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Abstract

This paper presenls a program understanding tool
which documenis programs by generating predicale
logic annotations of their loops. The ool is based on
an analysis by decomposilion approach which ulilizes
a knowledge base of plans in recognizing the abstract
concepls in programs. Using data flow analysis, the
decomposition encapsulates closely related statements
in evenls which can be analyzed individually. The first
order predicate logic annolations of loops are synihe-
sized from these individual analysis resulls. A sum-
mary of the resulls of a case study, performed on a
pre-ezisting program of reasonable size, is given. The
loops in this study, which are used as lest daia to the
1ool, serve to validate our analysis approach. Finally,
different applications of the lool are discussed. This
discussion focuses on how the ool can assist in the
formal development of software using VDM and Z.

1 Introduction

Automated program understanding can assist soft-
ware engineers in tasks which require reverse engineer-
ing such as maintenance and reuse. It can also as-
sist many development tasks such as inspections and
"code reviews. These important applications have mo-
tivated considerable research on the topic. Conse-
quently, many encouraging and useful results, which
demonstrate the feasibility of automatic program un-
derstanding, are available. A significant amount of
this research, however, produces informal natural lan-
guage documentations which can be ambiguous and
uses toy programs to validate proposed approaches.

In this paper, we present a knowledge-based pro-
gram understanding tool, LANTeRN. LANTeRN is
based on an analysis by decomposition approach which
documents programs by generating first order predi-
cate Jogic annotations of their loops. The advantage

of predicate logic annotations is that they are unam-
biguous and have a sound mathematical basis which
allows correctness conditions to be stated and verified, -
if desired. Another unique and important advantage
is that they can be used in assisting the formal devel-
opment of software using VDM and Z.

To validate our analysis approach and study its ef-
fect on the size of the knowledge base, we have per-
formed a case study on a real and pre-existing program
of some practical value. The loops in this program are
used as input data to LANTeRN.

Section 2, of this paper, briefly reviews some re-
lated research on program analysis and understanding.
It explains some of the issues addresszd in our cur-
rent work. Our loop analysis tool, LANTeRN, is pre-
sented in Section 3. Its analysis approach, structure,
and analysis results are described using an example
program. The different applications of LANTeRN are
discussed in Section 4. The focus is on the application
of assisting formal software development using VDM
and Z. Examples are used to explain when and how
LANTeRN can play its assistance role. In conclusion,
Section 5 discusses the characteristics and limitations
of both our approach and its current implementation.

2 Program analysis and understanding

Considerable research has been periormed on the
automation of program understanding. Many different
approaches, which demonstrate the feasibility and use-
fulness of the antomation, resulted from this research.
Some of these approaches are: graph parsing [19], top-
down analysis using the goals a program is supposed to
achieve as input {13], heuristic-based object-oriented
recognition [7], transformation of a program into a se-
mantically equivalent but more abstract form with the
help of plans and transformation rules {17, 24], and de-
composition of a program into smaller more tractable
parts using proper decomposition [8].



Most of these approaches {7, 8, 13, 17, 19] produce
program documentation which is, more or less, in the
form of structured natural language text. Such infor-
mal documentation gives expressive and intuitive de-
scriptions of the code. However, there is no semantic
basis that makes it possible to determine whether or
not the documentation has the desired meaning. This
lack of a firm semantic basis makes informal natural
language documentation inherently ambiguous.

Some of these approaches rely on user-supplied in-
formation which might not be available at all times.
For instance, the goals a program is supposed to
achieve [13] or the transformation rules that are appro-
priate for analyzing a specific code fragment [24] are
not always clear to the user. Others have difficulty
in analyzing non-adjacent program statements [17].
In addition, a significant amount of program under-
standing research has used toy programs to validate
proposed approaches. Realistic evaluations of the ap-
proaches used, which give quantifiable results about
recognizable and unrecognizable concepts in real and
pre-existing programs, are needed. Such evaluations
can also represent a basis for empirical studies and
future comparisons with other approaches [21].

