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Software Engineering Research

Software engineering researchers are building tools, defining methods and models.
However, there are problems with the nature and style of the research. The research is
typically bottom-up, done in isolation so the pieces cannot be easily logically or
physically integrated. A great deal of the research is essentially the packaging of a
particular piece of technoiogy with little indication of how the work would be integrated
with other pieces of research. The research is not aimed at solving the real problems
of software engineering, i.e., the development and maintenance of quality systems in
a productive manner. The research results are not evaluated or analyzed via
experimentation or refined and tailored to the application environment. Thus, it cannot
be easily transferred into practice. Because of these limitations we have not been able
to understand the components of the discipline as a coherent whole and the
relationships between various models of the process and product.

What is needed is a top down experimental, evolutionary framework in which research
can be focused, logically and physically integrated to produce quality software
productively, and evaluated and tailored to the application environment. This implies
the need for experimentation, which in turn implies the need for a laboratory that is
associated with the artifact we are studying. This laboratory can only exist in an
environment where software is being built, i.e., as part of a real software development
and maintenance organization. Thus we propose that Software Engineering
Laboratory (SEL) type activities exist in all organizations to support software
engineering research.

In this paper we will try to describe the SEL from a researcher’s point of view. Jerry

Page and Frank McGarry will discuss the corporate and government benefits of the
SEL. 1 will try to focus my discussion on the benefits to the research community.

The SEL as a Research Laboratory

The SEL is a laboratory that allows us to understand the various software processes,
products and other experiences, build descriptive models of them, understand the
problems associated with building software, develop solutions focused on the
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problems, experiment with the proposed solutions and analyze and evaluate their
effects, refine and tailor these solutions for continual improvement and effectiveness
and enhance our understanding of their effects, and build relevant models of software
engineering experiences.

The SEL has been in business for over 15 years and, based upon our experiences, its
activities have evoived over time. In this section, | will describe the activities as they
progressed over three phases.

The first phasel will call the understanding phase because we worked on
understanding what we could about the environment and measurement. During this
period we measured what we could, used available models to explain the
environment and our behavior, and built descriptive baselines and models typifying
our environment.

In retrospect we made several mistakes. We collected too much data, i.e., because we
did not know what was important we tended to collect all kinds of data hoping they
would give us insights into the environment. We often blindly applied models and
metrics without understanding the subtle assumptions and whether they were relevant
in our environment. In a sense, we tried to evaluate things before we had built a deep
understanding of what we were evaluating. We finally began to understand that
measurement needed to be based upon models and goals. We established goals and
a mechanism for generating measures based upon those goals, the first, primitive
version of the Goal/Question/Metric Paradigm. This provided an informal approach to
organizing our data. Based upon our goals, we began to build environment specific
models by accumulating knowledge on individual projects and building baselines
across multiple projects. Eventually we developed descriptive models that
characterized the environment. These models included models of resources, defects,
and product characteristics.

Once we had an understanding or characterization of the environment and the
projects we were developing, we were able to begin the process of evaluation by
comparing new projects against our baselines. This allowed us to proceed to phase
two where the focus was on improving the process, product, and environment.
During this phase, we continued to build up our data base of baselines and models,
but we also evaluated and fed back information to the project. Many of these early data
models were informal. The data was saved in a data base but the models existed
mostly in documents. We began to experiment with various technologies to
understand their effect, i.e. how they changed the baselines or the models we had. In
order to provide a learning process across projects that would allow us to take
advantage of what we had learned and evolve, we developed the Quality
Improvement Paradigm, which is based upon an evolutionary, experimental approach
to software improvement based upon both project and organizational feedback loops.
The Goal/Question/Metric Paradigm continued to evolve to recognize different types of
goals and questions and take advantage of the multi-project perspective. We began
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- formalizing process, product, knowledge and quality models.

This need for formalization within the context of the Improvement Paradigm led to the
concept of packaging models of our experiences so they were reusable on other
projects During this third phase we worked on choosing potentially reusable
experiences, recognizing what was appropriate and relevant for the SEL. We began
studying notations and mathematical formalisms for defining experiences.

