THE SOFTWARE ENGINEERING LABORATORY—AN OPERATIONAL SOFTWARE
EXPERIENCE FACTORY

Victor Basili and Gianluigi Caldiera
University of Maryland

Frank McGairy and Rose Pajerski
National Aeronautics and Space Administration/

Gerald Page and Sharon Waligora
Computer Sciences Corporation

Goddard Space Flight Center

ABSTRACT

For 15 years, the Software Engineering Laboratory (SEL) has been
carrying out studies and experiments for the purpose of understand-
ing, assessing, and improving software and software processes
within a production software development environment at the Na-
tional Aeronautics and Space Administration/Goddard Space Flight
Center (NASA/GSFC). The SEL comprises three major organiza-
tions:

e NASA/GSFC, Flight Dynamics Division

e University of Maryland, Department of Computer Sci-
ence

* Computer Sciences Corporation, Flight Dynamics
Technology Group

These organizations have jointly carried out several hundred
software studies, producing hundreds of reports, papers, and
documents, all of which describe some aspect of the software en-
gineering technology that has been analyzed in the flight dy-
namics environment at NASA. The studies range from small,
controlled experiments (such as analyzing the effectiveness of
codereading versus that of functional testing) tolarge, multiple-
project studies (such as assessing the impacts of Ada on apro-
duction environment). The organization’s driving goalis toim-
prove the software process continually, so that sustained
improvement may be observed in the resulting products. This
paper discusses the SEL as a functioning example of an opera-
tional software experience factory and summarizes the charac-
teristics of and major lessons learned from 15 years of SEL
operations.

1. THE EXPERIENCE FACTORY CONCEPT

Software engineering has produced a fair amount of research and
technology transfer in the first 24 years of its existence. People
have built technologies, methods, and tools that are used by many
organizations in development and maintenance of software
systems.

Unlike other disciplines, however, very little research has been
done in the development of models for the various components of
the discipline. Models have been developed primarily for the
software product, providing mathematical models of its function
and structure (e.g., finite state machines in object-oriented design),
or, in some advanced instances, of its observable quality (e.g., reli-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, orto republish, requires a fee and/or specific permission.

©1992 ACM 0-89791-504-6/ 92/ 0500- 0370 1.50

ability models). However, there has been very little modeling of
several other important components of the software engineering
discipline, such as processes, resources, and defects. Nor has much
been done toward understanding the logical and physical in-
tegration of software engineering models, analyzing and evaluating
them via experimentation and simulation, and refining and tailoring
them to the characteristics and the needs of a specific application
environment.

Currently, research and technology transfer in software engineering
are done mostly bottom-up and inisolation. Toprovide software engi-
neering with a rigorous, scientific foundation and a pragmatic frame-

work, the following are needed [1]:
e A top-down, experimental, evolutionary framework in
which research can be focused and logically integrated to

produce models of the discipline, which can then be
evaluated and tailored to the application environment

* An experimental laboratory associated with the software
artifact that is being produced and studied to develop and
refine comprehensive models based upon measurement
and evaluation

The three major concepts supporting this vision are
s A concept of evolution: the Quality Improvement Para-

digm (2]

* A concept of measurement and control: the Goal/
Question/Metric Approach [3]

e A concept of the organization: the Experience Factory
4

The Quality Improvement Paradigm is a two-feedback loop
process (project and organization loops) that is a variation of the
scientific method. It consists of the following steps:

e Characterization: Understand the environment based
upon available models, data, intuition, etc., so that simi-
larities to other projects can be recognized

¢ Planning: Based on this characterization:

— Set quantifiable goals for successful project and or-
ganization performance and improvement

— Choose the appropriate processes for improvement,
and supporting methods and toolstoachieve the goals
in the given environment

* Execution: Perform the processes while constructing the
products and provide real-time project feedback based on
the goal achievement data

¢ Packaging: At the end of each specific project:
— Analyze the data and the information gathered to
evaluate the current practices, determine problems,

370

record findings, and make recommendations for
future project improvements

Package the experience gained in the form of updated
and refined models and other forms of structured
knowledge gained from this and prior projects

Store the packages in an experience base so they are
available for future projects

The Goal/Question/Metric Approach is used to define measure-
ment on the software project, process, and product in such a way that

e Resulting metrics are tailored to the organization and its
goals

* Resulting measurement data play a constructive and
instructive role in the organization

» Metrics and their interpretation reflect the quality values
and the different viewpoints (developers, users, opera-
tors, etc.)

Although originally used to define and evaluate a particular project
in a particular environment, the Goal/Question/Metric Approach
can be used for control and improvement of a software project in
the context of several projects within the organization [5,6].

The Goal/Question/Metric Approach defines a measurement model
on three levels:

» Conceptuallevel (goal): A goalis defined foran object,
fora variety of reasons, with respect to various models of
quality, from various points of view, and relative to a par-
ticular environment

e Operational level (question): A set of questions is used
to define models of the object of study and the focuses
on that object to characterize the assessment or achieve-
ment of a specific goal

e Quantitativelevel (metric): A setofmetrics,based onthe
models, is associated with every question in order to an-
swer it in a quantitative way

The concept of the Experience Factory was introduced to institu-
tionalize the collective leamning of the organization that is at the
root of continual improvement and competitive advantage.

Reuse of experience and collective leaming cannot be left to the
imagination of individual, very talented, managers: they become a
corporate concern, like the portfolio of a business or company
assets. The experience factory is the organization that supports
reuse of experience and collective leaming by developing, updat-
ing, and delivering, upon request to the project organizations, clus-
ters of competencies that the SEL refers to as experience packages.
The project organizations offer to the experience factory their
products, the plans used in their development, and the data gath-
ered during development and operation (Figure 1). The experience
factory transforms these objects into reusable units and supplies
them to the project organizations, together with specific support
that includes monitoring and consulting (Figure 2).

