Towards Automated Support for Extraction of Reusable
Components

S. K. Abd-El-Hafiz

V. R. Basili

G. Caldiera

Institute for Advanced Computer Studies,
Department of Computer Science,
University of Maryland, College Park, MD 20742, U.S.A.

Abstract

A cost effective introduction of software reuse tech-
niques requires the reuse of existing software developed
in many cases without aiming at reusability. This pa-
per discusses the problems related to the analysis and
reengineering of existing software in order to reuse il.
We introduce a process model for component extrac-
tion and focus on the problem of analyzing and qual-
ifying software components which are candidates for
reuse. A protolype lool for supporting the exlraction
of reusable components is presented. One of the com-
ponents of this tool aids in understanding programs
and is based on the functional model of correctness.
It can assist software engineers in the process of find-
ing correct formal specifications for programs. A de-
tailed description of this component and an example to
demonstrate a possible operational scenario are given.

1 Introduction

Successful reuse of software resources can in-
crease the overall quality and productivity in software
projects by a large factor. Some of the problems that
still limit software reuse are:

1. The difficulty of understanding a given software
product in the absence of its original developers.

2. The scarce availability of reusable objects, even
though there is a tremendous amount of available
software.

3. The difficulty of retrieving, from a largé data
base, software components which can best match
the given semantics requirements.

4. The lack of extraction and adaptation techniques
that facilitate the reuse process.

CH3047-8/91/0000/0212/501.00 © 1991 IEEE

212

New process models for software development
should substitute the existing ones that are not de-
fined to benefit from or support reuse. These new
models should take advantage of reuse, introduce more
reusable resources, and overcome the existing prob-
lems that limit reuse.

Developing reusable components is generally more
expensive than developing specialized code, because
of the overhead of designing for reusability and main-
taining the component repository. A rich and well-
organized catalog of reusable components is the key
to a successful component repository and a long term
economic gain. Moreover, such a catalog will not be
available to an organization unless it can reuse the
same code it developed in the past. Mature applica-
tion domains, where most of the functions that need to
be used already exist in some form in earlier systems,
should provide enough components for code reuse. For
example, Lanergan and Grasso found rates of reuse of
about 60% in business applications[l]. A technique
for extracting reusable components can improve pro-
ductivity since it provides the software developer with
components that are ready for reuse or need minor
adaptation. Moreover, it can improve the software
quality as it helps in better understanding these com-
ponents during the extraction process.

In this paper, we use a process model[2] that serves
not only to enhance the development of the project
under consideration but also to organize and plan for
better reuse technology in future projects. This model
splits the traditional life-cycle model into two separate
organizations, the project organization and the expe-
rience factory. In this framework we introduce a pro-
cess model for component extraction and focus on the
problem of qualifying candidate software components
for reuse.

A prototype tool constituting one of the elements
of an integrated system for extracting reusable compo-




nents is described. This prototype tool helps in under-
standing programs by deriving their specifications and
is based on the functional model of correctness(3, 4].
The tool could be applied tu program fragments as
well as to complete programs and it helps in simul-
taneously checking syntax, static semantics, and gen-
erating specifications. We conclude the paper with
an example to demonstrate a possible operational sce-
nario of the tool.

2 Organizing the component extrac-
tion

Currently, all reuse occurs in the project develop-
ment, where there is a completion deadline and the
top priority is to deliver the system on time. This
makes the objective of developing reusable software,
at best, a secondary concern. Besides, project person-
nel cannot recognize the pieces of software appropriate
for other projects.

We make use of a reuse-oriented model based on
two separate organizations[2]:

e The project organization: Its goal is to deliver
the systems required by the customer. The pro-
cess model can be chosen based upon the charac-
teristics of the application domain, taking advan-
tage of prior software products and experience.

o The experience factory: It supports project
development by analyzing and synthesizing all
kinds of experience, acting as a repository for such
experience, and supplying that experience to var-
jous projects on demand. Within the experience
factory, we can identify various sub-organizations.
One of them is the component factory which
develops reusable components, extracts reusable
components from existing systems, and general-
izes or remodels any previously produced compo-
nent.