There are several examples of current research projects in packaging experiences.
For example, we are working on a project characterization model that allows us to
recognize project patterns so that we can predict which projects look like the one we
are working on. This allows us to package data for use as cost estimation models
based upon our relevant past history [Briand, Basili, Thomas]. Having recognized that
most experiences need to be modified for use, we have been defining models of
tailorable experiences. For example, we are working on a tailorable test method
[Basili, Martschenko, Swain]. The method allows one to choose the appropriate test
techniques based upon the defect history of similar projects and the success rate of
the techniques in that environment. Another example is the development of a model or
reference architecture for different types of software factories [Basili, Caldiera and
Cantone]. We are defining process models for reusing experience. We have
developed a reuse- oriented evolution model [Basili and Rombach] and are working
on integrating experience models [Oivo and Basili]. We have developed the concept of
an Experience Factory, whose goal is to package software experiences and provide
them to projects upon demand and have integrated the concept with an evolved QIP
and GQM.

Packaging
SEL Ada Process

SEL Cleanroom Process
SME

Managers Handbook
Experience Factory

Improving

Methodology Evaluation Ada

Cost Model Analysis O0D

Test Technique Analysis Cleanroom
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Resource Baselines
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Figure 1. Evolution of Measurement/Studies in the SEL
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Figure 1 represents some of the studies we performed and the hierarchy of the
process, one phase based upon the other. That is, there was an understanding
process (Phase 1), followed by an improving process (Phase 2), followed by a
packaging process (phase 3). You can't improve until you understand, and you can't
package until you can assess and improve. We are still understanding and trying to
improve; these activities, along with packaging, will go on forever,

The Research Framework Concepts

We have evolved to a framework [Basili b] that is based on three basic concepts, each
of which is itself evolving:

0 The ity Improvement Paradi (QIP), an evolutionary improvement paradigm,
based upon the scientific method, tailored for the software engineering,

0 The ion ic (GQM) paradigm, an approach for establishing project,
corporate, and research goals and a mechanism for measuring against those goals,

0 The rien » an organization that supports research and development
by studying projects, developing and refining models, and supplying them to projects
for further analysis and refinement, '

The Quality Improvement Paradigm consists of the following steps:

o Characterize the current project and its environment with respect to a variety of
models.

o Set the quantifiable goals for successful project performance and improvement.

0 Choose the appropriate process mode! and supporting methods and tools for this
project.

0 Execute the Processes, construct the products, collect and validate the prescribed
data, and analyze it to provide real-time feedback for corrective action.

0 Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.

The research emphasis is on taking each of these issues associated with the QIP, (e.g.,
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characterizing, goal setting, choosing process, executing, analyzing, and packaging),
and formalizing and integrating them. Each of these steps has evolved over the years.
We have been building models of characterization. For example, what are good
models that allow me to recognize what kind of software project | have and what
projects are similar? Based on data, we are using pattern recognition techniques to
recognize where to find the most appropriate kinds of experiences related to the
current project [Briand, Basili, Thomas].

Goal setting has become a process of integrating models. A goal typically takes the
form of analyzing some form of object from some perspective. | need models of both
the object of study and the various perspectives of interest on that object.

We want to choose processes. A key issue here is that process is a variable; that |
need to select, manipulate and change processes based on the characterization of the
project and the environment and the goals established for this particular project.

Execution needs automated support. An automated system, SME, has been
developed to support the accessing of data in a packaged form. The analysis and
packaging issues are the major focuses of this paper.

The Goal/Question/Metric Paradigm is a mechanism for defining and interpreting
operational and measurable software goals. Goals may be defined for any object, for a
variety of reasons, with respect to various models of quality, from various points of
view, relative to a particular environment. A particular GQM mode! combines models of
an gbject of study, e.g., a process, product, or any other experience model and gne or
more _focuses, e.g., models aimed at viewing the object of study for particular
characteristics, such as models of cost, correctness, defect removal, changes,
reliability, user friendliness, etc. This implies that there are models of these quality
perspectives developed and available for use at anytime.

These models can be analyzed from a point of view, e.g., the perspective of the person
needing the information, which orients the type of focus and when the interpretation of
the information is made available and for any purpose, e.g., characterization,
evaluation, prediction, motivation, improvement, which specifies the type of analysis
necessary.

The result is a GQM model relative to a particular environment. Environments are
distinguished based upon a variety of factors, e.g., problem factors, people factors,
resource factors, process factors, etc.

