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Abstract

This paper presenis an overview of a knowledge-
based approach which helps in the mechanical docu-
mentation and understanding of computer programs.
This approach performs mechanical annotation of
loops by first decomposing them into fragments, called
events. Il then recognizes the high-level concepts, rep-
resented by the events, based on patterns, called plans,
stored in a knowledge-base. We focus on the design
and utilization of the plans and discuss how to gen-
eralize their structure. The generalized tree structure
can facilitate plan recognition and reduce the size of
the knowledge-base. A case study on a real program
of some practical importance, containing a sei of 77
loops, has been performed. Results concerning the
plans designed for this case study are given.

1 Introduction

The activity of program understanding plays an im-
portant role in nearly all software related tasks. It is
vital to the maintenance and reuse activities since it
becomes very difficult to perform these tasks without
a deep and correct understanding of the component to
be maintained or reused. Furthermore, program un-
derstanding is indispensable for improving the quality
of software development. This fact can be easily real-
ized since code reviews, debugging, and some testing
approaches all require programmers to read and un-
derstand programs. :

In this paper, we present an overview of a
knowledge-based approach which helps in the mechan-
ical documentation and understanding of computer
programs. Specifically, this approach facilitates the
process of annotating loops with their functional ab-
stractions. It mechanically identifies and derives as
many parts of the loop specifications as possible. The
parts that cannot be identified, due to an insufficiency
in the knowledge-base, are linked to the corresponding
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parts of the loop to serve as a guide for the evolution
of the knowledge-base in the domain under consider-
ation.

We focus on the description of the objects, called
plans, which are stored in the knowledge-base. These
plans represent units of knowledge which are utilized
in identifying abstract programming concepts in the
code. We first give a simplified plan structure and
show how it can be used in specifying loops. We then
explain how to generalize this structure and discuss
the effects of the new structure on the evolution of
the knowledge-base.

Finally, we explain how we designed the plans for
the analysis of loops in.a program of some practical
size and complexity. To have an idea about the size of
the knowledge-base, we give the number of designed
plans and the number of generalizations and abstrac-
tions performed on them.

2 Overview of our knowledge-based
approach

In this section, we introduce a taxonomy that clas-
sifies loops according to their complexity level and de-
scribe the step by step process used for annotating
loops with their functional abstractions. Even though
we have designed analysis techniques that can be ap-
plied to the different loop classes, we only give a sim-
plified description of how to analyze unnested loops.
In this description, the focus will be on the design of
the plans and their utilization.

Several knowledge-based techniques have been de-
signed for documenting programs. In the transfor-
mational technique[13], a semantically equivalent but
more abstract form of the input program is produced
with the help of plans and transformation rules. Since
the plans (or rules) canonly transform fixed syntactic
forms and cannot reduce non-adjacent program con-
structs, a large knowledge-base might be needed to
compensate for these drawbacks. In the graph pars-



Dimension Complementary classes
1. Control computation Simple loop General loop
2. Complexity of condition | Noncomposite condition | Composite condition
3. Complexity of body Flat loop Nested loop

Table 1. The three dimensions used for classifying loops.

ing technique[16], it becomes too expensive to perform
an exhaustive graphical parsing of a program. This

is because the number of sub-graphs is exponential .

and sub-graph isomorphism is NP-complete. Other
techniques[6, 14] are based on heuristic methods that
trade accuracy for simplicity. The graph parsing and
heuristic techniques output documentations, more or
less, in the form of structured English text.

In our approach, we can analyze stereotypical loop
fragments which have non-adjacent parts. The re-
sulting documentations are more formal and accurate
than English text. However, we only focus our atten-
tion on the difficult task of documenting loops. Loops
are decomposed into fragments, called events, based

on the structural dependencies among the different

loop segments. The resulting events are analyzed, us-
ing plans stored in a knowledge-base, to deduce their
functional abstractions. The functional abstraction of
the whole loop is then synthesized from the functional
abstractions of its events. Expert knowledge and in-
ference procedures are thus utilized in rigorously doc-
umenting computer programs.

