objects. The similarity of
objects is based on properties of the objects. The role of clusteriﬁg is multiple. It groups, displays,
summarizes, predicts and provides a basis for understanding. Items (or objects) are grouped to create
more general and abstract entities that share like properties and have identical behavior in the context
of the system from which they are derived. Clusters of objects are displayed so that differences and
similarities become apparent. Input data describing the similarity of objects are summarized by
the abstraction that occurs. Properties of clusters are highlighted by hiding properties of individuals.
What is expected in general from a mathematical taxonomy is that clusters present ‘similar’ properties.
Thus, clusters easily isolated offer a basis for understanding; speculations and theories can be derived

about the structure of the system. Unusual formulations may reveal anomalies.

In this paper, mathematical taxonomy is used as the tool to produce ABC’s groups. These groups
form the basis for a classification scheme for evaluating the system design and future partial system

reuse.

A great number of algorithms for mathematical taxonomy has been proposed in the literature [EveT7,
Har75, JRS77]. Given that programs are often organized as hierarchies of elements a bottom-up

clustering algorithm appears most appropriate.
Generally, the initial ‘raw’ data collected on a set of n objects (having m attributes) constitutes a
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matrix M with dimensions m X n.

B1a M12 ... M1,m

K21 P22 .. H2,m
M=

Bi1 SO (N

Bn,1 e PBnm

Flement y; ; is the score of the i-th object for the j—th characteristic. The first computation of the
Cluster Analysis’ method is to produce a matrix N out of matrix. M. Matrix N is called the distance
matrix (it says how far away every object is from all others) and has n x n dimensions. This distance

matrix is passed over to an iterative algorithm that determines the objects’ dendrogram.

More specifically, the clustering of Ada data Binding Components matrix M is formulated with the
use of data bindings. In this case, m = n = numéer of ABC's and the properties correspond to the
number of data bindings every ABC maintains with all the rest (i.e. p;; is the number of bindings
between components i and j). M is a symmetric matrix. The transformation of M into the distance

matrix N is performed using the formula:

N::= 2ok Mik + Yk Bk — 24
5,3 = R .
Zk l‘l",k + Zk /'I/k,] I//g,]

The numerator of the expression equals to the number of bindings in which either the i-th or j-th
components participate but not both. The denominator expresses the number of data bindings in
which either the i-th or j-th components participate. Their fraction N;; represents the probability
that a data binding chosen from the set of bindings that involve either i or j is not in their common
set of bindings. If y;,; = 0 (no bindings occurring between the two ABC’s) then N; ; = 100. This says
that the dissimilarity (or distance) between i and j is as large as possible. Consequently, the more

bindings between any two components the smaller their distance is.
For example given matrix M as :

0 2 0 2 1
2 01 3 2
M=]01 0 21
2 3 2 0 2
1 21 20

the corresponding distance matrix N is symmetric with elements (a,b,c,d,e):

0
81 0
N= 100 90 0

83 78 81 0
90 83 88 84 0

11



The clustering process continues in a bottom—up fashion. It proceeds in a series of successive fusions
of the n objects into clusters, to reduce the size of the distance matrix. The grouped objects are those
with the smallest distance (therefore, those whose strength of coupling is higher due to having the
largest number of data bindings). From the initial matrix N objects b,d are those to be grouped. Then,
they are fused with the nearest groups/objects (smallest distance principle). The distances between

the newly created cluster (b,d) and the rest objects a,c,e is calculated as follows:
N(b,d),a. = min(Nb,a, Nd,a;) = 81

N(b,d),c = min(Nb,c,Nd,c) =81

N,4),e = min(N; ¢, Ng,.) = 83

That is group (b, d) is considered as a single object whose distance to other objects in the system is
defined as the distance to the closest element of the group. After the first iteration the matrix becomes
N; with elements a, (b,d), ¢ ,e:

0
81 0
Ne=1 100 81 o

90 83 83 0

During the second iteration cluster (b,d) is grouped with objects a and ¢ at level 81 forming a
new cluster (a,c,(b,d)). Note that a and c¢ are drawn into the (b,d) cluster, even though they have no
bindings to each other. The distance matrix at the last iteration becomes N, with elements (a,c,(b,d))

and e.
No [ 0
2=\ 83 0

At last, object e is fused into cluster (a,c,(b,d)) at level 83. Graphically the created clusters are
depicted as a dendrogram in figure 1. Mathematically, cluster analysis has some of weak points. It is
based on limited knowledge of the objects (i.e. some specific object characteristics) and it is not based
on very sound probability models. The counterargument is that if the classification pattern for the
measured objects’ characteristics is reasonable, the chances that the taxonomy leads to meaningful
results with respect to those characteristics is increased. In this study, the introduction of Ada Binding
Components, along with the definitions of data bindings offer a clearly defined classification scheme

for measurement of data use and visibility.