The experience factory can be alogical and/or physical organization,
but it is important that its activities are separated and made inde-
pendent from those of the project organization. The packaging of

371

EXPERIENCE
PROJECT ORGANIZATION FACTORY
PROJECT/ENVIRONMENT CHARACTERISTICS
CHARACTERIZE
SET GOALS
TAILORABLE GOALS, PROCESSES, TOOLS,
CHOOSE PROCESS PRODUCTS, RESOURCE MODELS, DEFECT
MODELS FROM SIMILAR PROJECTS
EXECUTION PLANS
PROJECT ANALYSIS, PROCESS
MODIFICATION, ETC
EXECUTE
PROCESS
COLLECT DATA
DATA, LESSONS LEARNED, ETC. -

Figure 1.

PROJECT
ORGANIZATION

Project Organization Functions

EXPERIENCE FACTORY

PRODUCTS, MODELS,
LESSONS LEARNED,

DATA ETC.

>

ANALYSIS

~

DIRECT FEEDBACK I
:

-

!
PRODUCTS, LESSONS

EXPERIENCE

9

1000

~_ LEARNED, DATA, ETC. BASE
MODELS, BASELINES,
TOOLS, CONSULTING
C.
- £ SYNTHESIS feg
Figure 2. Experience Factory Functions

experience isbased ontenetsandtechniquesthatare differentfromthe

problem solving activity used in project development [7].

On the one hand, from the perspective of an organization producing

software, the difference is outlined in the following chart:

PROJECT ORGANIZATION EXPERIENCE FACTORY
(Problem Solving) (Experience Packaging)
Decomposition of a problem into | Unification of different solutions
simpler ones and redefinition of the problem
Instantiation Generalization, formalization
Design/implementation process Analysis/synthesis process
Validation and verification Experimentation

10000467005

On the other hand, from the perspective of software engineering
research, there are the following goals:

PROJECT ORGANIZATION EXPERIENCE FACTORY
(Problem Solving) (Experience Packaging)
Develop representative languages for | Develop techniques for
products abstraction
processes generalization
tailoring
formalization
analysis/synthesis
Develop techniques for Experiment with techniques
design/implementation
data collection/validation/
analysis
validation and verification
Build automatic support tools Package and integrate for reuse
experimental results
processes/products

In a correct implementation of the experience factory paradigm, the
projects and the factory will have different process models. Each
project will choose its process model based on the characteristics of
the software product that will be delivered, whereas the factory will
define (and change) its process model based upon organizational
and performance issues. The main product of the experience fac-
tory is the experience package. There are a variety of software
engineering experiences that can be packaged: resource baselines
and models; change and defect baselines and models; product
baselines and models; process definitions and models; method and
technique models and evaluations; products; lessons learned; and
quality models. The content and structure of an experience pack-
age vary based on the kind of experience clustered in the package.
There is, generally, a central element that determines what the pack-
age is: a software life-cycle product or process, a mathematical
relationship, an empirical or theoretical model, a data base, etc.
This central element can be used to identify the experience package
and produce a taxonomy of experience packages based on the
characteristics of this central element:

e Product packages (programs, architectures, designs)
» Tool packages (constructive and analytic tools)
* Process packages (process models, methods)

¢ Relationship packages (cost and defect models, resource
models, etc.)

* Management packages (guidelines, decision support
models)

» Data packages (defined and validated data, standardized
data, etc.)

The structure and functions of an efficient implementation of the
experience factory concept are modeled on the characteristics and
the goals of the organization it supports. Therefore, different levels
of abstraction best describe the architecture of an experience factory
in order to introduce the specificity of each environment at the right
level without losing the representation of the global picture and the
ability to compare different solutions [8].

The levels of abstraction that the SEL proposes to represent the archi-
tecture of an experience factory are as follows:

* Referencelevel: This first and more abstractlevel rep-
resents the activities in the experience factory by
active objects, called architectural agents. They are

specified by their ability to perform specific tasks and
to interact with each other.

» Conceptual level: This level represents the interface of
the architectural agents and the flows of data and control
among them. They specify who communicates with
whom, what is done in the experience factory, and what
is done in the project organization. The boundary of the
experience factory, i.e., the line that separates it from the
project organization, is defined at this level based on the
needs and characteristics of an organization. It can
evolve as these needs and characteristics evolve.

* Implementation level: This level defines the actual
technical and organizational implementation of the ar-
chitectural agents and their connections at the conceptual
level. They are assigned process and product models,
synchronization and communication rules, and appropri-
ate performers (people or computers). Other implementa-
tion details, such as mapping the agents over organiza-
tional departments, are included in the specifications
provided at this level.

The architecture of the experience factory can be regarded as a spe-
cial instance of an experience package whose design and evolution
are based on the levels of abstraction just introduced and on the
methodological framework of the improvement paradigm applied
to the specific architecture.

The Software Engineering Laboratory (SEL) is an operating ex-
ample of an experience factory. Figure 3 shows the conceptual
level of the SEL experience factory, identifying the primary archi-
tectural agents and the interactions among them. The remaining
sections describe the SEL implementation of the experience factory
concept. They discuss its background, operations, and achieve-
ments, and assess the impact it has had on the production environ-
ment it supports.

TECHNOLOGY
ADVOCATE

PROPOSALS,
TECHNOLOGY
7
PROBLEMS 1
GOALS, DATA SYNTHESIZED
INFORMATION
DESIGNER/
DEVELOPER 2~ —FEEDBAC
MODEL
PACKAGES——___ (| o o ceR
Figure 3. The SEL—Conceptual Level

2. SEL BACKGROUND

The SEL was established in 1976 as a cooperative effort among the
University of Maryland, the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC), and
Computer Sciences Corporation (CSC). Its goal was to understand
and improve the software development process and its products
within GSFC’s Flight Dynamics Division (FDD). At that time, al-
though significant advances were being made in developing new
technologies (e.g., structured development practices, automated
tools, quality assurance approaches, and management tools), there
was very limited empirical evidence or guidance for applying these
promising, yet immature, techniques. Additionally, it was apparent
that there was very limited evidence available to qualify or to

372

10000467 9007

quantify the existing software process and associated products, let
alone understand the impact of specific process methods. Thus, the
SEL staff initiated efforts to develop some means by which the
software process could be understood (through measurement),
qualified, and measurably improved through continually expanding
understanding, experimentation, and process refinement.

