SIMULATION MODELING

OF

SOFTWARE DEVELOPMENT PROCESSES
G. F. Calavaro!?, V. R. Basili2, G. Iazeolla!

YUniversity of Rome at Tor Vergata
ad

University of Maryland at College Park

iazeolla@info.utovrm.it

ABSTRACT

A simulation modeling approach is proposed
for the prediction of software process
productivity indices, such as cost and time-to-
market, and the sensitivity analysis of such
indices to changes in the organization parameters
and user requirements.

The approach uses a timed Petri Net and
Object Oriented top-down model specification.

Results demonstrate the model
representativeness, and its usefulness in
verifying process conformance to expectations,
and in performing continuous process
improvement and optimization.

INTRODUCTION

Reducing the cost of large scale software
projects and shortening cycle time, or time to
market, is a major goal of most software
development organizations.

To pursue such a goal, organizations can set
productivity goals for each project, and put in
place statistical productivity controls to enable
developers and management to take corrective
actions when there are deviations from the goal,
and to distinguish a random deviation from
meaningful deviations.

Simulation is one of the methods for
- performing such control. It can be used at
various points in the software life cycle to
perform risk analysis, in terms of time to
product, and cost, to verify conformance to
expectations, and to perform continuous process
improvement and optimization.

This requires that organizations use metrics
and models to evaluate and predict effort and

Work partially supported by the National MURST project
"Performability V&V of Products and Processes in Software
Engineering”,the CNR project "CE and EF in the Software
process", the CERTIA Project "Software Performance V&V*,
and by NASA grant NSG-5123.

time (Basili 1979), (Fenton 1991).

The intrinsic complexity of the software
production process makes it difficult to conduct
predictions using strict analytical models. It is
often necessary to turn to simulation models to
obtain adequate information on the dynamic
behavior, the functionality and the performance
of the process.

Software development organizations use
several models that address the issue of
estimating the effort and the time to product
delivery.

Existing analytical models, such as the
COCOMO model (Bohem 1981), the Mark II
Function Point model (C.R. Symons, 1988)
etc., generally only provide predictions of total
development effort, without any information
about how these are distributed throughout the
process. Existing simulation models also share
this deficiency. In both cases, no information is
given on the instantaneous dynamic behavior of
effort versus time, and on the effect of changing
user requirements during development time.

Field experiences show that requirements and
available resources change during development,
so cost and delivery time change as well.
Therefore, it is very important to have models
which predict the dynamic behavior of cost and
time while requirements change.

To reach this goal, this paper proposes a
simulation approach to evaluate the effort spent
over time by each activity of the process, the
estimated delivery time, and the size of the final
product.

As illustrated in Figure 1, the approach
consists of a process simulation model that
provides the behavior gver time of quantities
such as:

- prod_size : . the measure of the delivered code
size (in lines of code);

-work_e : the development work effort (in

person-weeks);
- delivery_r. the time to product (in weeks);
i the user requirement size (in
function-points), and the organization
parameters.

QKLW.H.'.
Anslysis
&
Messussmenat
 Activity
Models
LY. d
= Pt sty
Ragui v Wodk_o(t)
Mot Dekivery_40)

Figure 1: The simulation modeling approach

The model is parametrized on the basis of
measurements and analyses of data coming from
knowledge of the simulated organization.

The second Section of the paper describes
the basic assumptions of this work. The third
presents the considered model. The fourth
presents the models of the process activities. The
fifth Section synthetically illustrates the
simulation model, and the model for
requirements generation. The sixth presents the
results of the simulation experiments.

MAIN ASSUMPTIONS

This work assumes the development process
is split into a sequence of activities according to
the Waterfall model.

An artifact is defined as any kind of
document, paper, or file produced or used by an
activity of the development process.

For each activity it is assumed there is an
input artifact and an output artifact. Input artifact
is the artifact the activity uses as an information
source to produce the output artifact.