Experimental Approaches

Given a form of the scientific method, in the guise of the QIP, a mechanism to generate
research hypotheses, in the guise of the GQM, what kinds of experimentation can we
perform? The chart in Figure 2 offers four classes of studies that we can and have
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performed. The approaches can be characterized by the number of teams replicating
each project and number of different projects analyzed.

| #Projects
1
I One | More than
I | one
I I |
# of | One | Single Project | Multi-Project
| | (Case Study) | Variation
Teams I
| I I
per | More than | Replicated | Blocked
Project | one | Project | Subject-Project

Figure 2. Classes of Studies and Scopes of Evaluation

The single project case study is where most people begin. There is a project and
someone has decided to study it. The results can provide some insight into project
development in the environment.

A multi-project variation type study involves the measurement of several projects
where factors, such as a method, can be varied across similar type projects. This
allows the experimenter to study the effects of variations to the extent that the
organization allows them to vary on different projects. In fact, that's literally what we do
in the SEL. We have a large number of projects, we have standard baselines of how
things should happen, and we start to perturb them by making changes and studying
the effects of those changes.

The replicated project study involves several replications of the same project by
different subjects. Each of the issues studied is applied to the project by several
subjects but each subject applies only one of the technologies. It permits the
experimenter to establish control groups. :

The blocked subject-project study allows the examination of several factors within the
framework of one study. Each of the issues studied is applied to a set of projects by
several subjects and each subject applies each of the technologies under study. It
permits the experimenter to control for differences in the subject population as well as
study the effect of the particular projects.



There are two problems with the controlled types of experiments: (1) they are rather
expensive and (2) if done for large pieces of software, for example, one year duration
projects, they are hard to control, especially over several replications. Therefore,
even though these types of experiments generate stronger confidence in the results
than the non-controlled type experiments, they must be performed on small projects so
the results do not scale up. If, however, these experiments are run on a small scale
achieving reasonable statistical results, then there is motivation to experiment with the
technologies on a larger scale in either a case study or a multi-project variation.
Combining the resuits of the controlled experiment and the large- scale case study or
multi-project variation, we can gain confidence in the validity of the experimental
resuits.

Itis clear in the SEL that we are avid believers in experimentation. We do not believe
that any technology, method, tool, process model, etc. works under all circumstances.
Everything has limits, areas where it works well or poorly. If we are dealing with
technologies, we know they have limits. Experimentation is important in
understanding those limits.

Single Project | Multi-Project

(Case Study) | Variation
Independent V&V | Effect of Methodology
Cleanroom Process | Resource Model Studies

Defect Analysis Studies
Ada/Object Oriented Design
Code Reuse in Ada/Fortran

Replicated | Blocked
Project | Subject-Project
Effect of Methodology | Reading vs. Testing

Cleanroom Process |
Ada/O-O Design |

Figure 3. Example Classes of Studies

Figure 3 contains several example studies we have performed in the SEL. These
studies cut across various experimental classes. When we have found something
effective as a case study, we eventually turn it into a multi-project variation because it
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is effective for the environment.

An Example Set of Studies

As an example of an effective process with which we have performed multiple types of
experiments, consider the Cleanroom approach to software development, as
suggested by Harlan Mills. We first ran a replicated project study at the University of
Maryland that showed that the approach was very effective. We then decided to run a
case study here in the SEL, which again was successful. We have since begun two
new projects using the approach and will eventually have enough projects for an
analysis based upon multi-project variation.

The key elements of the Cleanroom Process [Dyer], include a mathematically-based
design methodology which includes: function specification for programs, state
machine specification for modules, reading by stepwise abstraction, correctness
demonstrations when needed, and top-down development. The impiementation is
done without any on-line testing by the developer. There is statistically-based,
independent testing, based on anticipated operational use. Testing is done from a
quality assurance orientation.

The replicated Cleanroom study had as its goals to evaluate the Cleanroom process
with respect to its effects on the process, product and developers relative to differences
from a non-Cleanroom process [Selby, Basili, Baker]. The experiment was run at the
University of Maryland with 15 three-person teams,10 using Cleanroom. The project
was an electronic message system (~ 1500 LOC). The teams were permitted 3 to 5
test submissions and the data coilected consisted of background and attitude surveys,
on-line activities of the developers, and test results.

The effect of the Cleanroom approach on the process was that the Cleanroom
developers (1) felt they more effectively applied off-line review techniques, while
others focused on functional testing, (2) spent less time on-line and used fewer
computer resources, and (3) tended to make all their scheduled deliveries.

The effect of the Cleanroom approach on the product with regard to static properties
was that the products developed using the Cleanroom approach had less dense
complexity, a higher percentage of assignment statements, more global data, and
more comments. With regard to operational properties, Cleanroom products more
completely met requirements and had a higher percentage of test cases succeed.