This working relationship has been maintained continually since its
inception with relatively little change to the overall goals of the orga-
nization. In general, these goals have matured rather than changed;
they are as follows:

1. Understand: Improve insight into the software process and
its products by characterizing a production environment.

2. Assess: Measure the impact that available technologies
have on the software process. Determine which technolo-
gies are beneficial to the environment and, mostimportant-
1y, how the technologies must be refined to best match the
process with the environment.

3. Package/Infuse: Afteridentifying process improvements,
package thetechnology in aform thatallowsittobeapplied
in the production organization.

These goals are addressed sequentially, in an iterative fashion, as
shown in Figure 4.

PACKAGING

« ENVIRONMENTS
* TRAINING PROGRAM
« STANDARDSAPOLICIES
* GUIDEBOOKS
« TAILORING APPROACHES
« CLEANROOM
* INSPECTIONS PROCESS
» CAPTURE ADA PROCESS

+ COMPARE TEST TECHNIQUES (FUNCTIONAL, READING,
STRUCTURAL)

* IMPACT OF STANDARDS

* WHAT PROCESSES USED

ITERATE

ASSESSING

UNDERSTANDING

* RELATIONSHIP BETWEEN DEVELOPMENT PARAMETERS
+ ERROR/CHANGES CHARACTERISTICS
» RESOURCE AND EFFORT CHARACTERISTICS

» HOW MUCH SOFTWARE EXISTS/BUILT

TIME -
IMES

Figure 4. SEL Process Improvement Steps

The approach taken to attaining these goals has been to apply
potentially beneficial techniques to the development of production
software and to measure the process and product in enough detail
to quantifiably assess the applied technology. Measures of con-
cern, such as cost, reliability, and/or maintainability, are defined as
the organization determines the major near- and long-term objec-
tives for its software development process improvement program.
Once those objectives are known, the SEL staff designs the experi-
ment; that is, it defines the particular data to be captured and the
questions that must be addressed in each experimental project.

All of the experiments conducted by the SEL have occurred within
the production environment of the flight dynamics software devel-
opment facility at NASA/GSFC. The SEL production environ-
ment consists of projects that are classified as mid-sized software
systems. The average project lasts 2 to 3-1/2 years, with an average
staff size of 15 software developers. The average software size is
175 thousand source lines of code (KSLOC), counting commen-
tary, with about 25 percent reused from previous development

100004679008

efforts. Virtually all projects in this environment are scientific
ground-based systems, although some embedded systems have
been developed. Most software is developed in FORTRAN, al-
though Ada is starting to be used more frequently. Other lan-
guages, such as Pascal and Assembly, are used occasionally. Since
this environment is relatively consistent, it is conducive to the
experimentation process. In the SEL, there exists a homogeneous
class of software, a stable development environment, and a con-
trolled, consistent, management and development process.

3. SEL OPERATIONS

The following three major functional groups support the exper-
imentation and studies within the SEL (Figure 5):

1. Software developers, who are responsible for producing
the flight dynamics application software

2. Software engineering analysts, who are the researchers
responsible for carrying out the experimentation process
and producing study results

3. Data base support staff, who are responsible for collect-
ing, checking, and archiving all of the information col-
lected from the development efforts

During the past 15 years, the SEL has collected and archived data
on over 100 software development projects in the organization.
The data are also used to build typical project profiles against
which ongoing projects can be compared and evaluated. The SEL
provides managers in this environment with tools (online and
paper) for monitoring and assessing project status.

Typically, there are 6 to 10 projects simultaneously in progress in
the flight dynamics environment. As was mentioned earlier, they
average 175 KSLOC, ranging from small (6-8 KSLOC) to large
(300- 400 KSLOC), with a few exceeding 1 million source lines of
code (MSLOC). Each project is considered an experiment within
the SEL, and the goal is to extract detailed information to un-
derstand the process better and to provide guidance to future
projects.

To support the studies and to support the goal of continually
increasing understanding of the software development process, the
SEL regularly collects detailed data from its development projects.
The types of data collected include cost (measured in effort),
process, and product data. Process data include information about
the project, such as the methodology, tools and techniques used,
and information about personnel experience and training. Product
data include size (in SLOC), change and error information, and the
results of postdevelopment static analysis of the delivered code.

The data may be somewhat different from one project to another
since the goals for a particular experiment may be different between
projects. There is a basic set of information (such as effort and
error data) that is collected for every project. However, as changes
are made to specific processes (e.g., Ada projects), the detailed data
collected may be modified. For example, Figure 6 shows the
standard error report form, used on all projects, and the modified
Ada version, used for specific projects where Ada is being studied.

As the information is collected, it is quality assured and placed in a
central data base. The analysts then use these data together with
other information, such as subjective lessons leamed, to analyze the
impact of a specific software process and to measure and then feed
back results to both ongoing projects and follow-on projects.

The data are used to build predictive models for future projects and
to provide a rationale for refining particular software processes
being used. As the data are analyzed, papers and reports are gener-
ated that reflect results of the numerous studies. Additionally, the
results of the analysis are packaged as standards, policies, training
materials, and management tools.

