
Understanding and Predicting the Process of Software Maintenance
Releases

Victor Basili, Lionel Briand, Steven Condon,
Yong-Mi Kim, Walc6lio

Abstract

One of the major concerns of any maintenance
organization is to understand and estimate the cost of
maintenance releases of software systems. Planning
the next relgse so as to maximize the increase in
functionality and the improvement in quality are vital
to success@l maintenance management. 7 7 ~ objective
of this paper is to present the results of a case study in
which an incremental approach was used to better
understand the effort distribution of releases and build a
predictive effort model for software maintenance
releases. This study was conducted in the Flight
Dynamics Division (FDD) of NASA Goddard Space
Flight Center (GSFC). This paper presents three main
results: 1) a predictive effort model developed for the
FDD Is software maintenance release process, 2)
measurement-based lessons learned about the
maintenance process in the FDD, 3) a set of lessons
learned about the establishment of a measurement-based
software maintenance improvement program. In
addition, this study provides insights and guidelines for
obtaining similar results in other maintenance
organizations.

Keywords: software maintenance, measurement,
experience factory, case studies, quality improvement
and godquestiodmetric paradigms.

1 . Introduction

1 .1 Issues

Software maintenance is generally recognized to
consume the majority of resources in many software
organizations [Abran&Nguyenkim 1991; Harrison&
Cook 19903. As a result, planning releases so as to
maximize functionality and quality within the

t Authors are listed in alphabetical order. V. Basili, Y.-M. Kim
and W. Melo are with the University of Maryland, Institute for
Advanced Computer Studies and Computer Science Dept., A. V.
Williams Bldg., College Park, MD 20742, USA. S. Condon is
with Computer Sciences Corporation, 101 10 Aerospace Rd.,
Lanham-Seabrook, MD 20706, USA. L. Briand is with CRIM,
Montreal, Canada. J. Valett is with NASA Goddard Space Right
Center, Software Engineering Branch, Greenbelt, MD 2077 1,
USA. E-mail: {basililkimylmelo}@cs.umd.edu, Ibriand@crim.ca,
steven-condon@cscmail.csc.com, jon.valett@gsfc.nasa.gov

02'70-5257/96 $5.00 0 1996 IEEE
Proceedings of ICSE-18

L.

464

Melo and Jon D. Valettt

boundaries of resource constraints (such as, budget,
personnel, and time to market) is vital to the success of
an organization. The software maintenance process is,
however, still poorly understood and loosely managed
worldwide. As described in [Haziza et al. 19921,
numerous factors can affect software maintenance
quality and productivity, such as process, organization,
experience, and training. Unfortunately the complexity
of the phenomena frequently obscures the identity and
impact of such factors in any given maintenance
organization. The resulting uncertainty about produc-
tivity and quality in the next software release gives rise
to unreliable cost and schedule release estimates.

To effectively manage the software release process,
managers must be supplied with more accurate
information and more useful guidelines to aid them in
improving the decision-making process, planning and
scheduling maintenance activities, foreseeing bottle-
necks, allocating resources, optimizing the
implementation of change requests by releases, etc. In
order to accomplish this, we need to define and validate
methodologies that take into account the specific
characteristics of a software maintenance organization
and its processes, e.g., the software maintenance release
process. However, methods that help software
maintainers change large software systems on schedule
and within budget are scarce. Methods currently
available for improving software processes, such as the
Software Engineering Institute Capability Maturity
Model (SEI CMM) [Paulk et al. 19931, have not been
validated thoroughly. Even though a few methods have
been demonstrated to be useful for software
development (e.g., QIP [Basili&Rombach 19881) they
have only recently begun to be applied to software
maintenance [Valett et al. 19941. The work described
in this paper is a further step in the application of these
methods.