To address the above mentioned drawbacks, we
present an approach for automating program under-
standing which is motivated by the idea of analysis by
decomposition {5, 25]. It is based on the earlier work
of Waters [25] which analyzes programs by decompos-
ing them into smaller parts using data flow analysis.
Even though Waters’ approach does not address the
issue of how to use this decomposition to mechanically
annotate loops, it is especially interesting because of
its practicality.

Another possible decomposition technique was sug-
gested by Hausler et.al. [9). They suggested the use
of program slicing [26] to decompose loops and to al-
low the abstraction of loop functions one variable at
time. Since no detailed investigation or discussion of
this idea was offered, it is not clear how it would af-
fect the size of the knowledge base. Even though the
resulting loop slices are independent, each slice must
include all the statements aflecting the modification
of the current variable. This can result in large loop
slices which make plan design and identification more
difficult. A large knowledge base might be needed to
compensate for this problem.

The techniques for analyzing dependency relations
between program parts were originally developed for
optimizing and parallelizing compilers.. Of particu-
lar interest is the research reported in [4], which per-
forms automatic recognition of recurrence relations.
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Fig. 1. Overview of the analysis approach.

In this research, the effect of a single loop iteration,
on each of the variables computed in it, is summa-
rized in what is called an abstract interpretation. This
abstract interpretation only stores information about
identifiers and arrays whose net changes in one loop
iteration have the forms identifier := expression and
arrayfindex)] := expression, respectively. Recurrence
relations in the loop are then identified from the ab-
stract representation and replaced with closed forms
using predefined patterns. Since this approach only
identifies limited patterns that are useful for paral-
lelizing compilers, it avoids dealing with many com-
plications concerning the loop decomposition and the
design and identification of patterns.

The next section starts by giving a brief overview
of our loop analysis approach. It then describes the
loop analysis prototype and gives a summary of the
case study results.

3 A loop analysis tool

Our analysis approach annotates loops with pred-
icate logic annotations in a step by step process as
depicted in Fig. 1. The analysis of a loop starts by
decomposing it into fragments, called events. Each
event encapsulates the loop parts which are closely re-
lated, with respect to data flow, and separates them
from the rest of the loop. The resulting events are
then analyzed, using plans stored in a knowledge base,
to deduce their individual predicate logic annotations.
Finally, the annotation of the whole loop is synthe-
sized from the annotations of its events [1].

An important feature of this approach is its me-
chanical generation of first order predicate logic an-
notations. To emphasize this aspect, we explain the
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Fig. 2. Structure of LANTeRN.

above analysis steps by describing a prototype tool
which implements them. LANTeRN, which stands
for “Loop ANalysis Tool for Recognizing Natural-
concepts”, runs on a Macintosh llci and is being devel-
oped using Macintosh Common Lisp. Fig. 2 depicts
the structure of LANTeRN and, at the same time, rep-
resents a break down of the blocks in Fig. 1. The loop
decomposition into events is performed by modules 1-
5 of LANTeRN. The remaining blocks of Fig. 1havea
one to one correspondence with the rest of LANTeRN
modules.

In the next subsection, we will describe the func-
tion of each LANTeRN module and explain how it
contributes to the objective of finding loop specifica-
tions. Using the examplein Fig. 3, some intermediate,
as well as final, analysis results will be shown.

3.1 The analysis technique

The input to the current version of LANTeRN is
in the form of a loop to be analyzed, and its declara-
tions, written in Pascal. It is assumed that the input
Pascal program has been previously compiled success-
fully. An example input loop, adapted from [22], is
shown in Fig. 3. Throughout this paper, all variable
names are written in upper case to distinguish them
fromn other identifiers.

1. Translate: The input is converted into a lan-
guage independent form. The loop initialization and
body are converted into a set of lisp function calls. The
loop condition, however, is left in its predicate form.