373

DEVELOPERS SOFTWARE ANALYSTS
(DEVELOP FLIGHT DYNAMICS S/W) (STUDY PROCESS)
DEVELOPMENT MEASURES
STAFF 275-300 (FTE*) FOR EACH PROJECT STAFF 5-10 RESEARCHERS
TYPICAL PROJECT 150-200 KSLOC FUNCTION + SET GOALS/QUESTIONS/
SIZE METRICS
- DESIGN STUDIES/
ACTIVE PROJECTS 6-10 EXPERIMENTS
(AT ANY GIVEN TIME) - ANALYSIS/RESEARCH
+ REFINE S/'W PROCESS
PROJECT STAFF 15-25 PEOPLE - PRODUCE REPORTS/
SIZE FINDINGS
1876-1992 100 PROJECTS REFINEMENTS TO 1976-1992 250 REPORTS/DOCUMENTS
DEVELOPMENT PROCESS
DATA BASE SUPPORT (MAINTAIN/QA SEL DATA)
|
STAFF 2-5 (FTE) l SEL DATA BASE B
FUNCTION + PROCESS FORMS/DATA |
+QA
+ RECORD/ARCHIVE DATA | FORMS LIBRARY
« MAINTAIN SEL DATA BASE

» OPERATE SEL LIBRARY

REPORTS LIBRARY

10000467-g010

*FTE = Full-Time Equivaient

Figure 5.

4. SEL DATA ANALYSIS

The overall concept of the experience factory has continually
matured within the SEL as understanding of the software process
has increased. The experience factory goal is to demonstrate
continual improvement of the software process within an environ-
ment by camrying out analysis, measurement, and feedback to
projects within the environment. The steps, previously described,
include understanding, assessment/refinement, and packaging.
The data described in the previous section are used as one major
element that supports these three activities in the SEL. In this sec-
tion, examples are given to demonstrate the major stages of the
experience factory.

4.1. UNDERSTANDING

Understanding what an organization does and how that orga-
nization operates is fundamental to any attempt to plan, manage, or
improve the software process. This is especially true for software
development organizations. The following two examples illustrate
how understanding is supported in an operation such as the SEL.

Effort distribution (i.e., which phases of the life cycle consume
what portion of development effort) is one baseline characteristic of
the SEL software development process. Figure 7 presents the effort
distributions for 11 FORTRAN projects, by life-cycle phase and by
activity. The phase data count hours charged to a project during
each calendar phase. The activity data count all hours attributed to
a particular activity (as reported by the programmer), regardless of
when in the life cycle the activity occurred. Understanding these
distributions is important to assessing the similarities/differences
observed on an ongoing project, planning new efforts, and evaluat-
ing new technology.

374

SEL Functional Groups

The error detection rate is another interesting model from the SEL
environment. There are two types of information in this model.
The first is the absolute error rate expected in each phase. By
collecting the information on software errors, the SEL has
constructed a model of the expected error rate in each phase of the
life cycle. The SEL expects about four errors per 1000 SLOC dur-
ing implementation: two during system test, one during acceptance
test, and one-half during operation and maintenance. Analysis of

_more recent projects indicates that these absolute error rates are de-

clining as the software development process and technology
improve.

The trend that can be derived from this model is that the error
detection rates reduce by 50 percent in each subsequent phase
(Figure 8). This pattern seems to be independent of the actual
values of the error rates; it is still true in the recent projects where
the overall error rates are declining. This model of error rates, as
well as numerous other similar types of models, can be used to
better predict, manage, and assess change on newly developed
projects.

4.2. ASSESSING/REFINING

In the second major stage of the experience factory, elements of the
process (such as specific software development techniques) are as-
sessed, and the evolving technologies are tailored to the particular
environment. Each project in the SEL is considered to be an ex-
periment in which some software method is studied in detail.
Generally, the subject of the study is a specific modification to the
standard process, a process that obviously comprises numerous
software methods.

swiIo,] j10day] Joaxy 9 2andyy

0208-29v00004

Ehom NU< Umncwwxm 1861 HIBWIAON ELOH& ﬂvhmbcmwm 1861 HIBWIAON
:Aq peyoeyd)
3 "1t 8y uo JayBiy suo
a uzuuw kit aosyo ‘arqeopdde Ajjenbe e oM 1,
Taequny {uopsaxdxe Ywwi Uy 1048 “6'8)
ndh
Auo esf susimiqr] 03 {posn o.aqt“”__ M_:.Ml ..:mo‘mw a
{aimonus 1o samea) wieg]
{izope19) uonduosues) Aq pereas sem soisg OO0 ponssmnuwos puseixe oy sinpous) eBuwmya snojaey 8|
{pepnpu) sem :!l-x&.tud..l!w O ®03 1]
Paoou) Bupyiauos “5-9) soue SORITEWSS [] n._nﬂ:-!e s] ubieag 3
(n0 4ot sem Bupgieusos “6'e) soue BFFIS [1] :o!so...._.._.wﬁ.ho.._.wh%o_rmu [|eucmenrpeds puonaun; 3
N & vojrzyenny O swewiainbay]
{18 205 N 40 A %23Yy9) «(31qeaydde 1sow xa9y9) (auo x20y2)
sofis|iatoRisyy J0lig jo ssely Jolig jo 8ainog
AJUO SUO|}0e1i0D 10T 104 — D UO|}98S
od
spy Bujsn pus eBueyd oy Bupenieas uf ple 1yBru 106} NOA 181 (swoom i ...“n..._v.&:zo AP RNy T Rre— |
eBusyd sy puv epy jo | 41 inoqe | ;0o Auv epiacid £ Ppossed sisjouned jo a10me oq o) aaey nok pia] [J #80{A13€ 40w JO JekLSAG XU [7]
(v uopoes L) Hoy3 yoyew {mopq sqiseq) Jeyi0 D:o_ ..na.....n...u .u. !!..S..ﬁ_... a
Kypeds *epo [swo O wnp) Zwsuoduios seyto Aue @ wooy nokpia]] T ebuep - Buey o
mBeusuien 930 O 4oupa enreues-sbanury [(v uopioes up ayF YUl way) Lweuodwios suo o towinoow wewsousyus pauuey]
Gezdpuy eBesen0) pus eouRLIOLed) vORd [s086nqep spoquiks 7] Ars0 pue suo o} uof108000 10 eBueyo syy s [T [T | moedsmuwy; jo vonezpupdo O uoypeoo soiu3 [
w0zkisuy 9pog scunos [sidwog] abuey9 jo spayg NoA (au0 %23y)) aBueys jo adAL
(Kidde 18t 18 ¥964D) LIS SiY) JO UORALID 4O UOROGIAp AL Uj Pep|e ‘AUt 3 ‘SI001 YOIUM P mom:mgo HY — g uoljoeg
o410 Xuopaa1109 40) aBueyo ay3 Juawaidw) oy awn uosiad uj yoyg
a sequias wea 1eford uno. [1 (1019 J0) aBueyd ay; a18| 08} 01 awy uosiad u) Loy
urea) uo Jou sucawog [Jenuew eouasejal epy [J .
hiousut umo [J saoussery [“Repe< skepon Kep Laql seegay L] y .))
(op18 681884 UUO b [usaishs oy patasodioau)) pataidwos aueyd
(Ardde 182 118 yooyD) LioL0 G 19aLi05 OF papeau ae1dtioo ‘o8 Jf) sjueuodinoo BpY U0 pauiwialep abueya Jo} pasN
§ o papiaosd Bumolio oy jo yolm 2 _H_ soAl0AU| BBUBYD Jf 040 XD “moX Tep quiom
abznBue) Jepous U Iniea; WM 0JMEe) PaSNjUOD 0 83|} 921n0s 8 42d0j2AIP jo UO3BI0]
Aunj sarmue; pusissepun tou pig [(popeau sf s0uds siow §f 18l Yauwy)
Anoawuoo Aidde 10u pip Inq ‘seameay pooissepun
110U Ing A o [pun O
(8uo Yo8yD) Lenn isow s| SuMOHO} O JO YUNUM g o
< pep sBM YO jeym
Ty tAmep aimea; o utEKdxe [UNLUBW GIURI Bujuuatap Ul PAUILIEXS 1AM [Gormen Y Toeid
/A P " .
1841 4o UoR P 9p sacg ¥ siuauodwoa [suoiPPE IBYM HoH3 2pabuuyd are sjusuodwwiod Jeym 10043