1.2 Objective

The objective of this paper is to use an incremental
and inductive approach for improving software
maintenance by focusing on the construction of
descriptive and predictive models for software
maintenance releases. We present the results of a case
study in which this approach was successfully used to
build a predictive effort model for software maintenance

mailto:basililkimylmelo}@cs.umd.edu
mailto:steven-condon@cscmail.csc.com
mailto:jon.valett@gsfc.nasa.gov

releases in a large-scale software maintenance
organization. This case study took place in the Flight
Dynamics Division @CID) of the NASA Goddard Space
Flight Center (GSFC). This organization is a
representative sample of many other software
maintenance organizations. The FDD maintains over
one hundred software systems totaling about 4.5
million lines of code, and many of these systems are
maintained for many years and regularly produce new
releases.

In this paper, we are mostly concerned with
presenting the results of the process used to build
descriptive and predictive models of software
maintenance releases in a particular environment.
Although the models produced in this study are
organization-dependent, we believe that the process used
to build them can be easily replicated in different
software organizations.

The paper is organized as follows. It first presents the
framework in which this study was conducted: the FDD
and the Software Engineering Laboratory (SEL). Next
an overview of our approach to software maintenance
process improvement is provided. The paper then
presents the measurement program used to collect
product and process &ita about maintenance projects and
releases. This is followed by a quantitative analysis of
the data collected from January 1994 to June 1995 on
the delivery process of over 29 releases of 11 different
systems. This analysis presents descriptive models of
the maintenance environment, as well as a predictive
model for release productivity. Next the paper presents
the lessons learned from the analysis and validation of
data, and discusses lessons drawn from establishing a
software maintenance measurement program. Finally,
future work is outlined.

2 . Study fralmework and approach
to model building

2 .1 The environment

GSFC manages and controls NASA's Earth-orbiting
scientific satellites and also supports Space Shuttle
flights. For fulfilling both these complex missions,
the FDD developed and now maintains over 100
different software systems, ranging in size from 10
thousand source lines of code (KSLOC) to
250 KSLOC, and totaling approximately 4.5 million
SLOC. Many of these systems are maintained over
many years and regularly produce new releases. Of
these systems, 85% are written in FORTRAN, 10% in
Ada, and 5% in other languages. Most of the systems
run on IBM mainframe computers, but 10% run on
PCs or UNIX workstations.

This study was conducted through the SEL, which is
a joint-venture between GSFC, Computer Sciences
Corporation, and the University of Maryland. Since

1976, the SEL has been modeling and experimenting in
the FDD with the goals of understanding the software
development process in this environment; measuring
the effect of software engineering methodologies, tools,
and models on this process; and identifying and
applying successful practices McGarry et al. 19941.
Recently, responding to an organizational need to better
control the cost and quality of software maintenance,
the SEL has initiated a program aimed at characterizing,
evaluating and improving these maintenance processes.

2.2 The approach

This SEL program on maintenance began in October
1993 and is being conducted using an empirical
approach which is an instantiation of the more general
Quality Improvement Paradigm (QIP) and the Goal/
QuestionMetric Paradigm (GQM) [Basili&Rombach
19881. In the following paragraphs we provide an
overview of this approach and show how it has helped
us in the construction of a predictive model for software
maintenance releases. This approach was tested and
continuously refined through experience. Further details
can be found in [Briand et al. 1994; 19951.

First, qualitative studies were performed in order to
better comprehend organization - and process -related
issues. Here, the objective was to identify and
understand, as objectively as possible, the real issues
faced by the organization. Specific modeling techniques
such as the Agent Dependency Model were used as part
of this step (see [Briand et al. 19953). Such a technique
can help capture important properties of the organiza-
tional context of the maintenance process and help to
understand the cause-effect mechanisms leading to
problems. Such qualitative data must be complemented
with quantitative data.

In a subsequent step, the outputs produced by the
first step were used to justify and define a relevant and
efficient measurement program (i.e., what to collect,
when to collect, and how to collect). In addition,
interpreting the data coming from such a program was
made easier because of the increased level of
understanding of the process in place.