Different conceptual architectures can be used for
the component factory[5]. At one extreme there is the
clustered architecture in which all software develop-
ment activities are concentrated in the project organi-
zation and the component factory is dedicated only to
processing already existing software. At the other ex-
treme there is the detached architecture in which the
development activities are concentrated in the com-
ponent factory and the project organization performs
only high-level design and integration. The clustered

213

architecture is much closer to the way software is cur-
rently implemented. The development of the compo-
nents is probably faster in the project organization
since there is less communication overhead and more
direct pressure for their delivery. On the other hand,
the components developed are more context depen-
dent. In the detached architecture, there is more em-
phasis on developing general purpose components in
order to serve several project organizations more ef-
ficiently. On the other hand, there are more chances
for bottlenecks and for periods of inactivity due to the
lack of requests from the projects. The detached ar-
chitecture is probably better suited for environments
where the practice of reuse is formalized and mature.
An organization that is just starting with reuse should
probably instantiate its component factory using the
clustered architecture and then, when it reaches a suf-
ficient level of maturity and improvement with this
architecture, start implementing the detached archi-
tecture in order to continue the improvement.

In any case, the extraction of reusable components
is a characteristic activity of the component factory.
The next section will present in detail the features of
this activity, in the framework of a component fac-
tory. Caldiera and Basili[6] have proposed a process
model for the extraction of reusable components in
two phases: the identification phase and the quali-
fication phase (see figure 1). The necessary human
intervention in the second phase is the main reason
for splitting the process in two steps. The first phase,
which can be fully automated, reduces the amount of
expensive human analysis needed in the second phase
by limiting analysis only to components that really
look worth considering.

3 The extraction process

3.1 Identification

Program units are automatically extracted and
made to be independent compilation units. These in-
dependent units are measured according to observable
properties related to their potential for reuse in three
steps. These steps are summarized here:

1. Definition of the reusability attribute model:
A set of automatable measures that captures the char-
acteristics of potentially reusable components is de-
fined along with acceptable ranges of values for these
metrics.

2. Extraction of components: Modular units (e.g.
C functions, Ada subprograms or blocks, or Fortran
subroutines) are extracted from existing software and



completed so that they have all the external references
needed to reuse them independently.

3. Application of the model: The current reusabil-
ity attribute model is applied to the extracted, com-
pleted components. Components whose measures are
within the model’s range of acceptable values become
candidate reusable components to be analyzed in the
qualification phase.

A detailed description of the component identifica-
tion phase, a definition of a basic reusability attribute
model, and an application of this model on several
case studies using a computer-based system have al-
ready been discussed in the literature[6].

Component
1 Identification
|
Existing P
e RS
Apply Model
Components
Reposito
PO ry Candidates Component
Qualification
SEcciE
Test
Qualified
Reusable Components m
Feedback

Figure 1: Component extraction.
3.2 Qualification

The extracted components are analyzed in order

to understand them and record their meaning. The
components are packaged by associating with them a
reuse specification, a significant set of test cases, a set
of .attributes based on a reuse classification scheme,
and a set of procedures for reusing the component.
This phase consists of following steps:
1. Formal specification: A precise description of
what the component does is generated and some as-
surance is obtained that the component meets the re-
quirements.

Since formal specifications are based on mathemat-
ical notations, they help in understanding the soft-
ware by removing the ambiguities which might be in-
troduced by any informal notation. Formal specifi-
cations are different from the programs they specify
since they only express the behavior of the program

214

without stating how the program derives this behav-
ior. So, formal specifications are the basis for selecting
and storing software components as they improve un-
derstandability and assist in producing more reliable
and higher quality software. Since the specification of
complex tasks may in itself be complex, the process
of specification construction must be formalized and
supported by automated tools. In the next section, we
will describe a prototype tool that aids in understand-
ing programs. This tool provides automated support
for deriving the functional specifications of programs
and proving their partial correctness. In other words,
it helps in proving that the program is consistent with
its specification but does not prove its termination.

Formally specifying a software component and
proving its partial correctness do not mean that the
component will pass this step. There are several other
properties that should exist in the candidate compo-
nents for the sake of understandability. We must not
ignore other important features such as proper docu-
mentation, use of meaningful variable names, and the
structured style of programming. The informal infor-
mation that the software engineer deals with cannot be
ignored relying on the fact that the automated spec-
ifications tools will supplement those features. The
informal information is important in explaining some
intuitive ideas that are hard to explain using formal
specifications.

Since we need both formal and informal informa-
tion, a domain expert is needed to perform the specifi-
cation step. This expert extracts the formal specifica-
tion of each candidate reusable component, assisted by
the automated tools available, and examines the other
informal features that cannot be judged using auto-
mated tools. Components that are not relevant, not
correct, or whose functional specification is not easy
to extract are discarded. The expert reports reasons
for discarding candidates and other insights that will
be used to improve the reusability attributes model.