Example artifacts are: the requirement
specification document, the requirement analysis
document, the architectural design document, the
detailed design document, the code after
implementation, the code after system test, the
code after acceptance test.

It is also assumed that:

A) There exist metrics to express the size of
any artifact.
B) There exist models for the estimation of the

output artifact size as a function of the input

artifact size. For example, the detailed
design document size can be estimated on
the basis of the. architectural design
document size.

C) There exist models to express the amount
of resources each activity requires to
produce the output artifact on the basis of
the input artifact size.

THE CONSIDERED MODEL

The considered process model is illustrated in
Figure 2. It includes a model of standard
software development process activities such as:
Requirement Analysis (ReqAna), Preliminary or
architectural Design (PreDes), Detailed Design
(DetDes), Implementation (Impl), System Test
(SysTest), and Acceptance Test (AccTest).

The input variable of each activity is the
estimated size of the output artifact produced by
the previous activity. The output variable of each
activity is the estimated size of its output artifact
and an estimated measure of the activity effort.
The latter estimation is send to a data collector for
recording and evaluating purpose (see later).

oq_sim
/ Simulation Modei
Development Process

Preles DetDes lmpl SysTest poTat
RA, PD_sixf DD _sisg Imp_sin ST _siae|

S ot D

\cs;.ycs..y“

E L. . F i
T\ L

' \ \

eary_t .

\'-Q“s

Figure 2. The considered software process model

Input and output variables dynamically
change over time. In other words, each activity
takes new input values at each time instant and
yields the corresponding output values. There
obviously exists a time delay in producing
outputs, which is dealt with by the activity
model.

As shown in Figure 2, the RegAna block
receives as input the size of the Requirement
Document, req_size, and produces as output
RA_size (the estimated size of the Specification
Document produced by the Requirement
Analysis activity), besides the measure of the

ReqAna effort (EI).

In a similar way, each of the following
blocks receive measures of input artifact size,
and yield measures of estimated output artifact
size, for the following block, and of required
effort for the Data Collector block.

The final block, AccTest block, receives as'

input the size of the code after System Test,
ST_size, and produces as output the size of the
final product, prod_size, with the measure of the
AccTest effort (E6).

The Data Collector block obtains the El
through EG6 effort values and yields the total time
integral of such values, work_e, in addition to
the delivery time of the final product, delivery_t.

THE ACTIVITY BLOCK MODELS
This Section illustrates the details of the
internal behavior of each standard activity block.

Such behavior is expressed in terms of an -

input/output function that transforms the input
artifact size into the output artifact size and into a
measure of the required effort.

For the sake of conciseness the Rayleigh
function is assumed as the basic activity model.
Such a function can obviously be replaced by
any empirically derived function, in case this is
believed to better represent the organization's
behavior.

The use of the Rayleigh function is supported
by the large amount of literature assessing its
usefulness as a good model of the software
development process, (Putnam 1978),
(Fenton 1991), by marketed prediction tool
products as SLIM, and by the fact that empirical
functions derived by large organizations, such as
NASA, are very similar to the Rayleigh function,
a?) shown in Figure 3, derived from (SEL-81-
305).

As seen from the Figure, the behavior of
effort versus time for each individual activity
follows very closely the Rayleigh function,
mathematically expressed by:

E(t) = %(:)L2 te -t2/27T(t)2 0

where E(t) is the instantaneous effort required at
time t (the equivalent of full time staffing level),
W(t) is the estimated total effort of the activity
(the integral of E(t) over time) expressed in
person-week at time ¢, and T(t) is the estimated
delivery time (weeks) of the activity for the

artifact at time ¢.