Once the measurement program began (i.e., data
collection forms were available, data collection
procedures defined, people trained, etc.), process and
product data were collected and various issues identified
as relevant to the maintenance process were analyzed.
Based upon such analyses, the relationships between
process attributes, such as effort, and other variables
characterizing the changes, the product to be changed,
and the change process were identified. For instance, in
this paper, a model for predicting release effort from
estimated release size is presented to help software
maintenance managers in the FDD environment
optimize release resource expenditures. Such models
will be incrementally refined when new information of
either a qualitative or quantitative nature is available.

465

3 . A GQM for this study
from the point of view of: experience factory

for maintenance

As pointed out in [Pigoski&Nelson 1994; Rombach
et al. 1992; Schneidewind 19941, the establishment of a
measurement program integrated into the maintenance
process, when well defined and established, can help us
acquire an in-depth understanding of specific
maintenance issues and thereby lay a solid foundation
for the improvement of the software maintenance
release processes. To do so, we must define and collect
those measures that would most meaningfully
characterize the maintenance process and products. In
order to define the metrics to be collected during the
study, we used the GQM paradigm [Basili&Rombach
19881. We fis t present the GQM goals of the study,
then present the metrics and the data collection method
used. For the sake of brevity the questions
accompanying each goal are presented with the data
analysis.

3.2 Metria and models

In this section we describe the metrics and models
used in this study. The preliminary qualitative
modeling of the maintenance process enabled the
defmition and refinement of these metrics and models.

Maintenance change types

We consider the following maintenance change types:

error Correction: correct faults in delivered system.
enhancement: improve performance or other system

adaptation: adapt system to a new environment, such
attributes, or add new functionality.

as a new operating system.

Maintenance activities
3 . 1 Goals

Goal 1: Analyze: the maintenance release generation

for the purpose of: characterization
with respect to: effort
from the point of view of: management,

process

experience factory for maintenance

In this goal, we are interested in understanding the
maintenance release generation process of the
maintenance organization with respect to the
distribution of effort across software activities, across
maintenance change types, and across software projects.
Next , we need to identify the variables we can use to
produce predictive models for maintenance. That is,
we must study and understand the relationship between
the different facets of effort and other metrics, such as
type of releases, type of change, change size, types of
component change (modification, inclusion or deletion
of code). Formalizing such a problem in the GQM
format, we formulate the following goal:

Goal 2 Analyze: maintenance release process
for the purpose of: identifying relationships
between effort and other variables
with respect to: type of release, type of

from the point of view of: experience factory
change, size of change, and kind of change

for maintenance

This second goal is a necessary step that leads from
Goal 1 to the following goal:

Goal 3: Analyze: release delivery process
for the purpose of: prediction
with respect to: productivity

The following maintenance activity classification is
used in the data collection forms:

Impact analysiskost benefit analysis. The number of
hours spent analyzing several alternative
implementations and/or comparing their impact on
schedule, cost, and ease of operation.

Isolation. The number of hours spent understanding
the failure or request for enhancement or
adaptation.

Change design. The number of hours spent actually
redesigning the system based on an understanding
of the necessary change; includes semiformal
documentation, such as release design review
documents.

Coddunit test. The number of hours spent to code
the necessary change and test the unit; includes
semiformal documentation, such as software
modification test plan.

Inspectiodcertificationkonsulting. The number of
hours spent inspecting, certifying, and consulting
on another's design, code, etc., including
inspection meetings.

Integration test. The number of hours spent testing
the integration of the components.

Acceptance test. The number of hours spent
acceptance testing the modified system.

Regression test. The number of hours spent
regression testing the modified system.

System documentation. The number of hours spent
writing or revising the system description
document and math specification.

* Usedother documentation. The number of hours
spent writing or revising the user's guide and other
formal documentation, except system
documentation.

466

Other. The number of hours spent on activities other
than the ones above, including management.