This idea of analyzing loops by decomposing them
into fragments was first introduced by Waters[19].
Even though Waters’ approach does not address the
issue of how to use this decomposition to mechanically
annotate loops, it is especially interesting because of
its practicality over other approaches[5, 12]. The idea
of analysis by decomposition has also been adopted
by Basili and Mills in a different context[4]. They
performed an experiment in trying to understand an
unfamiliar program of some complexity. Their process
consists of reducing the program to be understood to
smaller parts and then creating in a step-by-step pro-
cess the functions produced by those parts, combining
them at higher and higher levels until a full specifica-
tion is achieved.

In the next subsection, we start by defining some
notations and giving the loop taxonomy.

2.1 A taxonomy for loops
Let the representation of the while loop be

while B do S, where the condition B has no side ef-
fects and S may be any one-in one-out flow chart. A
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control variable of the while loop is a variable that ex-
ists in the condition B and gets modified in the body
S.

While loops are classified along three dimensions.
The first dimension focuses on the control computa-
tion of the loop. The other two dimensions focus on
the complexity of the loop condition and body. Along
each dimension, a loop must belong to one of two com-
plementary cases as shown in Table 1. In this classifi-
cation, the loops in the middle column are expected to
be more amenable to analysis than the corresponding
ones in the right column.

Within the first dimension, we differentiate between
simple and general loops. Simple loops have a behavior
that is similar to the behavior of for loops. They are
defined by imposing two restrictions: the loop has a
unique control variable, and the modification of the
control variable does not depend on the values of other
variables modified within the loop body. Loops which
do not satisfy these conditions are called general loops.

Along the second dimension, the complexity of the
loop condition can vary between two cases. In the non-
composile case, B is a logical expression that does not
contain any logical operators. In the composite case,
logical operators exist and can connect the operands in
a complicated and non-standard form. Along the third
dimension, the compliexity of the loop body varies be-
tween flat and nested loop structures. In flat loop
structures, the loop body can not contain any other
loop inside it which is not the case in nested struc-
tures.

2.2 The design of plans

The term ‘plan’ has been used in program under-
standing literature to denote two different things. In
some literature [13, 15, 16, 18], plans are viewed as
program fragments which represent an abstract pro-
gramming concept or a stereotypical action sequences.
Other literature[6, 7, 11, 14] views them as units of
knowledge necessary for identifying abstract program-
ming concepts.

To avoid any ambiguities, we have decided to adopt
the conventions introduced by Harandi and Ning[6, 7).
That is, we use the term ‘event’ to refer to a fragment



representing an abstract concept in a program and the
term ‘plan’ to refer to a unit of knowledge required to
identify such a concept. To analyze loops, we define
two categories of loop events and two corresponding
main categories of plans. ‘

Basic Events (BE’s) are the fragments that consti-
tute the control computation of the loop. A BE con-
sists of three parts: the condition, the enumeration,
and the initialization. The condition is one clause of
the loop condition. The enumerafion is a segment re-
sponsible for the data flow into the condition. The
initialization is the initialization of the variables de-
fined in the enumeration.

After identifying the BE’s, the Augmentation
Events (AE’s) are the remaining fragments of the loop
body. An AE consists of two parts: the body and the
initialization. The body is one segment of the loop
body which is not responsible for the data flow into
the loop condition. The initialization is the initializa-
tion of the variables defined in the body.

The plans, stored in a knowledge-base, are utilized
in identifying stereotypical loop events. These plans
are used as inference rules[6, 7]. Their structure is
divided into two parts: the antecedent and the con-
sequent. When a loop event matches the antecedent,
the plan is fired. The instantiation of the information
in the consequent represents the contribution of this
plan to the loop specifications.