[full-time
equivalent]
1 4 T ¥ ¥ 11 ¥ L] R eq A na
12 - =Design
10 = = wiinp)
e=ase SysTest
8 ameee AccTest
8 ——y UK €
4
2
° t
[weeks]

Figure 3. Example of individual activity effort and total
life-cycle effort for the NASA software development

process

‘Quantities W(t) and T(t) vary with time ¢,
since it is assumed that the original input,
req_size, changes over time. Their values are
assumed to be given by conventional models,
inspired by the COCOMO equations (SEL-81-
305), as follows:

out_size(t) = a; in_size(t)bl +Cy
W) = a3 out_size(t)? + ¢, @)

T(t) = a3 WO + cs

where in_size(t) is the input artifact size for the
generic activity, and our_size(t) is the output
artifact size, at time ¢.

According to the Putnam assumption
(Putnam 78), this work also assumes that, for
each activity, the outcome out_size(t) takes place
only when the instantaneous value of E(t)
reaches its peak. ,

The effort spent after the peak (the down
sloping part of various curves in Figure 3) is for
rework and updates due to requirements
changes. The overlaps between down and
upward sloping of curves relating to contiguous
activities, implicitly and synthetically represent
iterations and interactions among teams. The
corresponding effort values are thus implicitly
considered in the model. This concept is further
refined in next Section.

Parameters a;, b;, and c;, for each activity,
are assumed to be derived from empirical data

from the modeled organization.

THE SIMULATION MODEL

In literature there are few examples of
simulation models of software development
processes. Examples of such models are the
Articulator by Scacchi and Mi (Scacchi and Mi
1993) and System Dynamics by Abdel-Hamid
and Madnik (Abdel-Hamid and Madnik 1991).

The Scacchi work deals with a knowledge-
based computing environment for modeling,
analyzing and simulating complex organizational
processes. Its purpose is to simulate the
organizational behavior in terms of agents, tasks,
and resource allocation. 4

The Abdel-Hamid work deals with the
simulation of software development
organizations based on system dynamics

techniques.
- Neither the former, nor the latter deal with
the simulation of the effects of the requirements
changes on product costs and time to delivery,
which is the subject of this paper.

For the sake of conciseness, the details of the
simulation model used in the illustrated approach
are given elsewhere (Calavaro et al. 1995).

The model replicates the process scheme
illustrated in Figure 2.

An object oriented approach is used to
specify the main objects of the simulator, and
their connections, and a timed Petri Net, top-
down hierarchical approach is used to specify the
dynamics of the simulation model and the data
flows among objects (Calavaro 1995).

The combination of such approaches in the
model specification, makes the simulator easily
implementable and adaptable to various process
organizations.

Any implementation language can be used.
However, languages which are specifically
meant for dynamic system simulation, such as
DYNAMO and SIMNON, are preferred. For this
paper, the latter has been used, since it is
particularly oriented to non-linear system
analysis.

Model Input Generation

In most real systems, generation of user
requirements is usually performed by the
development organization in conjunction with the
customers, and yields the requirements of the
system to be developed.

In the simulation model the requirements size
(req_size) is the model input. This dynamically

changes over time. The model assumes that the
generation activity is external to the process
activities, and so its effort is not part of the effort
calculations.

The req_size value is assumed to be
expressed in number of Function Points (FP).
The input is assumed to start at time O of the
process dynamics.

For the experiment in this paper req_size is
expressed by the following equation:

req_size(t) =as (1-€ ") +c, (3)

where c4 is the initial requirement size, a4 is the
changed requirement size, and b4 is a time
constant. According to this expression, the
requirements increase along time by a negative
exponential rate, and reach their stable value a4 +
¢4 asymptotically in time. Other equations could
be used as well.

The model assumes a4=50 [FP],
¢4=100 [FP], and bs=15 [weeks].

In other words, it assumes a 50% increase in
the requirements size during the life cycle.

SIMULATION RESULTS

Obtained results are expressed by curves that
give the effort values over time for each process
activity, the global process effort, and the time to
product.

Figure 4 shows the simulated effort density
for various process activities (ReqAna, PreDes,
DetDes, Impl, SysTest, and AccTest) and for the
total modeled process (work_e).