Data type information is also extracted and saved so
that it can be accessed during the event analysis. Af-
ter this conversion, the rest of the prototype can be
used to analyze loops independent of the imperative
programming language used.

2. Normalize: The loop representation is con-
verted into a standard form which abstracts away from
implementation variations such as how a variable is
modified during a single loop iteration or how the in-
dividual predicates of the condition are connected.

The loop condition is converted into conjunctive
normal from [20] and the clauses of the normalized
condition are produced. The loop condition in Fig.
3 is already normalized and has the single clause:
J <= HWM.

The initialization and body are symbolically eval-
uated. This is performed by symbolically evaluating
each execution path in the input individually and then
simplifying the result of this evaluation. Finally, the
various execution paths are merged to give the net
modification performed on each variable.

The output of the symbolic evaluation gives the
modifications performed on each variable in the form
of a guarded command set which is a set of one or
more guarded commands separated by a vertical bar.
Every guarded command has a boolean expression as
an antecedent of an implication sign and a concurrent
assignment as its consequent [3, 6]. When the boolean
expression is satisfied , the modifications performed on
a variable are given by the concurrent assignment.

For example, the normalized initialization and body



var
NAME: name_type;
DATE, TODAY: date_type;
NCARDS, J, HWM : integer;
DATES: array [1..max] of date_type;
CARDLIST, NAMES : array [1..max] of name_type;
begin
NCARDS := 0; J := 1;
while J <= HWM do begin
if DATES[J] = TODAY then begin
NCARDS := NCARDS + 1;
CARDLIST[NCARDS} := NAMES[J]
end;
J:=J+1
end
end

Fig. 3. Example of LANTeRN’s input.

of the loop in Fig. 3 are as follows:
Normalized initialization

TRUE ==> J := 1, and

TRUE ==> NCARDS := 0.
Normalized body

(DATES[J] = TODAY) ==>

NCARDS := (NCARDS + 1),

(DATES[J] = TODAY) ==>

CARDLIST[(NCARDS + 1)]

TRUE ==> J := (J + 1).

3. Auxiliary modules: Since pattern matching
and simplification are central for the efficient and suc-
cessful operation of different LANTeRN components,
they are encapsulated in two separate auxiliary mod-
ules. Both modules have been adapted from [18].
The simplification of arithmetic expressions is per-
formed by converting the input expressions into an
internal canonical form for polynomials, manipulat-
ing them, and converting them back to their external
form. Predicate simplifications, however, are limited.
They are performed using rule-based translation with
the rules being some logical identities.

4. Decompose body: The referenced and iden-
tified variables are found for each guarded command
set of the normalized loop body. The body is decom-
posed into ordered minimal segments of code by recur-
sively identifying and isolating the minimal number of
guarded command sets which do not have data flow
going to other parts of the loop body [25]. The result-
~ ing segments are ordered such that the ones identified
first are analyzed last. These segments can be charac-
terized as follows:

:= NAMES[J], and

e Each segment gives the net modification done to
some variables(s) in one iteration of the loop.

o The set of variables defined in a segment are not

defined in any other segment.

o The ordering relation is an irreflexive partial or-
der in which a segment defining a variable is ana-
lyzed before the ones referencing it. This enables
the utilization of the analysis results of lower or-
der segments in the analysis of higher order ones.

The ordered segments of the loop in Fig. 3 are as

follows:

1. TRUE ==> J := (J + 1)

2. (DATES[J] = TODAY) ==
NCARDS := (NCARDS + 1)

3. (DATES[J] = TODAY) ==
CARDLIST[(NCARDS + 1)] := NAMES[J]

5. Form events: The clauses of the condition,
the segments of the body, and the normalized initial-
ization are taken as input. The Basic Events (BE’s),
which constitute the control computation part of the
loop, are formed by combining the clauses of the loop
condition with the segments of the body responsible
for the data flow into them (i.e., the segments which
affect their truth value). The Augmentalion Events
(AE’s) are the remaining segments of the loop body.
In addition, each event includes the initialization of
the variable(s) defined in it. The advantage of this
decomposition into events is that it is based on the
structural dependencies, rather than the physical lo-
cation, of the different loop parts. The ordered events
of the loop in Fig. 3 are shown in Fig. 4 as part of
LANTeRN output.