Corresponding to the two event categories, we have
two plan categories: Basic Plans (BP’s) and Augmen-
tation Plans (AP’s). The BP’s are used to analyze
the BE’s and the AP’s are used to analyze the AE’s.
Plans are further classified according to the kind of
loops they analyze. The plans used for analyzing sim-
ple loops contain more information than those used
for analyzing general loops.

More specifically, the sequence of values scanned
by the control variable of a simple loop can be easily
written. This is because the control computation is
isolated from the rest of the loop. The loop condi-
tion, the control variable’s initial value, and the net
modification performed on the control variable in one
loop iteration, if any, provide sufficient information
for writing this sequence. For instance, consider the
following two examples:

Example 1:

flag : boolean,;

course_no_db: array[0..mazcourses) of integer;

i, course_no, course.i, num_of_courses : integer;

) ::bl; course_i := 0; flag := false;
while (i <= num_of courses) and (flag = false) do

begin
if course_no = course_no_db[i] then begin
course_t := i

flag := true
end;
t:=14+1
end
Example 2:

z, j, n: integer;
a : array[l..maz] of integer;

j=1

while j < n+ 1 do begin
z:=z+ alj];
j=3+1

end

The loop in Example 1 searches for a course
number ‘course_no’ in a-course number data base
‘course_no_db’. If the course number is not found,
the ‘flag’stays false. If found, the ‘flag’is set to true
and the location is saved in ‘course_i’. In Example 2,

n
the variable « is assigned the value zo + Y, a[ind],
ind=
where z; denotes the initial value of z befg:e éhe start
of the loop.

In the simple loop of Example 2, the sequence
scanned by the control variable at any point during
the loop execution is 1 to j — 1. This sequence is
needed to write the following part of the invariant:

j—1
z ==z9+ Y, afind]. The final sequence of values
ind=1
scanned by the control variable in this loop is 1 to n.
This sequence is needed to write the postcondition:

3 afind].

z=g20+ )
ind=1 .

The analysis of general loops is, however, not as
straightforward as that of simple ones. In many cases,
it might not be easy, or even possible, to obtain such
specific knowledge because the control computation of
the loop is not as determinate and isolated as in the
case of simple loops. In the general loop of Example 1,
there is no guarantee that the final sequence scanned
by the control variable i will be 1 to n. The content
of the final sequence is dependent on the contents of
the variables ‘course_no’ and ‘course_no_db’. As a
result of this generality of the control computation,
the sequences of values scanned by the control vari-
able(s) and, consequently, the postcondition parts of
the individual events cannot be written.

To accommodate the differences between simple
and general loops, we have two categories of BP’s.
Determinate BP’s (DBP’s) which contain in their con-



Plans

Basic Plans (BPs) Augmentation Plans (AP’s)
Determinate BP’s  Indeterminate BP’s  Simple AP's (eneral AP’s
(DBP’s) (IBP’s) (SAP’s) (GAP’s)

Fig. 1. Plan categories.

plan-name DBP;

antecedent
control-variables var#
condition var# R# exp#
enumeration var# := SUCC (var#)
initialization varo#

(R# equals < or <)A (var#
is of a discrete ordinal type)A
(B is noncomposite)

firing-condition

consequent
precondition PRED(varo#) R# exp#
invariant varo# < vargt R SUCC(exp#)
postcondition var#t = SUCC(SHIFT (exp#))
seq varg# .. PRED(var#)
final-seq varg# .. SHIFT (exp#)
inner-addition varo# < var# R# exp#
where,
a..b A sequence of ordinal values that
starts from a up to the final value
b with increments of a unit step.
succ The unary operator that gives the
successor of its argument.
PRED The unary operator that gives the
predecessor of its argument.
SHIFT The identity function if R# equals

<. Equals PRED otherwise.