:Suauodwcd spy Bujajoau| TETIG us Jo4 2
(Rusmers epy ‘o7 60}

T ypeds eeveid Yayo [sopauen [
saimes; juepuadep-waisis [J suopdaoxy [J
BupseL [} sweibosdgns [(moy *Aum yBum) :aBusyd sy aqiiasaq
BuiBexoud pue asmonas weiBoid [Budh vieg UORESIJIUSP| — ¥ UO[09S
(Aidde 1 118 %0940) BUBYD 1yt L] PAAIOAU] SEM (B)RIMES) DY YOIUM XI0YD) .
1918Qq t100f0id
1Aq paaciddy TounN

uopewIoju| [euoiippY Joefold epy
WHO 1HOd3H IONVHO WHOL 1HOd3H IONVHD

375

BY ACTIVITY:
PROGRAMMER
REPORTING

BY LIFE-CYCLE PHASE:
DATE
DEPENDENT

BASED ON 11 PROJECTS IN FLIGHT DYNAMICS
ENVIRONMENT (ot Similar Size and Complexity)

Figure 7. Effort Distribution
6 X
St X
8 ap—x X
] x x
S5 sl
&
&
& 2r X " X
x % x
1l X X H
X | x x X g
1 1 L X g
CODE/TEST SYSTEMTEST ACCEPTANCETEST OPERATIONS
BASED ON 5 PROJECTS BETWEEN 1983 AND 1987
Figure 8. Derived SEL Error Model

One recent study that exemplifies the assessment stage involves the
Cleanroom software methodology [9]. This methodology has been
applied on three projects within the SEL, each providing additional
insight into the Cleanroom process and each adding some element
of “refinement” to the methodology for this one environment.

The SEL trained teams in the methodology, then defined a
modified set of Cleanroom-specific data to be collected. The
projects were studied in an attempt to assess the impact that Clean-
room had on the process as well as on such measures as
productivity and reliability. Figure 9 depicts the characteristics of
the Cleanroom changes, as well as the results of the three experi-
ments.

The Cleanroom experiments included significant changes to the
standard SEL development methodology, thereby requiring ex-
tensive training, preparation, and careful execution of the studies.
Detailed experimentation plans were generated for each of the
studies (as they are for all such experiments), and each included a
.description of the goals, the questions that had to be addressed, and
the metrics that had to be collected to answer the questions.

Since this methodology consists of multiple specific methods (e.g.,
box structure design, statistical testing, rigorous inspections), each
patticular method had to be analyzed along with the full, integrated,
Cleanroom methodology in general. As a result of the analysis,
Cleanroom has been “assessed” as a beneficial approach for the
SEL (as measured by specific goals of these studies), but specific
elements of the full methodology had to be tailored to better fit the
particular SEL environment. The tailoring and modifying resulted
in a revised Cleanroom process model, written in the form of a
process handbook [10], for future applications to SEL projects.

10000467-g011

376

That step is the “packaging” component of the experience factory
process.

4.3. PACKAGING

The final stage of a complete experience factory is that of pack-
aging. After beneficial methods and technologies are identified, the
organization must provide feedback to ensuing projects by cap-
turing the process in the form of standards, tools, and training. The
SEL has produced a set of standards for its own use that reflect the
results of the studies it has conducted. It is apparent that such
standards must continually evolve to capture modified character-
istics of the process. (The SEL typically updates its basic standard
every S years.) Examples of standards that have been produced as
part of the packaging process include:

Manager’s Handbook for Software Development [11]
Recommended Approach to Software Development [12]

One additional example of an extensive packaging effort in the
SEL is a management tool called the Software Management Envi-
ronment (SME). The concepts of the SME, which is now an opera-
tional tool used locally in the SEL, have evolved over 8 years.
This tool accesses SEL project data, models, relationships, lessons
learned, and managers’ rules of thumb to present project charac-
teristics to the manager of an ongoing project. This allows the
manager to gain insight into the project’s consistency with or devi-
ation from the norm for the environment (Figure 10).

-

This example of “packaging” reflects the emphasis that must be
placed on making results of software projects, in the form of
lessons learned, refined models, and general understanding, easily
available to other follow-on development projects in a particular or-
ganization.

