METHODOLOGICAL AND ARCHITECTURAL ISSUES
IN THE EXPERIENCE FACTORY

Victor R. Basili Gianluigi Caldiera

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, Maryland

Extended Abstract
The Experience Factory

The concept of experience factory as been introduced in order to institutionalize -
the collective learning of the organization that is at the root of continuous
improvement and competitive advantage.

In the short run, the success of a software organization can be measured by its
cost/performance attributes: it delivers (or updates) the needed systems generally
on time and without budget overruns. In a longer run, though, we have to
consider today’s market characterized today by shrinking budgets and increased
global competition. In the second half of the '90, the most successful
organizations will probably be the ones that have been able to converge to better
levels of cost and quality. Therefore, the real advantage will come from the ability
of the software organization to deliver solutions that anticipate the needs of the
system users and provide a real enhancement to their business or mission [Hamel
and Prahalad 1991].

Research for this study Was supported by NASA (Grant NSG-5123)

Within this framework, reuse of experience and collective learning cannot be left
to the imagination of single, very talented, managers: they become a corporate
concern like the portfolio of businesses or the company assets. The experience
Jactory is the organization that supports reuse of experience and collective
learning developing, updating and providing upon request to the project
organizations clusters of competencies, that we call experience packages. The
project organizations offer to the experience factory their products, the plans used
in their development, and the data gathered during development and operation;
the experience factory transforms these objects into reusable units and supplies
them to the project organizations, together with specific support made of
monitoring and consulting (Figure 1).

The experience factory can be a logical and/or physical organization, but it is
important that its activities are separated and made independent from the ones
of the project organization [Basili 1989].

The packaging of experience is based on tenets and techniques that are different
from the problem solving activity used in project development:

Problem Solving Experience Packaging
Decomposition of a complex Unification of different solutions
problem into simpler ones and redefinition of the problem
Instantiation Generalization

Design/Implementation process Analysis/Synthesis process

Validation and verification Experimentation

In a correct implementation of the experience factory paradigm projects and
factory will have different process models: each project will choose its process
model based upon the characteristics of the software product that will be
delivered, while the experience factory will define (and change) its process model

2

FIGURE 1
Experience Factory and
Proje rganization

Project |]
Organization Experience Factory
Planning Plans ,,
Analvsie \O
Products'-
Cotr;struc > Experi
on ence
Consulting Base
<
Synthesis /__/
Analysis Data

!

Experience Packages

based upon organizational and performance issues.
Outline of a Methodology for the Experience Factory

The main product of the experience factory is the experience package. There are
a variety of software engineering experiences that can be packaged: resource
baselines and models, change and defect baselines and models, product baselines
and models, process definitions and models, method and technique models and
evaluations, products, lessons learned, quality models. The content and the
structure of an experience package vary based upon the kind of experience
clustered in the package. There is, generally, a central element that determines
what the package is: a software life cycle product or process, a mathematical
relationship, an empirical or theoretical model, a data base, etc. We can use this
central element as identifier of the experience package and produce a taxonomy
of experience packages based upon the characteristics of this central element.

We can delineate a taxonomy consisting of the following classes of packages:

1.- Product Packages have as their central element a life-cycle product,
clustered with the information needed to reuse it and the lessons learned
in reusing it.

2.- Process Packages have as their central element a life-cycle process,
clustered with the information needed to execute it and the lessons learned
in executing it.

3.- Relationship Packages have as their central element a relationship or a
‘system of relationships among observable characteristics of a software
project. There are time based relationships and time independent
relationships. In any case, these packages are used for analysis and/or
forecast of relevant phenomena.

' 4- Data Base Packages have as their central element a collection of data
relevant for a software project or for activities within it. Project databases
and quality records are common examples of this class of experience

3

packages.

5.- Management Packages have as their central element any container of
reference information for project management: handbook, lessons learned
document, reports, etc.