2. Testing: Test cases are generated, executed and
associated with components. Deriving the functional
specification and proving the correctness of a pro-
gram do not mean that it will not fail when compiled
and/or executed. This might simply be due to the
fact that termination of the program has not been
proven. Moreover, in most verification and specifica-
tion systems, arithmetic operations ignore things such
as overflow, underfiow, and round-off errors.

Testing can take advantage of the functional spec-
ification generated by performing functional testing.
Also, structural testing can be done using a cover-
age analyzer. If, as is likely, the component needs a



‘wrapping’ to be executed, the testing step generates
this wrapping. If a component passes the testing then
test cases, wrapping, and test results are stored in the
component repository. Components that do not sat-
isfy the test are discarded. Again, the reasons for dis-
carding candidates are recorded and used to improve
the reusability attributes model and possibly the pro-
cess for extracting the functional specification. This
is most likely the last step at which a component will
be discarded.

3. Packaging: The extracted candidates are stored
in the component repository along with their func-
tional specifications and test cases. The component
repository is actually a data base of experience in
which information on software products, processes,
and measures of aspects of them is stored. That is
why we organize this data base by classifying both the
reusable components and their development histories
according to several domain dependent criteria.

Information for the future reuser is provided in a
manual that contains a description of the component’s
function and interfaces as identified during generation
of its functional specification, directions on how to in-
stall and use it, information about its procurement
and support, and information for component mainte-
nance.

At the end of each process cycle the reusability at-
tribute model is updated by drawing on information
from the qualification phase to add more measures,
modify or remove measures that proved ineffective, or
alter the range of acceptable values. This step requires
analysis and possibly even further experimentation.
The taxonomy is updated by adding new attributes
or modifying the existing ones according to problems
reported by the experts who classify the components.

4 The CARE system

4.1 Overview

The CARE[6] system(CARE!: Computer Aided
Reuse Engineering) has been designed to support the
proposed process model for extracting reusable com-
ponents. As shown in figure 2, it consists of two main
subparts: the component identifier and the component
qualifier. The component identifier consists of the
model editor, which helps in defining and modifying
the reusability attributes model, and the component
extractor which applies such model to the programs.

1The CARE system is under development at the Computer
Science Department of the University of Maryland

215

The component qualifier consists of the specifier, the
tester, and the packager. The current version of the
CARE system consists of the component extractor and
the specifier. It runs on a Sun Workstation and sup-
ports ANSI C and Ada. In the rest of this section we
focus on the description of the specifier.

COMPONENT COMPONENT
IDENTIFIER QUALIFIER
1.1 2.1
CI.
MODEL EDITOR SPECIFIER
2.2
TESTER
1.2
COMPONENT 2.3
EXTRACTOR
PACKAGER

COMPONENTS
REPOSITORY

METRICS
LIB

MODELS
LIB

Figure 2: CARE system architecture.
4.2 The component specification tool

The prototype specifier included in the CARE tool
is the second in a series of prototype tools developed at
the Computer Science Department of the University of
Maryland under the general name FSQ, for Functional
Specification Qualifier. This prototype supports the
derivation of programs specifications and the verifica-
tion of whether or not the programs meet those spec-
ifications. It does not only help to specify and check
the partial correctness of finished programs, but it also
works on unfinished programs and program fragments.
It is a program understanding tool that is based on
a formal specification technique. CARE-FSQ2 uses
Mills’ functional model of correctness(3, 4] in order to
derive the specifications. This model requires the user
to provide only the loop function and then a technique
is provided to derive the program specification. Other
techniques{7, 8] require the user to provide an entry as-
sertion, an exit assertion, and a loop assertion. Those
techniques are more useful in verifying that the pro-
gram is consistent with its specification. The process
of deriving specifications helps more in understanding
the software. Moreover, the functional method pro-



vides simple and intuitive notations that can be easily
understood.

The CARE-FSQ, prototype helps in checking syn-
tax, static semantics, and generating specifications at
the same time. CARE-FSQ, also provides the capa-
bility of carrying out some algebraic simplifications
and enables the user to make use of some well defined
mathematical functions in the specification of the loop
function.