The tool searches the collection of 15 years of experience archived
in the SEL to select appropriate, similar project data so that manag-
ers can plan, monitor, predict, and better understand their own
project based on the analyzed history of similar software efforts.

As an example, all of the error characteristics of the flight dynamics
projects have resulted in the error model depicted in Figure 8,
where history has shown typical software error rates in the different
phases of the life cycle. As new projects are developed and error
discrepancies are routinely reported and added to the SEL data
base, the manager can easily compare error rates on his or her proj-
ect with typical emror rates on completed, similar projects.
Obviously, the data are environment dependent, but the concepts of
measurement, process improvement, and packaging are applicable
to all environments.

5. ADA ANALYSIS

A more detailed example of one technology that has been studied
in the SEL within the context of the experience factory is that of
Ada. By 1985, the SEL had achieved a good understanding of
how software was developed in the FDD; it had baselined the de-
velopment process and had established rules, relationships, and
models that improved the manageability of the process. It had also
fine-tuned its process by adding and refining techniques within its
standard methodology. Realizing that Ada and object-oriented
techniques offered potential for major improvement in the flight
dynamics environment, the SEL decided to pursue experimentation
with Ada.

The first step was to set up expectations and goals against which
results would be measured. The SEL’s well-established baseline
and set of measures provided an excellent basis for comparison.
Expectations included a change in the effort distribution of devel-
opment activities (e.g., increased design and decreased testing); no
greater cost per new line of code; increased reuse; decreased main-
tenance costs; and increased reliability (i.e., lower error rates, fewer
interface errors, and fewer design errors).

INSPECTIONS

AVERAGE NUMBER OF
REVIEWERS

TEST PROCESS
PER SUBSYSTEM

AVERAGE

DURATION <1 HOUR

AVERAGE

BUILD SIZE 5500 LOC

EFFORT DISTRIBUTION
UPWARD TREND IN DESIGN %

40

30

20

10

% OF THE TOTAL
EFFORT

L L)

0

DESIGN CODE TEST OTHER
SEL BASELINE

I 1ST EXPERIMENT
2ND EXPERIMENT

% OF TOTAL

ERRORS

50
40
30
20

10

COMPUTA-

UNCOVERING ERRORS
NO SIGNIFICANT DIFFERENCES

INITIALIZA- INTERFACE LOGIC
TION

DATA

TION
INSPECTIONS
Jl TESTING

ERRORS (PER K DLOC)

6.0

PRODUCTIVITY (DLOC PER DAY)

40
3.2
7 26
% 7
7 %
SEL 18T 2ND SEL 18T 2ND
BASELINE CLEANROOM CLEANROOM BASELINE CLEANROOM CLEANROOM
EXPERIMENT EXPERIMENT EXPERIMENT EXPERIMENT
Figure 9. Cleanroom Assessment in the SEL

377

10000467-g013

Software Management Environment

EXPERIENCE BASE AUTOMATED TOOL (SME) MANAGEMENT AID
1. COMPARE/EXPLAIN
NO. OF MODEL
1. HISTORICAL DATA ERAORS — CURRENT PROJECT
- ERRORS BELOW NORMAL
BECAUSE:
EL 2 EXPEMENCED TEAM
DATi BASE 3. :Sml.;(hgéﬁ?: DD|FFICULT
]
CT END
(ESTIMATED)
TIME
2. PROCESS MODELS
2. PREDICT
ERRORS/
g | Measone 1000 KSLOG
z
% CURRENT ERROR i
a SME RATE \
8 ! D C sT AT FINAL ERROR
RATE
1 1]
3. KNOWLEDGE cT TT;E AT
— LESSONS LEARNED
— INTUITION 5 ASSESS
ABOVE
NORMAL &
BELOW RELIA- MAINTAIN- QUALITY g
BILITY ABILITY 8
Figure 10. SME: A Tool for “Packaging”

The SEL started with a small, controlled experiment in which two
versions of the same system were developed in parallel: one was
developed in FORTRAN using the standard SEL structured meth-
odology, and the other was developed in Ada using an object-
oriented development (OOD) methodology. Because the Ada
system would not become operational, analysts had time to investi-
gate new ideas and leam about the new technology while extracting
good calibration information for comparing FORTRAN and Ada
projects, such as size ratios, average component size, error rates,
and productivity. These data provided a reasonable means for
planning the next set of Ada projects that, even though they were
small, would deliver mission support software.

Over the past 6 years the SEL has completed 10 Ada/OOD
projects, ranging in size from 38 to 185 KSLOC. As projects com-
pleted and new ones started, the methodology was continually
evaluated and refined. Some characteristics of the Ada envi-
ronment emerged early and have remained rather constant; others

378

took time to stabilize. For example, Ada projects have shown no
significant change in effort distribution or in error classification
when compared with the SEL FORTRAN baseline. However,
reuse has increased dramatically, as shown in Figure 11.

Over the 6-year period, the use of Ada and OOD has matured.
Source code apalysis of the Ada systems, grouped chronologically,
revealed a maturing use of key Ada features, such as generics,
strong typing, and packaging, whereas other features, such as task-
ing, were deemed inappropriate for the application. Generics, for
example, were not only used more often in the recent systems,
increasing from 8 to 50 percent of the system, but they were also
used in more sophisticated ways, so that parameterization increased
eightfold. Moreover, the use of Ada features has stabilized over the
last 3 years, creating a SEL baseline for Ada development.

The cost to develop new Ada code has remained higher than the
cost to develop new FORTRAN code. However, because of the
high reuse, the cost to deliver an Ada system has significantly

6 PROJECTS USING Ada AND OOD

100 P
B TOTAL REUSE
80 (] VERBATIM REUSE 2%
§ 60 —
] %
; 40 — 32% 33%
26% 23%
20 - o 17%
0%

GOADA UARSTELS EUVEDSIM EUVETELS
(88/89) (88/89) {88/90) (88/90)

GRODY GOESIM
(86/87) (87/88)

Figure 11. Reuse Trends

decreased and is now well below the cost to deliver an equivalent
FORTRAN system (Figure 12).