6. Analyze events: The resulting events are an-
alyzed using plans, stored in a knowledge base, to de-
duce their individual predicate logic annotations. The
simplest form of a plan is like an inference rule with
an antecedent part and a consequent part [7]. First,
the loop event is matched with a plan’s antecedent.
The identified plan’s consequent is then used in pro-
ducing predicate logic annotations of this event. To
improve readability, the resulting annotations are sim-
plified whenever possible. The events which cannot
be matched, due to an insufficiency in the plan knowl-
edge base, can serve as a guide for its enhancement
and evolution.

LANTeRN output for the program in Fig. 3 is
shown in Fig. 4. It lists each event along with its gen-
erated predicate logic annotations and the name of the
plan it matches. The predicate logic annotations are
in the form of Hoare-style annotation [11]. That is,
they consist of a pre-condition, a loop invariant, and a
post-condition. The mathematical notations used are
given in appendix A. Those which are necessary for
the understanding of Fig. 4 are:



EVENTS ARD THEIR GENERATED SPECIFICATIONS

1. BE (order 1)

Clausa: (J <= HWM)
Segment: true ==> J := (J + 1)
Initialization: true ==> J := 1

The matched plan
Pre-condition:
Invariant:
Post-condition:

(HWM >= 0)
(1 <= J <= (HWM + 1))
(3 = (HWM + 1))

is DBP-1. The matching result is:

2. AE (order 2)
Segment: (DATES[3] = TODAY) ==> NCARDS :=
Initialization: true ==> KCARDS := 0

The matched plan
Pre~condition:
Invariant:
Post-condition:

true
(NCARDS = card { IRD :
(KCARDS = card { IND :

1
(1

. AE (order 3)
Segment:
Initialization: -

The matched plan

Pre-condition:
Invariant:

true

(forall IKD_1 :
CARDLIST[((card { IED :
(forall IRD_1 :
CARDLIST[((card { IND :

IFD_1 in (1
(1 ..
IRD_1 in (1 ..
(1 ..

Post-condition:

SYRTHESIZED SPECIFICATIORS

Pre-condition: (HWM >= 0)

(1 <= J <= (HWM + 1)) and
(RCARDS = card { IND : (1 ..
(forall IND_1 : IND_1 in (1 ..
CARDLIST[((card { IND : (1 ..

Invariant:
J -1

(3 = (HWM + 1)) and

(NCARDS = card { IRD :
(forall IND_1 :
CARDLIST[{((card { IND :

Post-condition:
(1
IND_1 in (1
(1 ..

is SLAP-1. The matching result is:

(DATES[J] = TODAY) ==> CARDLISTI[(RCARDS + 1)} :

is SLAP-2. The matching result is:

(ECARDS + 1)

.. J - 1) | (DATES[IKD] = TODAY) })
.. HWM) | (DATES[IND] = TODAY) })

NAMES (J]

.. J - 1) and (DATES[IND_1] = TODAY) :

IND_1 - 1) | (DATES[IND] = TODAY) }) + 1)) = NAMES[IND_1])
HWM) and (DATES[IKD_1]} = TODAY) :

IND_1 - 1) | (DATESLIND] = TODAY) }) + 1)3 = NAMESI[IND_11)

(DATES[IND] = TODAY) }) and

J = 1) and (DATES[IND_1] = TODAY) :
IND_1 ~ 1) | (DATES[IND] = TODAY) }) + 1)] = NAMES[IKD_1])

.. HWM) | (DATES[IND] = TODAY) }) and
.. HWM) and (DATES{IND_1} = TODAY)
IND_1 - 1> | (DATES[IND]

= TODAY) }) + 1)1 = NAMES[IND_11)

Fig. 4. LANTeRN's output for the program in Fig. 3.

cardinality of the set S
for all x values which satisfy
pi, p2 is true

card S

(forall x: pi: p2)

An advantage of these annotations is that they have
a sound mathematical foundation. A theorem prover
can be used, if desired, to verify the correctness of the
annotations.