A more detailed presentation of the maintenance
activities model is presented in [Valett et al, 19941.

Release types

Maintenance releaues in our environment were
classified into three categories: mostly error correction,
mostly enhancement, and mixture. A more detailed
discussion is presented in Section 4.4

Size and effort

The size of a software change is measured as the sum
of the number of source lines of code (SLOC) added,
changed, and deleted. SLOC is defined to include all
code, unit header limes, comments, and blank lines.
Effort is measured by person hours that were charged to
maintenance projects.

3.3 Data collection method

The following forms were used to collect the data for
this study:

software change request (SCR) form;
weekly maintenance effort form (WMEF);
software release estimate form (SREF).

Again, without a preliminary qualitative analysis of
the maintenance process, determining the content and
format of the WMEF and SREF forms would have
been extremely difficult.

3.3.1 SCR forms

On the SCR, the user or tester specifies what type of
change is being requested error correction, enhance-
ment, or adaptation. The maintainer specifies using an
ordinal scale the effalrt spent isolating/determining the
change, as well as the effort spent designing/
implementing/testing the change. The maintainer also
provides six numbers characterizing the extent of the
change made: (1) nunnber of SLOC added, (2) changed,
(3) deleted; (4) number of components added, (5)
changed, (6) deleted. In addition, the maintainer further
specifies how many of the components in item (4) were
newly written, how many were borrowed and reused
verbatim, and how many were borrowed and reused with
modification

3.3.2 WMEF forms

Each maintainer, tester, and manager working on one
of the study projects was required to report project
hours each week on a WMEF. The WMEF required

each person to break down project effort two ways: (1)
by specifying the hours by the type of change request
performed (error corrections, enhancements, or
adaptations) or as other hours (e.g., management,
meetings), and (2) by specifying the hours by the
software activities performed (such as design,
implementation, acceptance testing).

Because the WMEF did not originally allow a person
to specify to which maintenance release of the project
his hours applied, uncertainty resulted if a maintenance
team was involved in more than one maintenance
release in the same week. For many projects,
maintenance releases did overlap. Therefore, in August
1994, we revised the WMEF by requiring personnel in
the study to specify to which release each activity hour
applied. In addition, each maintainer (but not tester) is
now required to specify on his WMEF to which SCR
each activity hour applies.

3.3.3 SREF forms

The SREF is a new form created by the authors to
capture estimates of the release schedule, release effort,
release content (i.e., list of SCRs), and release extent
(i.e., number of units and lines of code to be added,
changed or deleted). Maintenance task leaders submit
an SREF at the end of each phase in the maintenance
release life cycle

4 .
sample maintenance goals

Quantitative analysis of the SEL

In this section, we provide the results of our analyses
from the data collected during this study. In most cases,
the data consisted of 25 complete releases for ten
different projects. The effort per release ranged from 23
hours to 6701 hours, with a mean of 2201 hours. The
total changes per release ranged from 21 SLOC to
23,816 SLOC, with a mean of 5654 SLOC.

4.1 Effort across maintenance activities

In this section we are interested in the following
questions related to Goal 1:

Q1.l. What is the distribution of effort across
maintenance activities (i.e., analysis/isolation,
design, implementation, testing, and other; see
below)?

Q1.2. What are the costliest projects and what is the
distribution of effort across maintenance activities
in these projects?

For simplicity, we have grouped the 12 maintenance
activity categories into 5 groups, as follows:

467

Analysis/isolation: impact analysiskost benefit

Design: change design, 1/2 (inspection/certification/

0 Implementation: c o d e h i t test, 1/2 (inspection

Testing: integration test, regression test, acceptance

* Other: system documentation, other documentation,

analysis, isolation

consulting)

/certification /consulting)

test

Other

Using these groupings, the distribution of
maintenance effort across maintenance activities is

shown in Figure 1. The first pie chart of this figure
represents the overall distribution based on the total
effort expended in the 25 complete releases (10 projects)
studied. Five projects accounted for 17 of these 25
releases. The remaining pie charts show the effort
distributions for these 5 projects, based on their 17
complete releases. These 5 projects were the costliest
projects in the FDD between January 1994 and June
1995, when counting all project effort, i.e., including
effort for both complete and partial releases in this time
period. During this time period, Swingby accounted
for 28% of the maintenance effort, MTASS for 19%,
GTDS for 12%, MSASS for lo%, and ADG for 8%.