Experience packages are linked to each other by semantic links in which one
package uses or incorporates another one. This network of semantic links
provides the schema of the experience base, the repository of all products of the
experience factory. .

The core of the methodology used by the experience factory in order to transform
existing software project experience into experience packages is the Improvement
Paradigm. This paradigm is derived from the scientific method in order to supply
environments such as software proj ects, in which mathematical formalization and
organizational institutionalization play a prominent role, with an incremental
learning methodology. It plays in software environments a role similar to the
Shewart-Deming Cycle, known as Plan/Do/Check/Act (PDCA) Cycle, in
manufacturing environments [Deming 1986).

As shown in Figure 2, the experience factory process can be outlined in three
phases:

I. Understanding
- Define problem and set overall goals

- Collect information and data (internal and external, existing experience
packages)

- Build a preliminary (i.e. not yet organized as an experience package)
collection

II. Improving

- Single-project experimentation
(Improvement Paradigm)

IGURE 2
Experience Package Development

UNDERSTANDING g T ——————————

Information §
Collection

MROVING vvvvv S ——
Feedback
from use
SYNT
HESI PLAN
ZE

ANAL
YZE

! Synthesized
. /nformation

PACKAGING

t Experience
it Package

EXPERIENCE BASE

-+ Plan
- Characterize the project environment
- Set experimentation goals and refine them into measurable form
- Choose execution process model, methods and tools

-- Execute the process and control it

-+ Analyze the results and compare them with the goals

-- Synthesize the results into new or updated models

- Multiple-project experimentation
(Improvement Paradigm)

.- Plan
- Characterize project environments

- Set experimentation goals for each project and refine them into
measurable form

- Adapt the execution process model, methods and tools to the
projects

-- Execute the processes and control them

-- Analyze the results and compare them with the goals

-- Synthesize the results and update the models

III. Packaging

- Compare and consolidate synthesized information

- Choose outcome
- Compose/Update package from synthesized experience
- Store in the experience base

When a problem becomes relevant or a request for support has been formulated,
the experience factory either selects and delivers an already existing experience
package, or starts a development process. The outcome of this process may be the
development of a new experience package or the integration of new information
in an already existing package. Once an experience package has been developed,
it is supplied to the project organizations that need it and used with the direct
support of the experience factory. Feedback from this use is incorporated into the
production process in the Improving Phase.

The Software Engineering Laboratory (SEL) at NASA Goddard Space Flight Center
provides us with a concrete example of experience factory and of the application
of the methodology we have just outlined [McGarry and Pajerski 1990]. The main
interest of SEL has been software measurement and management by
measurement. In the Understanding Phase at SEL the information and data
gathering consisted in an extensive measurement program aimed at building
descriptive baselines and models describing the specific environment. In the
- Improving Phase, while continuing the development of baselines and models, the
SEL evaluated and fed back information to the projects. Most of the models used
in this phase were informal but suited for experimentation. In the Packaging
Phase, potentially reusable experiences were organized in experience packages
such as

* Process packages: SEL Ada Process, SEL Cleanroom Process
¢ Database packages: SME (Software Management Environment) .

* Model packages: SEL Schedule Model, SEL Basic Measure Model, SEL
Environment Model, etc.

* Management packages: Manager's Handbook for Software Development

The diagram that follows shows the phases of the development of several
experience packages as they were in the Fall of 1990 [Basili 1990]

SEL SEL SEL
Creation Experimentation Maturity

Packaging

SEL Ada Process

SEL Cleanroom Process
SME

Managers Handbook

Improving

Methodology evalu- Ada

ation (0]0)]
Cost Model Analysis Cleanroom_
Test Technique CASE
Analysis
QIP
Undersfanding
Modeling environ- Design Measures Test Method
ment Cost vs Size and Reuse
Data Collection Complexity

Resource Baselines
Defect Baselines

Architecture of an Experience Factory

The structure and the functions of an efficient implementation of the experience
~ factory concept are modeled on the characteristics and the goals of the
organization supported by it. Therefore we need different levels of abstraction in
the description of the architecture of an experience factory in order to introduce
at the right level the specificity of each environment without loosing the

representation of the global picture and the ability to compare different solutions
with each other [Basili, Caldiera and Cantone 1991].