5 Design Outline of the dbt tool

The basic computations to be performed by the data binding tool are:

o Identification of Ada data Binding Components (ABC’s).

12
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Figure 1: Sample System Dendrogram

¢ Computation of Data Bindings among ABC’s.

¢ Performance of the Mathematical Taxonomy method.

The first two functions are performed simultaneously when the source of an Ada program is parsed.
Their output consists of the data binding matrix M whose size is equal to the number of identified

ABC’s.

Lex [Les75] and Yacc [Joh75] specifications for Ada have been used to parse the input programs.
Actions in the form of C [KR78] functions, were incorporated into these specifications. These actions
calculate the bindings and and manipulate the matrix M. Since the definitions of bindings require
information about the use of globals and the association of program entities to ABC?’s, a partial symbol

table for the parsed program is also created.

The implementation of source code metrics using Yacc specifications alone is limited for complex
structured languages such as Ada. Intermediate language representations are needed for an effective

measurement process.
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The main idea behind the design of the dbt is that the Ada source program is transformed to an
‘intermediate’ representation which is comprised of an interconnected set of tables and each lexical
scope maintains such a table called a frame. Every subprogram, nested subprogram and package has
its own frame in the structure of the intermediate representation. Frames are interconnected according
to their scope position in the program. The resulting structure is memory resident. The format of a

frame is as follows:

struct abc_frame {
char name [MAX_LEN] ;
char *type;
char *returns;
int . num_id;
tbl_of _parms -in;
tbl_of parms -out;
tbl_of parms _in_out;
tbl.of_vars loc_vars;
tbl of _vars exp.vars;

type.desc_struct loc_types;
type.desc_struct exp-types;
struct abcframe *subord;
struct abcframe *super;
struct abcframe *next;
struct abcframe *prev;
struct abc frame *ren_frame;
spec_purp-tbl special;

}s

name contains the name of the elaborated Ada data Binding Component. type points to a string that
describes the kind of the frame (i.e. ‘subprogra,m, package, gen_package, function etc.) returnsis a
character string which in the case of a function ABC describe the type of the object to be return. It
remains null in other types of frames. num_id is a unique numeric identifier for every frame in the

intermediate representation and is used by the searching routines of the tool.
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Figure 2: Intermediate Representation of an Ada package

package COMPLEX NUMBER is

type COMPLEX is private;
function "+"(X,Y:COMPLEX) return COMPLEX;
function "-"(X,Y:COMPLEX) return COMPLEX;
function "*"(X,Y:COMPLEX) return COMPLEX;
function "/"(X,Y:COMPLEX) return COMPLEX;
private type COMPLEX is

record

REAL PART, IMAG_PART: REAL;

to be worked on and prev for the cell just elaborated).

15

subord, superior, next, prev are pointers that define interconnections with other structure cells.
In particular, subord is a pointer providing access to ABC’s nested in the current Component.
superior points to the component that incorporates the current one in its scope. next and prev

point to frames that belong to the same lexical level with the current frame (next for the next frame

-in, _out, _inout point to ABC’s corresponding parameter lists. Information about local types is
kept in a list pointed to by loc_types and those visible from the outside of the frame environment
by exp_types. The handling of local (loc_vars) and exported (exp.vars) variables is done similarly.
Variables are depicted by an object name and their type descriptor. special field is explained latter
in this section. For example the intermediate representation for the package described below is shown
in figure 3:




System Pointer

\
A A
pointer -—r—’ package
WITH 1> T
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next 1% next +—»
.| previous subord 4+
Figure 3: Top Level Structure
end record;
end COMPLEX NUMBER;
package body COMPLEX NUMBER is
function "+"(X,Y:COMPLEX) return COMPLEX is
begin
return(X.REAL PART+Y .REAL PART,X.IMAG PART+Y.IMAG PART);
end;
end COMPLEX NUMBER;