4.2.1 Formal foundation: Each statement S is
given a meaning as a function from a program state
to another state. A state is a mapping from the vari-
able names to their current values. The square bracket
notation is used to denote the function represented by
the program construct contained inside the brackets,
i.e. [S] represents the function computed by the state-
ment S. We use four basic structures(3, 4]:

1. Assignment
The meaning of the assignment v := e, where v is
a variable and e is an expression, is:

[v:=e] = {(S,T): T =S except that
[)(T) = [el(T)}

We can define the meaning of variables and expres-
sions as a mapping from a state to a value.

2. Composition
If A and B are statements and o is functional com-
position, we have:

[4; B]

(4] o [B]

3. Alternation

[if Bthen S fi]={(U,[SIU):[BI(U) = true}u
{(U,U): [BI(U) = false}

[if B then Sy else Sy fi} = {(U,[S1]U) : [B)(U)
= true} U(U,[S2)U) : [BJ(U) = false}

4. Iteration

[while B do S od] = {(T.U): 3k >0 V0< i<k (
([BY[ST(T)) = true A [B([SIN(T)) = false
ASIHT) = U)}

In other words, the loop function is undefined for a
state T unless there is a natural number & which de-
notes the number of iterations after which the test first
fails. T is then transformed to the k-fold composition
of S on T. In order to carry out practical proofs, the

216

following characterizing theorem is needed[9].
Theorem

Let W be the program fragment while B do S od,
Then f = [W] if and only if:

1. domain(f) = domain([W])
2. ([B)(T) = false) => f(T)=T
3. f = [if Bthen S fi]of

This theorem provides a method for deriving the
correct loop function f:

1. Guess or work out a trial function f.

9. Use the three conditions of the theorem to check
that the trial function is correct.

A trace table can be used to organize the derivation
of program meanings (by a symbolic execution of the
program){4, 9]. _

The strength and weakness of the functional
method, in comparison with other specification tech-
niques, originate from the fact that even though exact
functions state accurately the meaning of a loop, they
are harder to work with than the weak assertions that
suffice when there is a loop initialization providing a
precondition.

4.2.2 The implementation: CARE-FSQ; is im-
plemented using the Synthesizer Generator[10] and
Maple, an interactive algebraic symbolic executor[11].
An overview of the tool is shown in figure 3. The
Synthesizer Generator requires as an input a descrip-
tion of an attribute grammar and generates from it
a hybrid language-based editor that allows a combi-
nation of text editing and structure editing. As the
user edits program text and annotations, the system
creates and edits abstract syntax trees that represent
pieces of programs and their specifications. The at-
tributes of the nodes of this tree carry information
about the static semantics of the program as well as
its specifications, and they are evaluated incremen-
tally. The basic feature of Maple is its ability to sim-
plify expressions involving unevaluated elements. As
each complete statement is entered by the user, it is
evaluated and the results are printed on the output
device. Maple enables carrying out algebraic simpli-
fications during the symbolic execution. In order to
overcome the limitations of Maple in the evaluation
of boolean expressions, CARE-FSQ; has an interac-
tive feature that allows the user, before writing the
specifications, to simplify boolean expressions and the
expressions containing array notations.



C Utility Language
Functions Based Editor
(SE) (LE)
Maple

Maple Procedures

Figure 3: Overview of CARE-FSQs.

In a typical CARE-FSQ, session, the user derives
the specifications of the program using step-wise ab-
stractions. In other words, the user starts by trying to
find the correct specification of every loop in the pro-
gram as a separate entity. After succeeding in this,
the correct specification of the whole program can be
found. This methodology of step-wise abstraction en-
ables the software engineer to concentrate on small
pieces of code, one at a time, and to mitigate in this
way the difficulty of specifying the whole program.

Currently, CARE-FSQ: supports a subset of Ada
with modifications on the input/output mechanism.
The data types supported are integer, boolean, char-
acter, a restricted form of floating point, constrained
arrays, and user defined data types. The basic control
structures of Ada are supported except unconditional
‘go to’ statements, and case statements. Static se-
mantic checking is also included. A brief description
of the input/output mechanism and the specification
language is given in the rest of this subsection.

Input and output is done through atomic and
stream ports[12]. A subprogram, called an elementary
process, accepts input data from input ports, performs
computation specified with an Ada-like notation, and
returns results through output ports. The input and
output of single data items can be carried out through
atomic ports. Stream ports are used as schemes for
data types whose elements can be accessed in a linear
order. The stream ports of one process can be bound
to particular data types to produce the implementa-
tion. Input and output ports can be bound to files
to communicate with the system. This form of data

217

abstraction helps in making the specification process
more general and easier. The following seven opera-
tions are defined for atomic and stream ports:

1. Receive(p): To Receive a value via the input port
p from the source associated with the port.

2. Send(p): To Send a value via the output port p
to the destination associated with the port.

3. Initialize(p): To open the stream associated with
the stream port p for reading.

4. Receive(p, v): To receive a value into a variable
v from the stream associated with the input port
p.

5. Send(p, v): To send the value of variable v to the
stream associated with the output port p.

6. isEOS(p): A boolean function to check if end of
stream is reached in the input stream port p.