7. A knowledge base of plans: To increase the
efficiency of searching for plans which match specific
loop events, the plans are divided into eight different
categories. This division is based on the kind of events
being analyzed (BE’s or AE’s), loop control computa-
tion (similar to for loops or not), and complexity of
the loop body (nested or not). Within each plan cat-
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egory, the plans used in the case study are stored in a
linear list.

The structure of a plan can be generalized to enable
(1) the analysis of similar events whose specifications
vary depending on their environment (e.g., data types,
control computation of the loop, ..., etc) and (2) the
detection of cases which have loop specifications that
are simpler and more concise.

The generalized structure has a single general an-
tecedent and several consequents organized in one, or
more, tree structures. The more general the conse-
quent, the closer it is to the root of its tree. In or-
der to select a specific general plan, a match with the
antecedent should occur first. Then, conditions asso-



ciated with the edges of the tree(s) guide the search
for the suitable consequent. The instantiation of the
information in the selected consequent represents the
contribution of this plan to the loop specifications.

Using this generalized structure can lead to a re-
duction in the size of the knowledge base since several
similar plans can be combined together in a larger one
having a unique antecedent. Because of space limita-
tions, no plans are shown in this paper. For a detailed
description of the plans and their design and structure,
refer to [2].

8. Synthesize results: In case of unnested loops,
the synthesis is performed by just taking the conjunc-
tion of the individual analysis results (see Fig. 4).

The analysis of nested loops is performed by recur-
sively analyzing the innermost loop and replacing it
with a sequential construct that represents its func-
tional abstraction [1]. These sequential constructs are
in the form of built-in function calls. Outer loops
are analyzed using the same steps we have described.
However, the synthesis step adapts the inner loop an-
notations so that they can be proven using Hoare ver-
ification rules [11]. For a more detailed description of
this synthesis step, refer to [1].

3.2 Case study

A case study was performed, manually, prior to the
implementation of LANTeRN. The case study results
are, thus, not affected by implementational limita-
tions. The objectives were to validate the analysis
techniques and to judge the eflect of the decomposi-
tion method and the generalized plan structure on the
size of the knowledge base. Complete specification of
the whole program was not one of our objectives. This
case study also served to package our experience in
the design and utilization of plans in a specific appli-
cation domain. All of the designed plans and analyzed
loops are gradually being included in LANTeRN’s plan
knowledge base and test cases data base, respectively.

The case study includes a set of 77 loops in a pro-
gram for scheduling university courses {12]. The pro-
gram has 1400 executable lines of code. The loops
analyzed have the usual programming language fea-
tures such as pointers, procedure and function calls,
and nested loops.

Out of the 77 loops, we have completely analyzed 65
and partially analyzed 12. We decided not to specifi-
cally design plans for the analysis of 12 loops because
they were very complicated and specific to the ex-
tent that they would not have had a good chance for
reuse. 'The 65 completely analyzed loops contained
213 events. To analyze the 213 events, only 48 plans

41

were designed. These results support the hypothesis
that the decomposition method has a positive effect
on the size of the knowledge base. The generalized
structure of the plans was also useful since only 10
generalized plans covered 139 events.

The results indicate that if we focus on a specific
application domain, there is bound to be a kernel of
events which can be captured by a relatively reason-
able number of plans. On the other hand, there will
also be plans which, as in our study, may be used just
once. The emphasis should be on the design of the
plans that cover the kernel.

4 Applications

Software maintenance and reuse are two well-known
and important applications of program understand-
ing research. In this section we briefly explain how
LANTeRN can assist both activities. We then focus
on an application that is not as traditional. We ex-
plain how LANTeRN can be used in assisting formal
software development using VDM and Z. This appli-
cation is possible because LANTeRN’s output is in the
form of predicate logic annotations.