A reasonably sized Ada program consists of a number of packages and subprograms compiled in
a predefined order to produce object code. So far, just the description of simple ABC’s has been
discussed. The ‘partial’ representations of packages and subprograms need to be connected in a way
that establishes visibility via WITH and USE clauses. A top level structure that provides the capability
to join the structure of the relevant compilation units is proposed at this point. For example consider

a system consisting of three library units (two packages and one procedure) set up as follows:
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package A is ...

end A;

with A ; use A;
package B is ..

end B;

with B ;
subprogram main is ...

bproc();

end main;

Figure 3 shows the top level structure and how visibility is maintained. This aspect of the structure
permits the identification of ABC’s coming from different compilation units. For instance, procedure
b_proc() invoked in main establishes bindings between these two involved ABC’s. In order to compute
the number of data bindings, the frame of b_proc() needs to be found. Package B is searched first
as the most likely unit to contain b_proc() because main is WITHed to B. If not found there, then
the next WITHed package is examined. Since package B is also WITHed to A, package A is the next
place to look for b_proc(), etc. The tool contains the appropriate search routines to navigate through

the top level structure and identify the correct frame within a hierarchy of representation frames.

The frame of an invoked ABC is required to be found before the counting of data bindings commences.
For every formal parameter of type IN or OUT one binding is counted. Two bindings are counted
for every formal parameter of type IN.OUT. The former parameters provide a unidirectional way of

information flow; the latter give a bidirectional information flow.

While parsing an ABC’s body, a record of what is being either referenced or assigned is maintained.
" The goal of this record is to assist in bindings’ computation especially when global variables are
involved. At the end of every library unit parsing, data bindings due to globals may be determined.
Unresolved references and assignments are stored to be resolved at the end of the program parsing

when information about all units is available.
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Ada’s complex structure causes several problems in this phase of the tool design. Some of the more

important ones are: separate compilation, renaming, generics and overloading.

The tool accepts as input all compilation units described by the name of the files they reside in. Files
are opened and closed in the order given in the command line. It is also assumed that files are given
in the correct compilation order. The problem that still remains is that of subunits. A rather simple
approach to overcome it would be to preprocess the source and expand the source code of the program

with the subunit bodies.

Another approach would be to postpone the processing of subunits until their files are encountered.
Whenever an ABC declaration is parsed the tool sets up its corresponding frame. The information
given in the separate clause along with the name of the ABC (both found in the stub file) assist in
tracking the ABC’s frame in the program representation structure. While the body is being elaborated,
bindings due to ABC’s calls can be easily derived. On the other hand, bindings due to globals require
a complicated processing since lists of assigned and referenced objects need to be kept even after the

end of parsing of library units.
The first solution (of code expansion) was adopted as more natural and easier to implement.

Renaming can be applied to variables, exceptions, subprograms, task entries and packages. Renaming
of variables can be accommodated by having pointers to the structure of the renamed object. Renaming
of subprograms and task entries as well as packages can be handled pretty much the same way. For
a renamed ABC, a new frame is set up in the system representation of type ‘renamed’ and the field
ren_frame points the renamed ABC (which is NULL otherwise). The cell is created within the scope

the renaming was encountered.

Generics are kept in a separate structure where explicit references about the imported types and
subprograms are maintained. Since bodies of generics are elaborated before the instantiation, a record
is kept of which ABC’s are invoked in every generic Ada data Binding Component. The field special

of the template undertakes this role.

Imported ABC frames (i.e. imported functions and subprograms) are designed to be at the same
lexical level as that of generic unit in the generic structure. Figure 4 shows how frames are set up

during the elaboration of the generic FORMATTER package. The package’s outline is:

generic
type WORD is private;
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FORMATTER |

gen.package

Figure 4: Frame description of a generic package

THE.LINE :
procedure CREDOC;
end FORMATTER;

end FORMATTER;

type LINE is private;
with function VALUE_OF (THE.WORD :

vith function IMAGEOF(THELINE : in LINE) return STRING;
package FORMATTER is

procedure SETUP;
procedure APPEND ( THEWORD : in WORD;
in LINE );

package body FORMATTER is ...
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in WORD) return STRING;

v

subord - VALUE OF IMAGE_QF FORMATTER
loc.types = function function package
STRING STRING
subord —
next - next - next
L prev —I» prev prev
WORD | LINE super
private |private special
e 2
SET.UP APPEND > CREDOC
procedure procedure procedure
IN —
next e S next i next
= prev prev prev
super
special i special .
THE.WORD THE.LINE
WORD LINE

The instantiation of a generic unit is basically a copy of the frame constructed in the generic form
having imported subprograms and types changed accordingly. Upon a generic instantiation bindings
among the instantiated ABC’s and the imported ABC’s can be easily computed. Bindings occurring

among the instantiated ABC’s and the rest of the system ABC’s are calculated whenever needed

thereafter.