Based on these results, we decided that it was worth running a case study in the SEL
to see if the approach scaled up and how it worked with changing requirements. In
applying the approach in the SEL, you will see an application of the QIP with regard to
improving process. We begin with the characterization step which asks the question,
"what relevant models exist that are available for reuse?" There were three models:
the standard SEL model, which defines how software gets developed in the SEL in a
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FORTRAN environment; the IBM FSD Cleanroom model that was applied on a prior
project, and the experimental model we used for the replicated project.

The SEL goals were to characterize and evaluate the Cleanroom approach in general,
and specifically with regard to changing requirements. In prior applications,
Cleanroom had been used on projects where the requirements were basically fixed at
the beginning of the study. One of the questions we were often asked after the
replicated project study was "would this technology survive in an environment with
changing requirements?" Since we had not experimented with changing
requirements, we could not answer the question with much confidence.

What had been learned from the IBM/Cleanroom model application was the basic
process model, methods and techniques and that the process very effective in the
given environment. From the UoM/Cleanroom model application, we learned that no
developer testing enforces better reading, the process is quite effective for small
projects, formal methods are hard to apply and require skill, and there may be
insufficient failure data to effectively measure reliability.

Based upon the existing models, our goals, and the lessons learned from prior
applications of Cleanroom, we defined an initial SEL Cleanroom process model. We
stole what was most effective from prior applications; for example, the training was
consistent with the University of Maryland course and we emphasized reading by at
least two reviewers.

Because this was a real project, and there was concern on the part of some of the
developers about the effectiveness of reading, e.g., that you needed to test certain
algorithms, we allowed back-out options, e.g., you could request permission to unit
test certain types of algorithms. These back-out options were never used, but they did
provide a comfort level for the developers. When we didn't know how to handle some
aspect of the approach in this environment we applied the standard SEL process
model as long as it didn't conflict in principle with what we were trying to do. We
monitored and made changes to the process model in real-time. We wrote lessons
learned, and we redefined the process for the next time out.

Some of the major positive results of the application of Cleanroom in the SEL include:
the approach scales up to a 30,000 SLOC project, it can be used with changing
requirements, productivity increased by about 30%, the failure rate during test reduced
to close to 50%, there was a reduction in rework effort (95% of the fixes, as opposed to
58%, took < 1 hour to fix), only 26% of faults found by both readers (implying two
readers are important), there were effort distribution changes, e.g., more time in design
and 50% of code time spent reading, code appears in library later than normal and
more like a step function, there was less computer use by a factor of 5.

Negative lessons learned include the fact that better training was needed for the
methods and techniques. The kind of training we had at the university wasn't good
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enough. For example, we provided training where the examples were stacks, etc.
This was not appropriate for the application. (One thing we have done on the second
two Cleanroom projects is reuse parts of the first project as examples in the training.)
We needed better mechanisms for transferring code to testers and the testers need to
add requirements for output analysis of code. As expected, we did not have enough
error data (with a 30,000 line project) to seed the reliability model so there was no
payoff in reliability modeling in the SEL.

A side effect of this project was that it generated much more interest in improving the

requirements. This requirements problem existed independent of Cleanroom, but the
approach exposed the problem. So there has been a genuine push in having better

defined requirements.

These results were for a 30,000 line project and a particular application. Is that the
size limit for the Cleanroom process? Suppose we try a 100,000 line project ... what
are the limits of this particular technology? When does it start to fall apan? Even if it
doesn't work for a given size project, that's okay ... we now understand the bounds on
that technology. It should not be expected that a technology works under al
circumstances, every time, and every place. We have to understand as a community
that technology has limits and that we have to select, and modify processes
appropriate for the situation.

The next two experiments will emphasize the application of the formal models more,
we are using the box structure approach, a change in the application domain for one
project, and a scale up to a 100 KLOC for the other project.

This has been an example of the Quality Improvement Paradigm in terms of a
particular process, and in terms of experimental design moving from controlled
experiments to case studies in a real environment, and moving from case study to
multi-project environment.

And we continue to evolve.

Packaging the Experience

We have just discussed a form of packaging, the documentation of the Cleanroom
process model. We currently have a working document that represents the model as
we understand it today. But it will change as we learn!

Packaging experience requires the continual accumulation of evaluated experiences
(learning) in a form that can be effectively understood and modified (experience
models) into a repository of integrated experience models (experience base) that can
be accessed and modified to meet the needs of the current project (reuse).