Fig. 2. A Determinate Basic Plan (DBP).

sequents information regarding the postcondition and
the sequences of values scanned by the control vari-
able. Indeterminate BP’s (IBP’s), on the other hand,
do not contain such information. We also have two
categories of AP’s. Simple AP’s (SAP’s) utilize the
above sequences in writing the loop specifications, in-
cluding its postcondition. General AP’s (GAP’s) do
not include the loop postcondition part or utilize the
above sequences. These plan categories are shown in
Fig. 1. It should be noticed that if we neglect the
information regarding the control sequences and the
postcondition, DBP’s can be used in analyzing gen-
eral loops. However, the reverse is not true because
DBP’s are more specific than IBP’s.

Figures 2-5 show four plans, one of each category.
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plan-name SAP;
antecedent
control-variables v#
body cond# => lhs#t := lhs# op#
exp#
initialization lhsO#

exp## does not include lhs# A
(Ihs# # v#)A
(op# € {+,&,%})

firing-condition

consequent
precondition true
invariant lhs# = lhsO# op# op#(exp#u’i
L vt
, ind = seq, cond#|;7;)
postcondition lhs# = lhsO# op# op#(erp#lfﬁi

. ind = final-seq, cond#|;",)

inner-addition same as invariant

where,
op(exp;, © = seq, The result of applying the op
cond;) operation to the sequence exp;,
where ¢ varies over the sequence
seq and exp; satisfies cond;.
Pz The result of substituting y for

each free occurrence of z in P.

Fig. 3. A Simple Augmentation Plan (SAP).

To convey the basic analysis ideas within a reasonable
space limit, we only show simplified versions of the
plans. The suffix ‘#’ is used to indicate terms in the
antecedent (or consequent) that are not matched ( or
instantiated) with actual values yet.

The plan DBP; (Fig. 2) represents an enumeration
construct that goes over a sequence of values of a dis-
crete ordinal type in an ascending order with a unit
step. In the case where the loop has a composite con-
dition, the seq, final-seq and postcondition of this
plan are written in a more general form that enables
deducing the corresponding ones of the loop from the
multiple BE’s it contains. The plan SAP; (Fig. 3)
represents a construct that performs an accumulation
of successive values of an expression exp# in the vari-
able lhs# when the condition cond# is satisfied. The
plan IBP; (Fig. 4) represents a construct that ter-
minates the loop execution, using the control variable
var2# as a flag, after the condition cond2# is satis-
fied. The plan GAP; (Fig. 5) represents a construct
that saves the value of the expression exp# in the vari-
able lhs# when the condition cond#, that causes the
termination of the loop, is satisfied.

In general, the antecedent represents three kinds of
knowledge.

1. Knowledge about the control variables which are
used in the plan. The individual listing of these
control variables, in the control-variables part,



plan-name
antecedent
control-variables
condition
enumeration
initialization
firing-condition

IBP,

varl#, var2#

var2# = const2#

cond2# = var2# 1= ~const2#
var2o#

(const2# equals true or false)A

(cond2# contains vari# but not
var2#)A(The event that modifies
varl#t is analyzed by DBP;) A
(Initial value of varl# is varlp#)

consequent
precondition var2o## = const2#
invariant (var2# = const2# <

(Vvarlo# < ind < varl#:
—-cond2#|f:;1#))/\

(V varlo# < ind < PRED(:
varl#) : ﬂcondZ#If::gl#)

inner-addition same as invariant

Fig. 4. An Indeterminate Basic Plan (IBP).

serves to underscore their importance and to fa-
cilitate the readability and the comprehension of
the plan.

. Knowledge which is necessary for the recogni-
tion of stereotypical loop events. The BP’s have
the condition, enumeration, and initializa-
tion parts which represent abstractions of the
corresponding three parts of stereotypical BE’s.
Similarly, the AP’s have the parts body and ini-
tialization which represent abstractions of the
corresponding two parts of stereotypical AE’s.