Thus, the instantiation of the FORMATTER package

package INST FORMATTER is newv FORMATTER
( WORD => WORDSTR ,
LINE => LINESTR,
VALUEOF => A.VALUEOF,
IMAGE OF => A.IMAGEOF);

creates a copy of the structure starting from the FORMATTER frame (prev is set equal to NULL). This
substructure has all the types changed to WORD_STR and LINE_STR. Since imported subprograms are
visible at this point, data bindings can be collected right away. This is possible because the information

for subprogram invocations is kept in the structures described by the special fields.

Overloading is perhaps the most challenging problem to be dealt with in the design of an. Ada based
tool. Type information collected throughout parsing and stored in the ‘intermediate representation’
of the Ada program is used to disambiguate the invocation of overloaded ABC’s. A variation of the
algorithm proposed in [Cor81] could be used to achieve resolution given the fact that the proposed
representation resembles a ‘decorated’ tree. The current version of the tool does take some effort to

disambiguate overloaded Ada Components but it is rather limited.

6 Test Data

Ada test software was supplied by the RAPID Center Library project and the Software Engineering
Group at the University of Maryland. The RAPID Center Library consisted of 13 sets of Ada compi-
lation units making up 15 systems of various sizes. The University of Maryland test software contains

3 sets of Ada compilation units making up 4 systems.

Table 1 shows some of their essential characteristics such as the name of the set , name of the system,
number of lines of code, number of identified low level ABC’s, and provider. Every system is assigned

a unique numeric identifier (number).

Most of the programs originating from the RAPID project were designed and implemented for reuse.
Future use of these components in the organization is expected to be heavy. Some of these systems

were designed using functional decomposition and the rest using variations of object—oriented design.

Programs provided by the Software Engineering Group were developed using object—oriented design.

Although reusability was a concern, it can be said that it was a secondary goal for those projects.
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|| Number | Group of Components | System | ABC’s | Lines | Source |

1 XDB_Ada_interface XDB_Ada_interface 2 219 | RAPID

2 ada_components ada_components 27 1510 | RAPID

3 date_formatting_pack | Date Formatter_ Package | 55 3317 | RAPID

4 dec_arithmetic Decimal 61 941 | RAPID

5 Registration Register_A 17 623 UMD

6 Register_.B 19 676 UMD

7 marine_corps.. Calendar_Utilities 105 | 2260 | RAPID

8 -ada_comps Float_Point_Utilities 116 2461 | RAPID

9 String Math 70 1420 | RAPID

10 personel Personel Validation. 27 1583 | RAPID

-Operations_Package :
11 keyed file_ Keyed_File_. 12 817 | RAPID
-io_package 10 Package

12 string_utilities String_Utilities_ 19 985 | RAPID
-Package

13 subtype.con._ Subtype_Conversion_ 67 3236 | RAPID
-utilities Package

14 type_conversion_ Type_Conversion.. 43 2147 | RAPID
-pack Package

15 window io_pack Window 10 _Package 106 | 3903 | RAPID

16 Electr Mail Sys EMS _System 46 3059 |- UMD

17 enumeration._type. Enumeration_Type_ 84 4454 | RAPID

—conversion_pack _Conversion_Package
18 Text _Format Text_Formatter 6 229 | UMD
19 screen_data.. Screen_and_Data 79 4311 | RAPID
-manager_pack Manager_Package

Table 1: Ada Systems Characteristics
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7 Examination of Derived Dendrograms

7.1 Classification of Dendrograms and Reusability Potential

As expected in the analysis, clustering distributes groups of Ada data Binding Components across
the system. In many cases, a set of small groups (subsystems) revolve around a main cluster (system

core).