{ Fulktme
equivaient |
70

50

40

30

20

10 {4

0 25 50 7% time 100
[woeks]

Figure 4. Simulated effort density for various process
activities and for the total modeled process

The simulated total effort density for the

process, work_e, is the sum of the individual
activities' efforts. Its integral gives
work_e = 4584 person_weeks for a
prod_size = 103 KLOCs, in a delivery_t =70
weeks.

The curves in Figure 4 are the results of our
simulation. They are qualitatively similar to those
in Figure 3, which are empirically derived.

This supports the validity of the proposed
simulation model. The introduction of realistic
values for the ai, bi, and ci parameters is the only
requirement to obtain model validation on a
quantitative basis.

The valleys in the top of Figure 4 work_e
curve are a consequence of the assumption that
each activity starts when the previous activity
effort reaches its peak. Such valleys are not
evident in the empirical NASA curve, seen in
Figure 3. We believe that this difference is at
least partly due to the fact that in any real
environment the activity starts a little bit before
the previous activity peak, since unofficial
artifacts are delivered to the following activity
before the official ones are ready.

This shows the representativeness of the
proposed approach, for use in Waterfall-like
organizations, for the prediction of the software
production costs and delivery times, as well as
for the analysis of the sensitivity of costs and
times to changes in organization parameters, and
to the variation in user requirements.

The top-down hierarchical model
specification permits adaptation of the proposed
simulator to non-waterfall various process
models.

CONCLUSIONS
and FUTURE RESEARCH

Simulation is one of the productivity control
methods that enables software developers and
managers to take corrective actions and perform
risk analysis, in terms of time to product and
cost, to verify conformance to expectations, and
to perform continuous process improvement and
optimization.

This paper has introduced a software process
simulation modeling approach for the prediction
of the software production costs and delivery
times, and analysis of sensitivity to the changes
in organization parameters, and user
requirements.

The model is based on a top-down
hierarchical model specification that can be used
to adapt the proposed simulator to various

process models.

This is part of future research, with the
explicit modeling of the interactions between
process activities and of the modeling of product
iterations.

Future research also includes explicitly
representing physical factors and agents that
characterize various process activities, by the use
of specialized software process languages.

REFERENCES

Abdel-Hamid T.K. Madnick S.E. , 1991. Software
Project Dynamics - An Integrated Approach. Prentice
Hall, Englewood Cliffs, NJ.

Basili V.R., 1989. "Software Development: A
Paradigm for the Future” In Proc.13th Int'l Computer
Software and Applications Conf., (Orlando, Fl, Sept.),
CS Press, 471-485.

Bohem B. W., 1981. Sofrware Engineering
Economics, Prentice-Hall, Englewood Cliffs, NJ.

Calavaro G.F., 1995. Experience Factory and
Concurrent Engineering for Software Process
Optimization, Ph.D. Dissertation, University of Rome
"Tor Vergata”, Rome, Italy.

Calavaro G.F., Basili V.R., lazeolla G., 1995.
"Simulation Modeling of Software Development
Processes”, Technical Report University of Rome "Tor
Vergata”, R1.95.06, Rome, Italy.

Fenton N.E. , 1991. Software Metrics, A rigorous
approach Chapman & Hall, London, UK.

Putnam L.H., 1978. "A General Empirical Solution
to the Macro Software Sizing and Estimating Problem”,
IEEE Transaction on Software Engineering, (July) 345-
361.

Scacchi W., Mi P., 1993. "Modeling, Integrating,
and Enacting Software Production Processes” In Proc. 3rd
Irvine Software Symposium (Costa Mesa, CA, April)

Symons C.R. , 1988. "Function Point Analysis:
Difficulties and Improvements”, IEEE Trans. on Software
Engineering, (14):1, January) 2-11

SEL-81-305, 1992. "Recommended Approach to
Software Development”, Revision 3, Software
Engineering Laboratory series, SEL-81-305, NASA-
GSFC, Greenbelt, MD.