4.1 Assisting the maintenance and reuse
of software

Maintenance comprises several activities such as
correcting, enhancing, and adapting existing pro-
grams. Since many programs are undocumented,
underdocumented, or misdocumented, a major part
of the maintenance task is spent in recognizing and
understanding abstract programming concepts. Au-
tomation of program understanding can, thus, con-
tribute to maintenance tools and methods and provide
high-level support for various maintenance activities.

Program understanding is also crucial for code
reuse since the reuser must be aware of what a
code component does and how to utilize and mod-
ify it. Understanding reusable code components can
be achieved by augmenting them with a precise and
clear description of their functionality. If these de-
scriptions are in the form of formal specifications, they
can be further used in generating test cases and assess-
ing the correctness of the implementation. Automa-
tion of program understanding is needed to facilitate
the quick and efficient population of a reuse repository
with well-documented components. Being able to ma-
nipulate the documentations automatically can also
assist in their identification by designing a retrieval
mechanism which utilizes them [15].



4.2 Assisting the formal development of
software

Predicate logic plays an important role in the
formal development of software using VDM and Z
[14, 23, 27]. Since our loop analysis technique pro-
duces predicate logic annotations, it can assist such
formal development methods. Before explaining how
to provide such an assistance, we will briefly explain
when it can be provided.

The formal software development methodology in
VDM and Z starts by defining, in an abstract notation,
the objects manipulated by the system and the invari-
ant relationships that should be maintained. Opera-
tions to be performed on the data objects as well as
relationships between their input and outputs are also
defined.

After specifying the system in a high-level abstract
notation, the development proceeds by moving from
abstract specifications to more implementation ori-
ented ones. This process involves both data refinement
(or data reification) and operation refinement (or op-
eration decomposition).

In data refinement, abstract objects are refined onto
concrete data types which are available in the imple-
mentation language. In operation refinement, imple-
mentations for operations are developed in terms of
the primitives available in the programming language
used [14]. Often, data refinement will allow some of
the program control structures to be more explicit,
and this is achieved by one or more steps of operation
refinement [23].

As the description of the system moves from an ab-
stract level to a more concrete level, proof obligations
are generated. These obligations are used in prov-
ing that one specification actually implements another
more abstract one. They are also used in proving the
properties of a given specification.

Because LANTeRN is a reverse engineering tool, it
can provide assistance in the last development stage
which moves from operation specifications to imper-
ative programming languages implementations. That
is, our loop analysis technique can help in showing
that the proof obligations generated during the oper-
ation refinement process are satisfied. It should be
noted, however, that the mathematical notations used
in VDM, Z, and our plans are not the same. To trans-
form one mathematical notation to another, simple
syntactic variations need to be performed. In order to
focus on more important issues, we will assume that
the notation in appendix A is a unified notation.
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Pre-condition:
(HWM >= 0)

Post-condition:
(forall IND_1 : IED_1 in (1 .. HWM) and
(DATES[IND_1] = TODAY) : CARDLIST[((card
{1¥D : (1 .. IED_1 - 1) | (DATES[1ED] =
TODAY)}) + 1)] = BAMES[IND_1])

Fig. 5. VDM operation Specification.

4.2.1 Assisting the operation refinement pro-
cess in VDM

In the VDM framework, it is the case that after a se-
ries of operation refinement steps, during the design
phase, the last refinement step actually implements
the specified operations. Since the specifications and
proof techniques are closely linked to Hoare-style [11]
annotations and proof rules, they are also very close
to the specifications produced by our analysis method.
To be convinced that a specific implementation actu-
ally satisfies the given specification, two alternatives
have been suggested [14]. The first alternative requires
coming up with an invariant and using proof rules to
establish that the implementation matches the spec-
ification. The second alternative uses the while loop
proof obligations to stimulate program design steps
and, in parallel, come up with loop invariants during
the code development.