Systematic learning requires support for recording experience off-line generalizing
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and tailoring of experience formalizing experience. Off-line is a key word here.
Packaging cannot be done as part of a project development. Someone cannot
perform this analysis and buiid models at the same time they are building software.
There needs to be a separate organization, either physically or logically separate.

Packaging useful experience requires a variety of models and an experience base.
The models require formal notations that are tailorable, extendible, understandable,
flexible and accessible. An effective experience base must contain accessible and
integrated set of analyzed, synthesized, and packaged experience models that
captures the /local experiences.

The Experience . Factory is a logical and/or physical organization (separate from
the project organization) that supports project developments by analyzing and
synthesizing all kinds of experience models acting as a repository for such experience
supplying that experience to various projects on demand. It packages experience by
building informal, formal or schematized, and productized models and measures of
various software processes, products, and other forms of knowledge via people,
documents, and automated suppont. :

There are a variety of software engineering experiences that we can package:
resource baselines and models, change and defect baselines and models, product
baselines and models, process definitions and models, method and technique models
and evaluations, products, lessons learned, quality models, etc. In the SEL, they exist
in the form of standards, policies, tools. The documents range from sets of lessons
learned to a manager’'s handbook.

There are many forms of packaged experience. We can use mathematical equations

defining the relationship between variables, e.g., Effort = a*SizeP. We can present
raw or analyzed data in the form of histograms or pie charts, e.g., % of each class of
fault. We can plot graphs defining ranges of “normal”, e.g., graphs of size growth over
time with confidence levels. We can write specific lessons learned associated with
project types, phases, or activities, e.g., reading by stepwise abstraction is most
effective for finding interface faults, or in the form of risks or recommendations, e.g.,
definition of a unit for unit test in Ada needs to be carefully defined. We can create
models or algorithms specifying the processes, methods, or techniques, e.g., an
SADT diagram defining Design Inspections with the reading technique a variable
dependent upon the focus and reader perspective.

For example, in the SEL we have a whole set of equations that define the relationships
between a variety of variables [Basili, Panlilio-Yap]. Management can use these
equations to understand, predict, and evaluate. In the SEL, example packaged
relationships include:

Effort = 4.37 + 1.43devlines

Effort = 5.5 + 1.5newlines
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Docpages = 99.1 + 30.9 devlines
Numruns = -108 + 151devlines
For projects under 50 KLOC we have:
Effort = .877 + 1.5newlines
while for projects over 50 KLOC we have:
Effort = 66.9 + .003 numruns
We have been able to demonstrate that methodology favorable impacts software cost
and quality but cumulative complexity unfavorable impacts these factors [Basili a].

We have fault profiles that allow us to compare and analyze environments and
projects. For example, what percent of faults of a particular type, based on a particular
classification scheme, occur during a standard FORTRAN development. Are the
percentages the same for an Ada development? We have been able to show that Ada
reduces the percent of interface faults, but not by the amount one might expect based
upon the ability of Ada compilers to check for interface faults [Brophy).

Conclusions

Based upon our experiences, we need a set of experience factories or SELs, each
focused on packaging local experiences by building and tailoring local models,
integrating technologies, studying scale-up, building experience bases, and
developing automated aids.

Itis still hard to answer questions like: how big should an SEL be? should the
experience factory only be domain specific, should it focus on a homogeneous
environment? ‘

If the SELs are focussed on homogeneous environments, we will need to integrate
these local experience factories into a high level experience factory that abstracts from
local experiences, looks for patterns across environments, and generates the basic
models of the science. But how is this accomplished?

What we can do now is take advantage of the experimental nature of software
engineering. Processes, products, and environments can be measured and can be
used to support practical development and research. The integration of the
Improvement Paradigm, the Goal/Question/Metric Paradigm, and the Experience
Factory Organization can provide a framework for both development and research.

Based upon our experience, it helps us derive descriptive models of our experiences,
understand our experiences and our problems, evaluate and learn from our
experiences, and build effective prescriptive models of our experiences and our
quality objectives. It can and should be applied today and evolve with technology.

Taking advantage of the experimental nature of software engineering has provided a
winning situation for research and development. From a researcher’s perspective the
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SEL has been a smashing success. Its evolution has been slow, we have made many
mistakes, but we have learned a lot.You don’t have to make the same mistakes we
did, you can learn from our experiences.
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