. Knowledge needed for the correct identification
of the plans such as data types’ information,
whether a variable has been modified by a previ-
ous event or not, or the previous analysis knowl-
edge of a variable. This knowledge is given in the
firing-condition

The consequent of a library plan represents the fol-

lowing knowledge.

1. Knowledge necessary for the annotation of loops
with their Hoare-style[9] specifications. That is
why they have the precondition, invariant,
and postcondition parts where precondition
and invariant have the usual meaning[9]. The
postcondition part gives information, in case
of simple loops, about the variables’ values after
the loop execution ends. It is correct provided
that the loop executes at least once. If the loop
does not execute, no variable gets modified. The
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plan-name
antecedent
control-variables
body
initialization
firing-condition

GAP»

varlf, var2#

cond#t == lhs# := exp#

lhso#

(var2# is of boolean type)A
(!hs# does not occur in cond#)A

(var2# = const# is a clause of
B) A (cond# # true)A

(The event which modifies varl#
is analyzed by DBP;)

consequent
precondition true
invariant (var2# = —const# == lhs# =
#‘varl# )/\
CTPH# | pRED(var1#
(var2# = const# = lhs# =
lhso#)

inner-addition same as invariant

Fig. 5. A General Augmentation Plan (GAP).

Form Loo

Events

Lo,
Source Code

Analyze
Events

Decompose|
o=

Normalize =)
: Body

Specifications

Fig. 6. Analysis of unnested loops.

inner-addition part, which is not further dis-
cussed in this paper, is needed for the complete
annotation of inner loops, if any, in nested con-
structs.

2. In case of DBP’s, knowledge about the sequence
of values scanned by the control variables at any
point during and after the loop execution is cap-
tured in seq and final-seq respectively.

2.3 The utilization of plans in analyzing
loops

As depicted in Fig. 6, the analysis of flat loops
is performed in a step by step process divided into
four main phases. A brief description of each of these
phases and their application to Example 1 is given in
the remainder of this section.

2.3.1 Normalization of the loop representa-
tion

The purpose of this phase is to make the loop repre-
sentation independent of the programming language



and the implementation specific details.

The loop condition is converted into one of the well
known normal forms, the conjunctive normal form[17}.
This standard form converts a well formed formula
(wff) in predicate logic into a conjunction of clauses
where a clause is defined to be wif in conjunctive nor-
mal form but with no instances of the and (A) con-
nector. For example, the loop condition z < a V (y <
b Az < ¢) is transformed to the conjunction of two
clauses (z < aVy<b)and (zr<aVz<e).

A single unwinding of the loop body is performed

by symbolic execution[l, 2]. This symbolic execution.

makes the variables’ new values dependent only on the
values resulting from the last iteration of the loop, if
any[3]. For example, if we have the loop body & :=
t — 1;sum := sum + k, then the symbolic execution
results in the concurrent assignment k,sum = ¢ —
l,sum+1t—1. ' ‘

In Example 1, the condition is already in conjunc-
tive normal form containing the two clauses (i <
num_of_courses) and (flag = false). The symbolic
execution does not affect the body of the loop. How-
ever, the net modification performed on each variable
is expressed separately as follows:

course_no = course_no_dbi] => course_i := i,
course_no = course_no_db[i] = flag := true,
it = i+1

2.3.2 Decomposition of the loop body

The loop body is decomposed into minimal segments
of code which are ordered according to their data flow
dependencies[19]. The properties of these segments
are summarized as follows:

1. Each segment gives the net modification done to
some variables(s) in one iteration of the loop.

2. The set of variables defined in a segment should
not be defined in any other segment.

3. Each segment, S, has a specific order. The order-
ing relation ‘analyzed before’, denoted by ‘-’ is
an irreflexive partial order which is defined as fol-
lows:

(a) If some of the variables defined in a segment
Sj are referenced in a segment Sy, then S; —
Sa.

(b) It is possible for two segments S; and S,
to be unrelated (—(S; — S; or S2 — S1)).
Such segments are called independent.