7. Finalize(p): To close the stream associated with
the port p. The effect of finalization for an output
stream port is that the function isSEOS becomes
true at the consumer process.

The specifications for CARE-FSQ, are written us-
ing guarded command sets whose syntax is:

< guarded command set > 1=
< guarded command >
{| < guarded command >}

< guarded command > ;.=
< boolean expr > —
< concurrent assignment >

< concurrent assignment > 1=
<wvar > = < expr> | <var >,
< concurrent assignment > , < expr >

A concurrent assignment is an extension of the assign-
ment statement where a number of different variables
can be substituted simultaneously. The concurrent
assignment statement is denoted by a list of differ-
ent variables to be substituted at the left hand side
of the assignment operator and an equally long list of
expressions as its right hand side. The ith variable
from the left hand list is to be replaced by the ith ex-
pression from the right hand list. The expressions can
include calls to some mathematical functions such as
min, max, product, sum, factorial, iged (greatest com-
mon divisor), irem (remainder), and iquo (quotient).



An array is considered to be a partial function from
subscript values to the type of array elements. The
command a(i) := e assigns a new function to g, a
function that is the same as the old one except that at
the argument i its value is e. The notation (a,i,e) is
used to denote the array that is the same as a except
when applied to the value 7 yields e. The notation
(a,indez = m..n,e) is used to denote the array that
is the same as a except when applied to index values
between m and n, i.e. m < index < n, it yieldse. The
expression e can be a function of the bound variable
indez. To make the two notations consistent, (a,i,¢)
is written (a,indez = i,€) where indez is a bound
variable. The notation defined for arrays are used for
stream ports as well. A stream port is treated as an
array whose subscript is of type integer with the first
element subscript being one.

process

G In integer atomic
;Y im integer atomic; z: out integer atomic) is

o hob ol

yl:i-y;
{true ->x1,yl (~min(x1, y1), min(x1,y1)>
whilex1/=y1i loop
ifx1 >yl then
x1:=x1-—1;
else
yl: =yl - 1;
end 1f;
end loop;
b= 1;
a wxl;
{a >0 —> a,b:=0,b* factorial(a)
la <=0 —> I}
while a > 0 loop
b:=b*a;
a:=a— 1;
end loop;
z:=b;
Send(z);
end;
Bagth <

Positioned at name

gd ¢

o> b cib

Figure 4: The program to be specified.

4.2.3 Example: We describe a short example, due
to the space limitation, to demonstrate a sample re-
sult obtained using CARE-FSQ2. In order to find the
correct specification of a while loop, the user should
annotate it with a trial loop function enclosed between
two curly braces. CARE-FSQ; assists the user in ver-
ifying the correctness of the loop specification by cal-
culating the composition [if B then S fi] o f. The
user, on the other hand, must ensure that the three
while loop verification conditions are satisfied. After
verifying all the while loops in the program, the user

218

expr § (x1-yl < 0 or yl-x1 < 0) and yl-x1 < 0
Would you like to simplify this expression? [y/nl: y
Enter the simplified expression; yl < x1

expr ¢ {(xi-yl < 0 or yl-x1 < 0} and not yl-x1 < 0
Would you like to simplify this expression? [y/nl: y
Enter the simplified expression: yl > x1

expr ¢ not {x1-yl < 0 or yl-x1 <O

Would you like to simplify this expression? [y/nl: y
Enter the simplified expression: yl = x1

The symbolic execution result is ¢

yl < x1 >
x1, yl 3=
min¢x1-1,41>, min{xi-1,4l?

> x>
x1, vl :=
min{x1l,yl-1>, min{x1,y1-1>

=x1 >
x1, yl =
mind{x1,yl>, min{xl,yld

yl

Figure 5: Finding the specification of the first loop.