In practice, however, such alternatives are not gen-
erally followed because the time and effort needed to
perform them are not justifiable. Moreover, carrying
out correctness proofs requires a deeper knowledge of
the underlying mathematics than that required of a
normal user of VDM. That is why we suggest using
our loop analysis method as a more practical alterna-
tive for validating loop implementations.

Given an operation specification, the software engi-
neer can directly implement it. LANTeRN can then be
utilized to produce predicate logic annotations of the
implementation. A comparison of LANTeRN’s out-
put and the given VDM specification can increase the
confidence in the implementation or reveal some mis-
takes. :

For example, if we have the VDM operation specifi-
cation shown in Fig. 5, a loop construct similar to the
one in Fig. 3 can be implemented. To validate this
implementation, it can be analyzed by LANTeRN. By
direct comparison of LANTeRN’s output (Fig. 4) and
the VDM specification (Fig. 5), it is clear that the
VDM post-condition is implied by LANTeRN’s post-
condition and pre-conditions are the same. Hence, the
implementation in Fig. 3 actually satisfies the VDM



specification.

If the implementation were inconsistent with the
VDM specification, a comparison with LANTeRN’s
output, on the other hand, could have revealed the
inconsistency. For instance, if the statement that
updates the array CARDLIST in Fig. 3 is changed
to: CARDLIST[NCARDS+1] := NAMES[J], LANTeRN
would have given the following predicate, which in-
dicates the existence of a fault, as part of the post-
condition:

(forall IND_1 : IND_1 in (1 .. HWM) and
(DATES[IND_1] = TODAY) : CARDLIST[((card
{IND : (1 .. IND_1 - 1) | (DATES[IND] =
TODAY)}) + 2)] = NAMES[IND_1l)

4.2.2 Assisting the operation refinement pro-
cess in Z

To assist the operation refinement process in Z, the
same discussion presented for VDM applies. However,
the Z methodology is less related to our analysis tech-
nique than VDM methodology because of the follow-
ing reasons:

1. One of the main features of Z is that it describes
the properties of an implementation without con-
straining the implementor’s choice of an algo-
rithm. Operation refinement to the code level
receives little attention [10, 23]. The focus is on
moving from specifications to high-level designs.

2. The specification language of Z uses schemas
which consist of two parts: a declaration of some
variables, and a predicate constraining their val-
ues. Even though predicate logic is used, there is
no requirement that the pre- and post-conditions
be explicitly separated. They can be mixed to-
gether in the predicate part. This is because the
predicate part describes the effect of an operation
on the state of the system by using var? and var!
to denote the values of a variable var before and
after the operation, respectively.

As a consequence of the first reason, an operation
specification is more likely to give a liberal description
of what is required by the code. In other words, it is
more probable to have a Z specification which is less
deterministic than that produced by our analysis tech-
nique. This is because proof obligations that guide the
movement from an operation specification to code are
not well emphasized. For instance, consider an ex-
ample adapted from [23]. The predicate part of the
operation specification in this example has the form:
{I: 1..NCARDS! . CARDLIST![I]} = {J: 1..HWM |

DATES[J]=TODAY? . NAMES[J1}, where {x: S . e}
denotes the set of values taken by the expression e
as x takes values from 8. ' '

The program shown in Fig. 3 represents an im-
plementation of this specification. When we use
LANTeRN to validate that this loop actually imple-
ments the Z specification, the output shown in Fig. 4
is generated. It is clear that an extra analysis step is
needed to show that in all possible states of the sys-
tem: (1) the abstract pre-condition implies the con-
crete one, and (2) the concrete post-condition and
the abstract pre-condition imply the abstract post-
condition [23], where Z specifications are the abstract
ones and LANTeRN’s specifications are the concrete
ones. The concrete pre-condition, in our example, is
implied by the fact that HWM is of the natural type
in the abstract Z specification. It can also be shown
that LANTeRN’s post-condition implies the given Z
specification.