At this point, an explanation of the output format of the tool, the dendogram, is given. The dendogram

forms a tree structure. A component in the dendogram has three properties associated with it:

o its level in the tree
o the subtree to which it belongs

o the number associated with the cluster ,

We will use the dendogram produced for the system string utilities package (System 12) in figure
4 for demonstration purposes. Note that ABC’s appear with their fully expanded name. There are

nineteen components, four levels, and six unique cluster numbers.

The numbers represent the passes at which components were clustered. The six unique cluster numbers
indicate six iterations in the clustering process. The components with the smallest number were
clustered during the first pass of the clustering. In general, the number ( divided by 100 ) associated
with a cluster at every pass represents the probability that a data binding chosen from the set of
bindings that involve an element of the cluster, is not a binding among the components of the cluster.
Thus, the components leading nonblank position and string_end_position represent the most
tightly bound components in the system with a .50 probability that a binding to or from either one is

to the other.

The number 0 associated with a cluster means that there are no bindings among the elements of the
cluster. Since this number only occurs at the highest level, it also means that there is no actual data
binding to any other components in the system. These components are completely independent of the

system although they may have potential data bindings.

At the next pass of the clustering process, two new clusters were created (at 66). At cluster number 71,

one more cluster containing string equalities and change_character_case_lower was formulated.
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Until this point 9 of the 19 components have been clustered into 4 first level independent cluster as
figure 5 shows. At 75, two already existing clusters were bound together and another group containing
substitute substring and substitute_character was created and bound with an existing group
with cluster number 66 (note that components carrying out similar computations or performing op-
erations at the same data are grouped in the same cluster). This creates two second level clusters

containing 11 components.

The numbers at a particular pass of the clustering process are defined in a different context than _
the numbers at the prior pass (because of the transformation made), and so numbers do not have a
consistent meaning across passes. However, there is a partial ordering based upon bindings, defined
among the components, which can be calculated using the cluster numbers. Thus, 1eading non_blank
position and string.end position are more tightly bound than trailing nonblank position,

string end position, and is_empty_string, etc.

The subtree to which a component belongs defines its clustering subsystem. For example, the
substring.position and character_position cluster is grouped with the components substitute
—substring and substitute_character, creating a clustering subsystem or dendogram subtree. Fi-
nally, all the clusters coalesce into one clustering subsystem, representing the full system. Figure 6

gives a pictorial view of the system clustering.

Examining each of the Ada systems from the reusability point of view, we can analyze the types of
extensions as well as the potentially reusable subsystems that are available for future system develop-

ment.

At the top level, each of the top level clusters is independent. Any of the 0 level components may be
deleted or new ones may be added without changing any of the existing clusters. 0-level components
are there only to support potential user services and from the point of view of the existing system are
not needed. This provides a simple but still fundamental basis for enhancing or deleting the functional-
ity of a system. For example, in figure 5, the function string utilities package. is numeric_string
can be deleted without any effect on other components. Therefore, package size can shrink if that

function is not required.

Also, new components that use any component from the clusters at level 75 and 80 may be exclusively
added to the system to enhance its functionality without worrying about the effects on the other

clusters. This defines a class of easy to make extensions to the system.
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100

75

80

string_utilities_package.fill_string
string_utilities_package.clear_string
string_utilities_package.next_blank_position
string_utilities_package.is_numeric_string

string utilities_package.is_alphabetic_string
string_utilities_package.change_string_case_upper
string_utilities_package.change_character_case_upper

66
string_utilities_package.trailing_nonblank_position
string_utilities_package.string_length
string_utilities_package.is_empty_string

50
string_utilities_package.leading_nonblank_position
string_utilities_package.string_end_position

string_utilities_package.change_string_case_lower
71
string_utilities_package.string_equalities
string_utilities_package.change_character_case_lower
75 |
string_utilities_package.substitute_substring
string_utilities_package.substitute_character
66
. string_utilities_package.substring_position
string_utilities_package.character_position

Figure 5: A System Dendrogram
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reusable

reusable

Figure 6: A View of the Clustered System

Since each of the clusters at level 75 and 80 are also independent of each other and do not use any of
the ABC’s from the 0 level, they themselves form reusable subsystems. Thus, a design that offers a
large number of cluster at the top level provides a large set of independent components that can be

used as the basis for developing other systems.