We will discuss now briefly the levels of abstraction that we propose to use in
order to represent the architecture of an experience factory (Figure 3):

¢ Reference level

At this first and more abstract level, we represent the activities in the
experience factory by active objects, called architectural agents: they are
specified by their ability to perform specific tasks and to interact with each
other.

* Conceptual level

At this level we represent the interface of the architectural agents and the
flows of data and control among them, and specify who communicates with
whom, what is done in the experience factory and what in the project
organization. The boundary of the experience factory, i.e. the line that
separates it from the project organization, is defined at this level based on
needs and characteristics of an organization, and can change with them.

e Implementation level

At this level we define the actual implementation, both technical and
organizational, of the architectural agents and of their connections specified
at conceptual level. We assign to them process and product models,
synchronization and communication rules, appropriate performers (people
or computers) and specify other implementation details. The mapping of the
agents over the departments of the organization is included in the
specifications provided at this level.

The architecture of the experience factory can be regarded as a very special
instance of an experience package, whose design and evolution are based on the
levels of abstraction just introduced and on the methodological framework of the
improvement paradigm applied to the specific architecture.

IGURE
vels of Abstraction

REFERENCE
O LEVEL
O Architectural Agents O

CONCEPTUAL
LEVEL

Project
Organization

Experience
O Factory

IMPLEMENTATION
LEVEL

Department A Department B Department C

The first step in the design of the experience factory is the identification of the
activities aimed at capturing and packaging software project experience. In the
last section, when we presented the experience package development process, we
gave a summary of these activities

Problem definition and goal setting
Information collection
Preliminary clustering
Experimentation planning
Experimentation execution
Experimentation analysis
Experimentation synthesis
Information consolidation

. Outcome selection

10 Experience package composition
11. Experience package update

12. Experience package storing

13. Experience package selection
14. Experience package use

15. User feedback generation

©OND G LN

The second step in the design of the experience factory is the specification of the
reference architecture (Reference Level Representation). This is done by grouping
the activities identified in the previous step into architectural agents and
specifying the possible connections between architectural agents. We can, for
instance, identify the following architectural agents with the indicated distribution
of activities:

A. Experience factory coordinator

Activities: i
Problem definition and goal setting
Experimentation planning
Outcome selection

Possible connections with
Researcher

B.

C.

D.

Experimenter

Experience package builder
Experience base manager
Experience package user

Researcher

Activities:
‘Information collection
Preliminary clustering

Possible connections with
Experience factory coordinator
Experience base manager |
Experience package user

Experimenter

Activities:
Experimentation execution
Experimentation analysis

Possible connections with
Experience factory coordinator
Experience package builder
Experience package user

Experience package builder

Activities:
Experimentation synthesis
Information consolidation
Experience package composition
Experience package update

Possible connections with
Experience factory coordinator

10

Experimenter
Experience base manager
Experience package user

E. Experience base manager

Activities:
Experience package storing
Experience package selection

Possible connections with
Experience factory coordinator
Researcher
Experimenter
Experience package builder

F. Experience package user

Activities:
Experience package use
User feedback generation

Possible connections with
Experience factory coordinator
Researcher
Experimenter

The third step in the design of the experience factory is the conceptual
representation of the experience factory architecture. In this step the following

choices are performed

* Boundary between experience factory and project organization. In making
this choice one tries to optimize reuse, on one hand, by incorporating more
functions into the experience factory, and to optimize project support, on
the other hand, by concentration of the appropriate activities in the project

organization.