Reliability of Ada systems has also improved as the environment
has matured. Although the error rates for Ada systems, shown in
Figure 13, were significantly lower from the start than those for
FORTRAN, they have continued to decrease even further. Again,
the high level of reuse in the later systems is a major contributor to
this greatly improved reliability.

During this 6-year period, the SEL went through various levels of
packaging the Ada/OOD methodology. On the earliest project in
1985, when OOD was still very young in the industry, the SEL
found it necessary to tailor and package their own General
Object-Oriented Development (GOOD) methodology [13] for use
in the flight dynamics environment. This document (produced in
1986) adjusted and extended the industry standard for use in the
local environment. In 1987, the SEL also developed an Ada Style
Guide [14] that provided coding standards for the local environ-
ment. Commercial Ada training courses, supplemented with lim-
ited project-specific training, constituted the early training in these
techniques. The SEL also produced lessons-leamed reports on the
Ada/OOD experiences, recommending refinements to the method-

ology.

Recently, because of the stabilization and apparent benefit to the
organization, Ada/OOD is being packaged as part of the baseline
SEL methodology. The standard methodology handbooks [11, 12]
include Ada and OOD as mainstream methods. In addition, a com-
plete and highly tailored training program is being developed that
teaches Ada and OOD as an integrated part of the flight dynamics
environment.

Although Ada/OOD will continue to be refined within the SEL, it
has progressed through all stages of the experience factory, moving
from a candidate trial methodology to a fully integrated and pack-
aged part of the standard methodology. The SEL considers it base-
lined and ready for further incremental improvement.

6. IMPLICATIONS FOR THE DEVELOPMENT ORGANI-
ZATION

For 15 years, NASA has been funding the efforts to carry out
experiments and studies within the SEL. There have been signifi-
cant costs and a certain level of overhead associated with these ef-
forts; a logical question to ask is “Has there been significant bene-
fit?” The historical information strongly supports a very positive
answer. Not only has the expenditure of resources been a wise
investment for the NASA flight dynamics environment, but mem-
bers of the SEL strongly believe that such efforts. should be

10000467-g016

379

COST" TO DEVELOP
EFFORT PER DEVELOPED STATEMENT

FORTRAN
N -

1.2 1.2

STAFF HOURS/STATEMENT

FORTRAN

85/86 87/88 88/89 90/91
COST "TO DELIVER
16 EFFORT PER DELIVERED STATEMENT
14 FORTRAN
Ada
2| N
1.0 1.0

1.0
- .
4
&
é 0.8
b
@ 0.6
[+
3
g
o 04
w
b3
“ 02

0.0 5

FORTRAN 85/86 87/88 88/89 90/91
* Cost = Effort/Size
Size (developed) = New stat its + 20% of reused
Size (delivered) = Total delivered stat

v

NOTE: Cost per statement is used here as the basis for comparison, since
the SEL has found a 3-to -1 ratio when comparing Ada with
FORTRAN source lines of code (carriage returns) but a 1-to-1 ratio
when comparing statements.

Figure 12. Costs To Develop and Deliver

commonplace throughout both NASA and the software community
in general. The benefits far outweigh the costs.

Since the SEL’s inception in 1976, NASA has spent approximately
$14 million dolars (contract support) in the three major support
areas required by this type of study environment: research (defin-
ing studies and analyzing results), technology transfer (producing
standards and policies), and data processing (collecting forms and
maintaining data bases). Approximately 50 staff-years of NASA
personnel effort have been expended on the SEL. During this same
period, the flight dynamics area has spent approximately $150 mil-
lion on building operational software, all of which has been part of
the study process.

70000467-g002

TRENDS IN ERROR RATES

5.00

450 I 1 FORTRAN

I Ada

400 P~

3.50

3.00

2,50

ERRORS/KSLOC

2,00

1.50

1.00

0.50

0.00

FORTRAN

85/86 87/88 88/89 90/91

Figure 13. Trendsin Error Rates

During the past 15 years, the SEL has had a significant impact on
the software being developed in the local environment, and there is
strong reason to believe that many of the SEL studies have had a
favorable impact on a domain broader than this one environment.
Examples of the changes that have been observed include the fol-
lowing:

1. The cost per line of new code has decreased only slightly,
about 10 percent—which, at first glance might imply that
the SEL has failed at improving productivity. Although the
SEL finds that the cost to produce a new source statement
is nearly as high as it was 15 years ago, there is appreciable
improvement in the functionality of the software, as well as
a tremendous increase in the complexity of the problems
being addressed [15]. Also, there has been an appreciable
increase in the reuse of software (code, design, methods,
test data, etc.), which has driven the overall cost of the
equivalent functionality down significantly. When the
SEL merely measures the cost to produce one new source
statement, the improvement is small; but when it measures
overall cost and productivity, the improvement is sig-
nificant.

2. Reliability of the software has improved by 35 percent. As
measured by the number of errors per thousand lines of
code (E/KSLOC), flight dynamics software has improved
from an average of 8.4 E/KSLOC in the early 1980s to
approximately 5.3 E/KSLOC today. These figures cover
the software phases through acceptance testing and deliv-
ery to operations. Although operations and maintenance
data arenotnearly soextensive asthe development data, the
small amount of data available indicates significant
improvement in that area as well.

3. The “manageability” of software has improved dramat-
ically. In the late 1970s and early 1980s, the environment
experienced wide variationsinproductivity, reliability, and
quality from project to project. Today, however, the SEL
has excellent models of the process; it has well-defined
methods; and managers are better able to predict, control,
and manage the cost and quality of the software being
produced. This conclusion is substantiated by recent SEL
data that show a continually improving set of models for

10000467-g004

planning, predicting, and estimating all development
projects in the flight dynamics environment. There no
longer is the extreme uncertainty in estimating such
common parameters as cost, staffing, size, and reliability.

4. Other measures include the effort put forth in rework (e.g.,
changing and correcting) and in overall software reuse.
These measures also indicate a significant improvement to
the software within this one environment.