From the system dendrograms given in the appendices, 2 offer 3 reusable subsystems (e.g. the systems
in Appendices 5 and 6), 4 offer 2 reusable subsystems (e.g. the systems in Appendices 1, 3 and 4, as
well as figure 5) and 1 offer only 1 reusable subsystem (e.g., the system in Appendix 2).

In total, Rapid offers fifteen reusable systems with a total of 31 reusable subsystems. 4 UMD systems

offer 7 reusable subsystems.

7.2 Design Assessment

Design involves a substantial effort to reduce complexity in a system under development. Good

design techniques target for easily understood systems. They also enable reasonable maintenance and
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enchancement efforts. Parnas work [Par72] provides perhaps the most widely accepted criterion for
‘good’ design, information hiding. Many design methodologies have been proposed during the last
two decades around the notions of module strength and coupling. Most of this early work can be

categorized as either hierarchical decomposition or bottom-up.

The essential theme in hierarchical decomposition methods is that systems are decomposed into co-
operating subsystems. If needed then this decomposition process is applied as many times as it is
appropriate. Issues like implementation feasibility, ability to manage the components and component
complexity decide the level of nesting. Functional decomposition, top-down and stepwise refinement
[Wir71] are variations of the same idea. SADT’s, Structured Jackson Design, Information Flow dia-

grams, Structured-Composite Design fall in this category, among others.

On the other hand, bottom~up design techniques embrace the idea that primary designer’s concern
is the development of the elementary system units. Grouping of those units allows composition of
subsystems. Hence, abstractions and virtual machines can be constructed. Use of pseudo—code, and
detailed design notation are two means among others to implement this methodology. In reality, a

mixture of the two methodologies is typically used.

Another technique that has received a lot of attention recently is the paradigm of object—oriented
design. The main idea is that instead of trying to divide the system into components (modules) the
system is structured around objects. These objects are extracted from a model of the real world
problem that needs to be automated. The application of object-oriented design is accompanied by
the use of abstract data types. In contrast with the previous two approaches, this methodology tends

to be more ‘localized’ as far as changes are concerned.

Designing with one of the traditional methods should produce system with dendrograms resembling to
the functional decomposition or grouping that was followed. This is true if we accept that decomposed
subsystems components cooperate a lot (which is a reasonable assumption). Therefore, by looking
at the dendrogram someone should be able to identify major pieces of a dendrogram correspond-
ing to the functional decomposition. Appendix 1 presents such a dendrogram where Ada Binding
Components from date formatter package (System 3) are clustered almost separately than those of
stringutilities_package. In appendix 2, the déndrogram of system 8, float point_utilities is
shown. Ada Binding Components from fixed pointutilities, floating point.utilities and

integer utilities are clustered together. Another group at the same level is the one consist-
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ing of dosutilities and finally the last big cluster in the dendrogram contains elements from

string utilities and character utilities.

A dendogram could be used to get an assessment of the strength and coupling of the various clusters
in the system. From this point of view, we can study the dendogram to gain some insights into the

design.

For any level n, each of the clusters at level n — 1 forms a subsystem usable for building » and higher
level functions. If the binding within a cluster is strong, (i.e. the cluster number is small relative to
the cluster number of the level ») then this cluster demonstrates close coupling among its components
which would be equivalent to a cluster of high strength. This cluster would also be evaluated as having

loose coupling to the other clusters at that level.

If however, the binding within a cluster is weak, (i.e., the cluster number is close to the cluster number
at level n) then the top level components of this cluster do not demonstrate tight coupling which
means that the cluster does not have high strength. Also its coupling to any other component at that
level is weak. This would imply that even simple changes to the system might change the dendogram

structure with regard to the components in this cluster.

In general, it could be said that for any level n of the dendogram, the individual components at level
n are auxiliary. They use clusters at n — 1 as ’core’ components to build on. They add functionality

to the system at level n and may themselves be used as building blocks for level n + 1.

If the number of siblings at every level of the dendogram is small, e.g., at most 2, independent of
the depth or cluster numbers, then a highly nested structure has been encountered. If the number of
siblings at any level is large, then the system has a design that was probably the result of function

decomposition.