11

e Number and connection of agents. This choice is about communication
complexity: a large number of agents increases the complexity and the
overhead due to communication, a small number of agents produces
bottlenecks that would affect the whole organization. Concentrating the
control in a small group of agents makes planning easier, but serializes
many activities that could be otherwise performed concurrently.

The diagram in Figure 4 is a possible choice of conceptual architecture where all
the development of experience packages takes place in the experience factory.
Other, less extreme, choices are possible, if some activities of the development
process, for instance the experimentation, take place in the project organization.
The first choice is probably better suited for environments where the practice of
reuse of experience is somewhat formalized and mature. An organization that is
Jjust starting should probably instantiate its experience factory using a more
traditional architecture and then, when it reaches a sufficient level of maturity
and improvement with this architecture, start implementing the other
architecture to continue the improvement. The improvement paradigm provides
a methodology for a step-by-step approach to this implementation. In this way
the organization takes advantage of the flexibility and evolutionary nature of this
approach, that are among the primary benefits of reasoning in terms of
instantiations of a reference architecture.

The fourth and final step in the design of the experience factory is the
implementation of the specific factory by performing the following choices:

* Distribution of the agents over organizational units. This choice deals with
the optimization of the already existing organization units and the smooth
evolution to factory concepts. It takes into account the available resources
and the historical roles of those units.

e Implementation of the functions of the agents. In choosing procedures,
methods and tools one tries to achieve an organizational and technical
profile that is correct, efficient and best suited to the overall mission by
dealing with the available resources and technology.

The crucial point of the process is the possibility, offered by the reference
architecture, of modifying the particular architecture without modifying the

12

IGURE 4

Conceptual Architecture
of an Experience Factory

Feedback Experience
o Factory Goals
Coordinator /¢ Researcher
_ Information
Experimen uster
taton
Plans
l
Experimenter Synthesized

Experience
Packages

T~

Experience
Package
Builder

Experience.

Experience Base
M
Package %, Experience anager
User %, Packages
0"”

* . 3

*
Project W Experience

s Factory

Organization

interfaces between its building blocks. The modular structure allows configuration
and reconfiguration of the processes as required by an efficient and realistic
implementation of an optimizing process. The evolution of the conceptual level is
more difficult because it has impact on the implementation level, but the explicit
definition of the interfaces, which is part of the reference architecture, offers a
certain freedom in the evolution, even at the conceptual level. Changes in the
automation and organizational choices have definitely a lower impact, if they are
applied to the implementation level leaving unchanged the conceptual level.

References

[Basili 1989]
V.R. Basili, "Software Development: A Paradigm for the Future", Proceedings of
the 13th Annual International Computer Software & Applications Conference
(COMPSAC '89), Orlando, FL, September 20-22, 1989.

[Basili - 1990] .
V.R. Basili, "Towards a Mature Measurement Environment: Creating a Software
Engineering Research Environment", Proceedings of the 15th Annual Software
Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt, MD,
Software Engineering Laboratory Series, SEL-90-006, November 1990.

[McGarry and Pajerski 1990]
F. McGarry and R. Pajerski, "Towards Understanding Software - 15 Years in the
SEL", Proceedings of the 15th Annual Software Engineering Workshop, NASA
Goddard Space Flight Center, Greenbelt, MD, Software Engineering Laboratory
Series, SEL-90-006, November 1990.

[Basili, Caldiera and Cantone 1991}
V.R. Basili, G. Caldiera and G. Cantone, "A Reference Architecture for the
Component Factory”, Computer Science Technical Report Series, CS-TR-91-24,
University of Maryland, College Park, MD, March 1991.

[Deming 1986]
W. Edwards Deming, Out of the Crisis, MIT Center for Advanced Engineering

13

Study, MIT Press, Cambridge, MA, 1986
[Hamel and Prahalad 1991}

G. Hamel, C.K. Prahalad, "Corporate Imagination and Expeditionary Marketing",
Harvard Business Review, Vol. 69, No. 4, July-August 1991, pp. 81-92.

14