In addition to the common measures of software (e.g., cost and reli-
ability), there are many other major benefits derived from a “mea-
surement” program such as the SEL’s. Not only has the under-
standing of software significantly improved within the research
community, but this understanding is apparent throughout the
entire development community within this environment. Not only
have the researchers benefited, but the developers and managers
who have been exposed to this effort are much better prepared to
plan, control, assure, and, in general, develop much higher quality
systems. One view of this program is that it is a major “training”
exercise within a large production environment, and the 800 to
1000 developers and managers who have participated in develop-
ment efforts studied by the SEL are much better trained and effec-
tive software engineers. This is due to the extensive training and
general exposure all developers get from the research efforts contin-
ually in progress.

In conclusion, the SEL functions as an operational example of the
experience factory concept. The conceptual model for the SEL
presented in Section 1 maps to the functional groups discussed
under SEL operations in Section 3. The experience base in Fig-
ure 2 is realized by the SEL data base and its archives of man-
agement models and relationships [16]. The analysis function from
Figure 2 is performed by the SEL team of software engineering
analysts, who analyze processes and products to understand the
environment, then plan and execute experiments to assess and
refine the new technologies under study. Finally, the synthesis
function of the experience factory maps to the SEL‘s activities in
packaging new processes and technology in a form tailored spe-
cifically to the flight dynamics environment. The products of this
synthesis, or packaging, are the guidelines, standards, and tools the
SEL produces to infuse its findings back into the project orga-
nization. These products are the experience packages of the experi-
ence factory model.

Current SEL efforts are focused on addressing two major questions.
The first is “How long does it take for a new technology to move
through all the stages of the experience factory?” That is, from
understanding and baselining the current environment, through
assessing the impacts of the technology and refining it, to pack-
aging the process and infusing it into the project organization.
Preliminary findings from the SEL’s Ada and Cleanroom expe-
riences indicate a cycle of roughly 6 to 9 years, but further data
points are needed. The second question the SEL is pursuing is
“How large an organization can adopt the experience factory mod-
el?’ The SEL is interested in leaming what the scaleup issues are
when the scope of the experience factory is extended beyond a
single environment. NASA is sponsoring an effort to explore the
infusion of SEL-like implementations of the experience factory
concept across the entire Agency.

ACKNOWLEDGMENT

Material for this paper represents work not only of the authors
listed, but of many other SEL staff members. Special acknowl-
edgment is given to Gerry Heller of CSC, who played a key role in
editing this paper.

REFERENCES

Numerous papers, reports, and studies have been generated over
the SEL’s 15-year existence. A complete listing of these can be
found in the Annotated Bibliography of Software Engineering

380

Laboratory Literature, SE1-82-1006, L. Morusiewicz and J. Valett,
November 1991.
This bibliography may be obtained by contacting:
The SEL Library
Code 552
NASA/GSFC
Greenbelt, MD 20771
A listing of references specific to this paper follows.

1. V. R. Basili, “Towards a Mature Measurement Environment:
Creating a Software Engineering Research Environment,” Pro-
ceedings of the Fifteenth Annual Software Engineering Work-
shop, NASA/GSFC, Greenbelt, Maryland, SEL-90-006, No-
vember 1990.

2. V.R.Basili,“Quantitative Evaluation of a Software Engineering
Methodology,” Proceedings of the First Pan Pacific Computer
Conference, Melbourne, Australia, September 1985.

3. VR Basili and D. M. Weiss, “A Methodology for Collecting
Valid Software Engineering Data,” IEEE Transactions on
Software Engineering, November 1984, pp. 728-738.

4. V.R.Basili, “Software Development: A Paradigm forthe Future
(Keynote Address),” Proceedings COMPSAC ’89, Orlando,
Florida, September 1989, pp. 471-485.

5. VR.Basiliand H.D. Romback, “Tailoring the Software Process
to Project Goals and Environments,” Proceedings of the Ninth
Intemational Conference on Software Engineering, Monterey,
California, March 30 — April 2, 1987, pp. 345-357.

6. V.R. Basili and H.D. Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Trans-
actions on Software Engineering, Vol. 14, No. 6., June 1988,
pp. 758-773.

7. V.R.Basili and G. Caldiera, “Methodological and Architectural
Issues in the Experience Factory,” Proceedings of the Sixteenth
Annual Software Enginecering Workshop, NASA/GSFC,
Greenbelt, Maryland, Software Engineering Laboratory Series,
December 1991.

8. V. R. Basili, G. Caldiera, and G. Cantone, “A Reference
Architecture for the Component Factory,” ACM Transactions
on Software Engineering and Methodology, Vol. 1, No. 1,
January 1992, pp. 53-80.

10.

11.

12.

13.

14.

15.

16.

381

H.D. Mills, M. Dyer, and R.C. Linger, “Cleanroom Software
Engineering,” IEEE Software, November 1990, pp. 19-24.

S. Green, Software Engineering Laboratory (SEL) Cleanroom
Process Model, SEL-91-004, November 1991.

L. Landis, F. E. McGarry, S. Waligora, et al., Manager’s
Handbook for Software Development (Revision 1),
SEL-84-101, November 1990.

FE. McGarry, G. Page, S. Eslinger, et al., Recommended
Approach to Software Development, SEL-81-205, April 1983,
Revision 3 in preparation; scheduled for publication June 1992.

E. Seidewitz and M. Stark, General Object-Oriented Software
Development, SEL-86-002, August 1986.

E. Seidewitz et al., Ada® Style Guide (Version 1.1),
SEL-87-002, May 1987.

D. Boland et al., A Study on Size and Reuse Trends in Attitude
Ground Support Systems (AGSSs) Developed for the Flight
Dynamics Division (FDD) (1976-1988), NASA/GSFC, CSC/
TM-89/6031, February 1989.

W. Decker, R. Hendrick, and J. Valett, Software Engineering
Laboratory (SEL) Relationships, Models, and Management
Rules, SEL-91-001, February 1991.