Object-oriented systems tend to built on layers. This is the point where they differ from systems
designed using traditional methodologies. It should be also expected that these layers are flat, in the
sense, they do not contain a great deal of language nesting. A procedure call though, may trigger
a nested sequence of procedure calls throughout the system layers. Dendrograms of such systems
have groups of components that carry out semantically related computation tasks through the levels
of abstraction. For example in Appendix 5 computations from different levels of abstraction like

semester.addcourse and studentpack.addcourse belong to the same cluster because they perform

27



operations on the same data. So even though studentpack.addcourse is at the lowest of the call
structure and semester.addcourse is at a higher level of the call structure and yet they are both
in the same cluster. Other such treegrams can be seen in Appendices 3 and 4 (Systems 5, and 7

respectively).

The program whose dendrogram is given in Appendix 3 is multi-layered and subprograms at one
level are based on the operations described by the one immediately below (there are three levels
in total). It is clear that there is isolation of logically cooperating components. For instance cre-
ation related routines are grouped together. The same happens with insertion and printing routines.
This is also clear as well in the Appendix 4 where components from packages character utilities
and string.utilities performing logically similar operations (for example uncapitalize, make
Jlowercase) cluster together. To some extent in the same dendrogram separation of layers is also
distinct. Components of low level implementation (i.e. integer_utilities) cluster at level below
40. Elements from string utilities and character utilities cluster mostly at level range 45-75.

ABC’s of calendar_utilities cluster at the highest level (range 70-95).

System 5 was rewritten using different internal data structures resulting in System 6. It is worth
mentioning that the dendrogram for the new program (as shown in appendix 5) is substantially

identical to the one obtained from the original program (appendix 3).

In conclusion, the examination of dbt tool produced dendrograms for the provided systems revealed
insight into the design techniques used in the development process. Clusters of systems designed
with object-oriented methods contain components carrying out semantically related computations.
Systems designed using traditional decomposition techniques provide clusters with a similar layout to
that of the system decomposition. The dendrogram also reveals the main system control thread that
follows the hierarchical decomposition and is a common characteristic of systems designed with such

techniques.

8 Sumimary and Status of the Tool

A tool for Ada source reusability and design assessment was presented in this paper. The central
concept used was that of data bindings. Ada data Binding Components were defined. Data Binding

metrics were also proposed for measuring Ada inter-component interactions. Mathematical taxonomy
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was utilized to present structural layout of systems called dendrograms.

The design of the tool was discussed briefly and the major problems encountered were described.
The main challenge for the design was to isolate as much information as needed from of the source
code of an Ada system. The issue of intermediate program representation particularly oriented for

measurement purposes need further research.

Dendrograms can be used to isolate reusable pieces of code and understand ways packages can be
built on. Non—clustered code could be extracted to simplify.and lessen compilation costs which can

be expensive in Ada environments.

Dendrograms could be also used as an assessment tool by designers to verify the composition of their
system. It is proposed that according to the type of design followed dendrograms should present

certain characteristics.

A prototype of the dbt has been implemented. Ada data Binding Components of both levels are
identified and all sequential aspects of the language have been developed. Appendix 6 shows the
dendrogram of System 6 for the lower level abstraction routines of package courselistpack integrated
into a second level ABC. The extension to the concurrent elements of the language is straightforward.
The tool is limited with respect to dealing with overloading but serves as a beneficial prototype. The
tool is being integrated into the TAME [BR88] and CARE [BC88] systems under development at
the University of Maryland.
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Appendix 1

Dendrogram:
100
(]
date_formatter_package.valid_date date_formatter_package.valid_date
date_formatter.package.valid_date string_utilities_package.fill_string
string_utilities_package.clear_string string_utilities_package.next_blank_position
string_utilities_package.is_numeric_string string. utilities_package.is_alphabetic_string
80
string utilities_package.change_string_case_lower
75
string_utilities_package.substitute_substring string _utilities_package.substitute_character
66
string_utilities_package.substring_position string_utilities_package.character_position
71
string_utilities_package.string_equalities string._utilities_package.change_character_case_lower

string_utilities_package.change_string_case_upper string_utilities_package.change_character_case_upper
96
80
75
string_utilities_package.string_end_position string_utilities_package.leading_nonblank_position
66
string_utilities_package.trailing_nonblank_position string_utilities_package.string_length
string_utilities_package.is_empty_string
95
date_formatter_package.valid_date
date_formatter_package.numeric_date_string_ to_full_date_string
date_formatter_package.numeric_date_string to_abbreviation_date_string