<0 and —a+1 < 0
like to simplify this expression? [y/nl: y
simplified expression; a > 1

expr : —a
Would you
Enter the

expr : —a < 0 and a-1 <= 0
Would you like to simplify this expression? [u/nl: y
Enter the simplified expression; a = 1 i

expr ¢t not —a < 0 and a <= 0

Would you like to simplify this expression? [y/nls y
Enter the simplified expression: a <= 0

The symbolic execution result is ¢

a>1l—>
a, b=
0, bxGAMMA{a+1l>

1>
a, b :=
a-1, b*a

a =

a<=0->
a, b :=
a, b

Figure 6: Finding the specification of the second loop.

can proceed to find the functional meaning of the
whole program.

Figure 4 shows a program that receives two integers
as input , finds their minimum, calculates its factorial



if it is positive, and then saves the result in z. First,
the verification conditions of the two while loop have
to be checked. Hence, we let CARE-FSQ, print the
composition [if B then S fi] o f to assist us in this
process. Before printing the results of the composi-
tion, the user is prompted to enter his simplifications
for some expressions if he/she desires(see figures 5 and
6).

Since the three verification conditions are satisfied
for both loops, we can therefore proceed to find the
functional meaning of the whole program which is
shown in figure 7.

The symbolic execution result is 3

~mini{x,y> < 0 ~>
X, Y4, z, x1, yl, a, b :=
X, Y, GAMMALmind{x, y>+1)>, min{x,y>.
mini(x,y>, 0, GAMMA(min(x,yd>+1>

min{x,y) <= 0 ->
X, Y, Zz, x1, yl, a, b :=
%, Y, 1. minix.y), mindx,yd, min{x,y>, 1

Figure 7: Specification of the whole program.

5 Conclusion

In this paper, we have presented a process model
for extracting reusable components. It first identifies
these components using software metrics, then it qual-
ifies them. We have focused on the qualification phase
which generates their formal specifications, generates
a significant set of test cases, and packages them for
future reuse. We have then described the specifica-
tion tool of the qualification phase, CARE-FSQ,, that
helps in understanding programs by generating their
correct formal specifications. Further research needs
to be done in order to be able to qualify and tailor
large programs for reuse.

Acknowledgement

Research for this study was supported in part by
NASA (Grant NSG-5123), ONR (Grant NOOO14-87-
k-0307), and Italsiel S.p.A. (IAP Grant).

References

(1] R. G. Lanergan and C. A. Grasso, ”Software En-
gineering with Reusable Design and Code”, IEEE
Trans. on Software Engineering, vol. SE-10, no. 5,
Sept. 1984, pp. 498-501.

219

(2] V. R. Basili, ”Software Development: A
Paradigm for the Future”, Proc. Compsac’89,
IEEE Computer Soc. Press, Los Alamitos, Calif.,
Order No. 1964, pp. 471-485.

H. D. Mills, ”The New Math of Computer Pro-
gramming”, Communications of ACM, vol. 18,
no. 1, Jan. 1975, pp. 43-48.

J. D. Gannon, R. B. Hamlet and H. D. Mills,
”Theory of Modules”, IEEE Trans. on Software
Engineering, vol. SE-13, no. 7, July 1987, pp. 820-
829.

[5] V. R. Basili, G. Caldiera, G. Cantone, ” A Ref-
erence Architecture for the Component Factory”,
Technical Report CS-TR-2607, Institute for Ad-
vanced Computer Studies and Dept. of Computer
Science, Univ. of Maryland, College Park, MD
20742, March 1991.

[6] G. Caldiera and V. R. Basili, ”Identifying
and Qualifying Reusable Software Components”,

IEEE Computer, Feb. 1991, pp. 61-70.

C. A. R. Hoare, ”An Axiomatic Basis for Com-
puter Programming”, Communications of ACM,
vol. 12, no. 10, Oct. 1969, pp. 576-580, 583.

7]

[8] E. W. Dijkstra, ”A Discipline of Programming”,
Prentice Hall, 1976.

[9] H.D. Mills, V. R. Basili, J. D. Gannon, and R. G.
Hamlet, “Principles of Computer Programming;:
A Mathematical Approach”, Boston, MA, Allyn
and Bacon, 1987.

[10] T. W. Reps and T. Teitelbaum, The Synthesizer
Generator Reference Manual, Springer-Verlag,

1989.

[11] B. W. Char et al, Maple User’s Guide, Watcom

Publication Limited, Waterloo, Ontario, 1985.

B. Joo, ”Adaptation and Composition of Pro-
gram Components”, Ph.D. Dissertation, Dept. of
Computer Science, Univ. of Maryland, College
Park, Maryland, 1990.

(12]