With respect to the second reason, a predi-
cate part of the form: (exists I: I in 1..HWM :
NAME? = NAMES(I) and DATE! = DATES[I]) cannot
be directly compared with LANTeRN’s output [23].
The Z specification needs to be transformed so that
the pre- and post-conditions are clearly distinguish-
able. For instance, it can be transformed to: (exists
IND : IND in 1..HWM: NAME?7= NAMES[IND]} and
(forall IND : IND in 1..I - 1: NAMES[IND] <>
NAME?) and NAMES[I] = NAME? and DATES[I] =
DATE!, where the first line corresponds to the pre-
condition and the rest corresponds to the post-
condition.

4.2.3 Discussion

We have described how our reverse engineering analy-
sis technique can help in the operation refinement pro-
cesses of VDM and Z. In addition to the syntactic vari-
ations that need to be performed to unify the math-
ematical notation, two important conditions need to
be satisfied for the success of this approach:

1. If our plans use any abstract high-level terms,
they need to be the same as the ones used in the
high-level VDM or Z specifications.

2. The set of plans stored in the knowledge base need
to be designed and tailored to analyze a large set
of the loops that might be needed to implement
the VDM or Z specifications generated in the de-
sign phase.

These conditions can be satisfied if the plans are
designed in the environment they are going to be used



in and stored in a repository specific to that environ-
ment, where they are allowed to improve and evolve
over time. In such cases, knowledge of the commonly
used specification and implementation templates can
be utilized to make the plans more applicable and to
* present the analysis results using abstract terms sim-
ilar to the ones used in the VDM or Z specifications.
For instance, if certain VDM specifications are
known to be used extensively in a specific application
domain, plans that use the same abstract terminology
and analyze the different possible implementations of
these specifications are good candidates for storage in
the knowledge base. That is, the plans in the knowl-
edge base can be used to augment a library of com-
monly used VDM specifications. While the specifica-
tion modules can facilitate the generation of formal
specifications and their refinement into designs [16],
carefully designed and validated plans can be used by
our knowledge-based approach to validate that the im-
plementations do match the specifications

5 Conclusion

We have presented a prototype tool, LANTeRN, for
the automation of program understanding. LANTeRN
is based on an analysis by decomposition approach
which documents programs by generating predicate
logic annotations of their loops. The main character-
istics of our work can be summarized as follows:

1. It generates predicate logic annotations. Predi-
cate logic annotations increase the confidence in
the documentation since correctness conditions
can be stated and verified, if desired. The use
of predicate logic also makes it possible to assist
formal software development methods, like VDM
and Z.

2. The decomposition method combined with the
generalized design of the plans tend to have a pos-
itive effect on the size of the knowledge base.

3. The performance of a case study on areal and pre-
existing program of some practical value. This
helps in validating our analysis approach and in
providing a realistic evaluation of the first two
characteristics.

4. The analysis method enables partial recognition
and analysis of stereotyped loop fragments which
have non-adjacent parts.
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5. 1t is a bottom-up analysis approach which does
not rely on user-supplied information that might
not be available at all times.

6. It focuses on the difficult task of documenting
loops. Analyzing complete program modules is
not covered.

Even though our analysis technique can handle
most of the commonly occurring structured data
types, the only structured type being handled in the
current version is the array type. The handling of
other structured data types is currently being imple-
mented.

Future work includes investigating the use of the
resulting specifications in a larger system which per-
forms intelligent analysis of complete program mod-
ules and experimenting with the documentation tech-
nique in various domains.
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A Notation

var? value of var before an operation

var! value of var after an operation

i ] subset of integers from i to j inclusive

x in S x is member of the set S

card S cardinality of the set S

{x: S | p} set of values of x taken from S which
satisfy p

{x: S . e} set of values taken by the expression

e as x takes values from S
(forall x: pi: p2) for all x values which satisfy
pl, p2 is true
for some x value which
satisfies p1, p2 is true

(exists x: pi: p2)