92
date_formatter_package.full_month_position
91
20
date_formatter_package.is_leap_year
85
83
date_formatter_package.date_record_to_abbreviation_date_string
date_formatter_package.create_year string
date_formatter_package.date_record_to_full_date_string
84
date_formatter_package.create_two_digit_string
date_formatter_package.numeric_date_to_numeric_date_string
date_formatter_package.date_record_to_numeric_date_string
84
date_formatter_package.numeric_date_to_full_date_string
date_formatter_package.numeric_date_to_abbreviation_date_string
82
date_formatter_package.get_day_and_month_from_numeric_date
date_formatter_package.numeric_date_to_date_record
89 )
87
84
date_formatter_package.full_date_string_to_numeric_date
83

date_formatter_ package.full_date_string_to_numeric_date_string
date_formatter_package.get_string_segment_bounds
date_formatter_package.full_date_string_to_abbreviation_date_string
date_formatter_package.full_date_string_to_date_record
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81
date_formatter_package.abbreviation _date._string to_numeric_date
date_formatter_package.date_record_to_numeric_date
80

date_formatter_package.get_numeric_date_value
date._formatter_package.numeric_date_string_to_numeric_date

86
date_formatter_package.abbreviation_date_string_to_numeric_date_string
83

date_formatter_package.abbreviation_date_string_to_full_date_string
date_formatter_package.abbreviation._month_position
date_formatter_package.abbreviation_date_string to_date_record
88 .
date_formatter_package.set_current_year_string_and_valid_year_range
date_formatter_package.numeric_date_string_to_date_record

77
date_formatter_package.is_numeric_string
64
date_formatter_package.valid_date
date_formatter_package.is_day_ in_month
Appendix 2
Dendrogram:
100
91
string_utilities.strip_leading
89
50
character_utilities.is_control string utilities.is_control
88
string_utilities.right_justify
85
string_math.is_whole_number
80
string_ utilities.embedded._space
75
string_math.is_comma_separated string_utilities.scan_for
87
string utilities.allow_other_characters
85
character_utilities.is_equal
82
string_ utilities.location.of string_math.place_commas string_math.hundreds_place
83
string_utilities.is_equal
80
string_utilities.number_of string_utilities.disallow_other_characters
86
string_utilities.replace
83
string_math.place_decimal_point
78
string_math.add
76
string_math.multiply string_math.make_number
85
string_.math.remove_decimal_point string_math.remove_commas
81
string.math.remove_dollar_sign string_utilities.strip
80
string utilities.is_null
66
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character_utilities.is_null string_utilities.left_justify
50
character_utilities.is_graphic string. utilities.is_graphic
50
character_utilities.is_alphanumeric string. utilities.is_alphanumeric
88
85
80
string utilities.make_lowercase
60
string utilities.uncapitalize character_utilities.make_lowercase
83
string_utilities.is_alphabetic character_utilities.is_alphabetic
75
character_utilities.lowercase
66 .
character_utilities.is_uppercase string_utilities.is_uppercase
87
85
character_utilities.uppercase -
60
string_utilities.is_less_than character_utilities.is_less_than
60
string_utilities.is_greater_than character_utilities.is_greater_than
83
80
75
string_utilities.is_digit character_utilities.is_digit
75
string _utilities.is_special character_utilities.is_special
75
string_utilities.is_lowercase character_utilities.is_lowercase
80
string_utilities.make_uppercase
60
string_utilities.capitalize character_utilities.make_uppercase

string._math.divide string_math.subtract string_math.place_dollar_sign
string_utilities.allow_only_characters string_utilities.number_of

string_utilities.replace string utilities.uncapitalize string_utilities.capitalize
string_utilities.make_lowercase string utilities.make_uppercase string_utilities.centered
character_utilities.lowercase_of character_utilities.uppercase.of character_utilities.index_of
character_utilities.image_of character_utilities.value_of

Appendix 3

Dendrogram:
100
studentpack.name
50
semester.print studentpack.print courselistpack.print
85
75
semester.addcourse studentpack.print_name
70
semester.print_name register
50
studentpack.addcourse courselistpack.insert
81
studentpack.id
69

semester.dropcourse
50



studentpack.dropcourse courselistpack.delete
75
courselistpack.create
57
studentpack.create semester.enroll

Appendix 4

Dendrogram:

100

0

60
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calendar_utilities.short_month_name_is calendar_utilities.long.month_name_is
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