(c) The transitive (if Sy — S; and S; — S3,
then S; — S3) and antisymmetric (if S; and
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S are two distinct segments, then —(S; —
Sz and Sy — S1)) properties are satisfied.

(d) Since it is meaningless for a segment S to be
analyzed before itself, the irreflexive prop-
erty (—(S — 5)) is satisfied.

In Example 1, the resulting segments and their or-
ders are:

Order Segment
1 i:= i+1
2 course.no = course.no.db[i] =
flag := true
2 course_no = course_no.db[i] =
course_t = i

Notice that the segment that defines i has the lowest
order because the other two segments reference . The
other two segments have the same order because they
are independent.

2.3.3 Formation of the loop events

In this phase, we form the loop events. To form BE’s,
each clause of the loop condition i1s combined with
the highest order segment(s) having data flow into it.
If a clause has no segment responsible for the data
flow into 1t, this means that this clause is redundant
and should be removed from the loop condition. If
a segment remains with no clause associated with it,
its condition is set to true. AE’s are the remaining
segments of the loop body. Each event includes the
initializations of the variables defined in it. By giving
each event the same order as the segment it utilizes,
we satisfy the condition that the variables referenced
in an event are either defined in a lower order event
or not modified within the loop at all.

The loop in Example 1 contains the following three
events which correspond to the three segments of the
body:

1. BE (order: 1)

condition: (i < num_of_courses)

enumeration: ¢ = i+ 1

initialization: ¢ := 1
2. BE (order: 2)

condition: flag false

enumeration: course.no = course_no_db[i] =

flag = true

initialization: flag = false
3. AE (order: 2)

body: course_no

coursei = 1

initialization: course.i := 0

It should be pointed out that Hausler ef.al.[8] sug-
gested the use of program slicing[20] to decompose

course_no.db[i] =



loops and to allow the abstraction of loop functions
one variable at time. They offered no detailed inves-
tigation or discussion of this idea. Even though the
resulting loop slices are independent, each slice must
include all the statements affecting the modification of
the current variable. This can result in loop slices that
are larger in size than our events due to the repetition
of some statements in multiple slices. The plan design
and identification can, in turn, be more difficult. A
large knowledge-base might be needed to compensate
for these problems.

2.3.4 Analysis of the events

The events are analyzed by trying to match them
with the antecedents of the library plans. When an
event matches the antecedent of a plan and the firing-
condition is satisfied, the consequents of the matched
plans are instantiated giving the contribution of each
event to the specification of the loop. The results of
these instantiations for the events of Example 1 are:
Precondition:

Event Plan  Predicate
1 DBP; 0 < num_of_courses A
2 IBP,  false = false
Invariant:
Event Plan  Predicate
1 DBP; 1< i< num.of_courses+ 1A
2 IBP; (flag = false <= (V1 <ind < ¢
: course_no # course_no_db[ind}))
AV L <ind<i—1: courseno#
course_no_db[ind]) A
3 GAP;  (flag = true = course_i =i — 1)

A (flag = false =3 course_i = 0)
The precondition and invariant of the loop are syn-
thesized by taking the conjunction of the individual
preconditions and invariants. The event and plan
responsible for the production of each predicate are
shown to its left. When some event(s) do not match
any library plans, we get partial specifications of the
loop.

3 Abstracting and generalizing plans

An abstraction of a plan is performed by replacing a
formal term with another one that covers more cases.
For example, replacing the addition operator, +, in a
certain plan with a more abstract one which denotes
either addition or multiplication represents an abstrac-
tion of this plan. The plan SAP, in Fig. 3 underwent
this abstraction.
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Antecedent
firing-condition 0
""""" 1
EConsequentO:
I (defal) |
ﬁring-wnd@l/ firing-condition 2 ﬁring-cun:iiﬁun ]
(Consequent | . [Consequent 2 ..o seermrcnrnn {Consequent
W«Mgmﬁﬁul
Consequent £.1}............ [Consequent l.ml """""

Fig. 7. The structure of a generalized plan.

A generalization of the plan structure into a tree
structure can be performed if several similar plans are
specializations of a more general case. The similar
plans are grouped together in one generalized plan
that has a single general antecedent and several con-
sequents organized in one, or more, tree structures

‘as shown in Fig. 7. The consequents are organized

in one tree structure if the default consequent exists.
Otherwise, they are organized in more than one tree
structure (forest). In order to select a specific general
plan, a match with the antecedent should occur first.
Then, firing-condition 0 must. be satisfied. Within
the plan, local firing-conditions of the consequents
guide the search for the suitable consequent. The more
general the consequent, the closer it is to the root of
its tree (e.g.; consequent 1 of Fig. 7 is more general
than consequent 1.1). The consequents located at the
same level have mutually exclusive firing-conditions.
This means that only forward search is needed and no
backtracking is required. When the event matches the
antecedent and firing-condition 0 of the generalized
plan is satisfied, the search for the appropriate con-
sequent starts at the appropriate root trying to go
down in the tree as far as possible. The path be-
tween a parent and a child can only be taken if the
local firing-condition associated with the child con-
sequent is satisfied.

Using this generalized structure can lead to a re-
duction in the size of the knowledge-base since several
plans can be combined together in a larger one having
a unique antecedent. It can reduce the number of the
plans and thus lead to a reduction in the search time
needed to find a specific one. However, -the instanti-
ation of the proper consequent becomes more compli-



(1)
if condition then begin
flag := true

end else begin

end
1:=i41;

3)
if condition then begin
flag = true

end else begin

end
list .= list 1 .pointer;

while (i <= n) and (not flag) do begin

while list <> nil and not flag do begin

(2) while (i <=n) and (flag) do begin
if condition then begin
flag .= false
end else begin
i:=141;
end
(4) while list <> nil and flag do begin

if condition then begin
flag := false

end else begin

list := list | .pointer;

end

Fig. 8. Four variations of loop control computation.

cated,

Generalizations can be used to detect special cases
and output loop specifications that are simpler and
more concise than those for the general case. For in-
stance, we generalized SAP; (Fig. 3) by making the
shown consequent the default one. Three local firing-
conditions, and their consequents, were added to de-
tect the occurrence of special values of exp#, op# and
cond# and to produce simplified forms of the specifi-
cations.

Considering the same loop of Example 2 with the
statement that modifies z changed to ‘x z+ 1,
the resulting postcondition using the generalized
SAP; would be: z¢ + n. This form is better than
the one resulting from the default consequent. The
postcondition using the default consequent is: z =
o+ (1, ind = 1..n, true).

Generalizations can also be used to analyze similar
events whose specifications vary depending on their
environment (e.g.; data types, control computation of
the loop, ..., etc). For example, IBP, (Fig. 4) was
generalized into a plan having four consequents. The
generalized plan has no default consequent. Its an-
tecedent is similar to that shown in Fig. 4 except
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for the firing-condition. Firing-condition 0 does
not enforce a condition on the event which modifies
varl#. Instead, four local firing-conditions, and
their consequents, cover the four variations of loop
control computation which are given in Fig. 8. The
first variation is similar to the one in Example 1.

As the number of loops analyzed in a specific do-
main increases, the experience gained should lead to
the evolution of the knowledge-base. A controlled uti-
lization of the knowledge-base can serve to adapt some
of the plans and make their abstraction level, gen-
erality, number, and naming conventions suitable for
the domain under consideration. This can, in turn,
facilitate their recognition and reduce the size of the
knowledge-base. For example, IBP5 underwent the de-
scribed generalization and was given the more indica-
tive name ‘linear-search-IBP’ during the performance
of our case study. ‘

4 A study on the design and utilization
of plans

Given a fixed set of loops, the number and com-
plexity of the plans needed to analyze them can help



in judging the effect of the decomposition method and
the plan design on the size of the knowledge-base.

We have chosen a program[10], having 1400 exe-
cutable lines of code and 77 loops, for a study on the
design and utilization of plans. This program deals
with scheduling a set of courses offered by a Com-
puter Science Department. During this case study, we
had to analyze and specify loops which utilize data
types such as pointers and which have a variety of
Pascal statements. Every loop under consideration
was first decomposed into its basic and augmentation
events. Then, every event was analyzed in order to
design a plan suitable for it. If no plan was available
in the knowledge-base to match the event under con-
sideration, or a similar event, a new plan was designed
with initial specifications. The plan was then modified
and tailored to give correct specifications by trying to
prove the loop invariant using Hoare techniques[9]. If
a plan that matched a similar event, but not the ex-
act one under consideration, existed in the knowledge-
base, further abstractions and/or generalizations to
the existing plan were considered.

For the 65 completely analyzed loops, containing
213 events, 48 plans were designed. Table 2 shows the
plans that are utilized more than once and the num-
ber of their utilizations. The * (*) superscript is used
to denote plans which underwent generalizations (ab-
stractions) during the iterative process of their design.
For example, plan DBP; was used 42 times and was
generalized.

Since one of our objectives was to validate and eval-
uate our analysis techniques, we designed some plans
that, in our opinion, have a very slight probability of
being used more than once due to their highly specific
nature. These plans helped us in evaluating the anal-
ysis techniques in loops with, say, high nesting level
or a large number of procedure calls. These plans are
probably not fully developed and the analysis of more
loops in the same application domain should either
eliminate or abstract/generalize them.

The average and standard deviation of the num-
ber of utilizations of the 48 designed plans are 4.44
and 7.25 respectively. The average and standard de-
viation of the number of utilizations of the 10 ab-
stracted/generalized plans are 13.9 and. 11.2 respec-
tively. These higher numbers support the argument
that commonly used plans get more chances to be re-
vised and adapted and this, in turn, leads to utilizing
them more.

More specifically, the 10 (out of 48) ab-
stracted/generalized plans analyze 139 events out of
the 213 events analyzed in this study. Those plans
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Name Plan category
(subscript) [ DBP | IBP | SAP GAP
1 42* 4 |23+ 4
2 6* 13* | 19% 9*t
3 8 2 3* 2
4 8* 2 10 2
5 —_ 2 2 2
6 — — 3t —
7 — — | 13** —
8 — — 2 —
9 — — 2 —
10 — — 2 —
11 — — 2 —
12 — — 2 —
13 — — 3 —

Table 2. Utilization of the designed plans.

have a total of 24 consequents and underwent a to-
tal of 8 abstractions. This means that the experience
gained during this case study enabled us to encapsu-
late the knowledge of at least 32 (24+8) shallow plans
into 10 deep and well developed ones. This can facil-
itate the searching procedure and reduce the size of
the knowledge-base. Coming up with such a set of
generalized/abstracted plans should be the objective
of any analysis performed in a specific application do-
main. Gaining experience in the domain should lead
to the evolution of the plans into more concise and
useful ones.

5 Conclusion

We have presented a knowledge-based approach for
specifying loops. This approach intelligently assists
software engineers by adding knowledge to their envi-
ronment in the form of plans stored in a knowledge-
base. We have shown how to design, utilize, abstract
and generalize the plans. The generalized plan struc-
ture can facilitate their recognition and reduce the size
of the knowledge-base.

By performing the case study, we were able to val-
idate our techniques and to package our experience
in the design and utilization of plans for a specific do-
main. The issue of using the resulting specifications in
a larger system that performs an intelligent analysis of
complete program modules needs to be investigated.
The practicality of our approach should be further in-
vestigated by trying to test them in various domains.
We are in the process of designing a prototype tool
which helps in performing these tasks.
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