6 Analysis & 4 Swingby Releases 5 MTASS Releases

Design 24
Isolation 14%

16% lmptement 1%

243/. 34%
14% Test

Other U 24% 33%

25 Releases
13% 18%

24%

29%

2 GTDS Releases 5 MSASS Releases 1 ADG Release
15%

1 5% 36%
18%

24% 37%

Figure 1 : Distribution of effort among software maintenance activities

One difference among these projects is that MTASS
has the largest percentage of testing effort, 34%.
Closer examination reveals that testing made up 17%
of the effort of the two earlier MTASS releases and
43% of the three latter releases. A similar trend is
suggested by MSASS-17%, followed by 31%. In
addition, both projects show a decreasing trend in
implementation effort, 43% followed by 27% for
MTASS, and 41% followed by 37% for MSASS.
These trends are not evident, however, for Swingby, the
only other project in our study that is represented by
more than 2 releases. The increase in MTASS and
MSASS testing may be due to the fact that these
systems consist of large software libraries that are
enhanced and reused from mission to mission. As the
software grows, more regression test time is necessary.
Another difference is seen in the large amount of ‘other’
time for GTDS. One of the GTDS releases involved
porting the GTDS software from an IBM mainframe to
a workstation. A significant amount of training time
(listed as other) may have been necessary for the
maintainers. More study is required before we can
confidently recommend such pie charts to release
managers as guides for resource allocation. It is likely
that such models will also need to factor in what type

of changes (adaptation, correction, or enhancement)
constitute the release.

4.2 Effort across maintenance change
types

In this section we consider the following questions
related to Goal 1:

Q1.3. What is the distribution of effort across
maintenance change types (i.e., adaptation, error
correction, enhancement, other)? That is, how was
the total maintenance effort expended?

activities the same for the different software
maintenance change types?

Q1.4. Is the distribution of effort across maintenance

Figure 2 presents the average distribution of effort
across maintenance change types. The distributions for
individual projects vary significantly from each other
and also from this average distribution. For example,
effort spent on enhancements varied from 51% to 89%
(with a mean of 61%) among the most dominant
projects.

468

In the FDD, enhancements typically involve more
SLOC than error corrections. The 25 complete releases
contained 187 change requests from users. Of these, 84
were enhancement change requests, with a mean size of
1570 SLOC, whereas 94 were error correction change

requests, with a mean size of only 61 SLOC. This data
supports the intuitive notion that error corrections are
relatively small isolated changes, while enhancements
are larger changes to the functionality of the system.

Analysis

Isolation

Design

Code/Unit test

Inspection, certification,

26%

YO consulting

- Error corrections

Adaptation

1 70

0%

27%

Enhancements

Figure 2: Effort Distribution by Type of Change

Now, we address ttie fourth question. In order to
answer this question, we need to know how a
maintainer’s activity effort is distributed for each
change type. With the old WMEF we could not
simultaneously analyze effort by both activity and
change type. With the new WMEF we can do so for
the programmers’ effort, because programmers report
the activity effort associated with each SCR, and we
know the change type of each SCR. Due to the fact
that testers, and usually task leaders, report their effort
by release-but not by SCR-we cannot analyze their
effort this way.

Figure 3 shows the effort spent by programmers on
correction and enhancement maintenance types, each

broken down by maintenance activities. We do not
include the ‘testing’ and ‘other’ groups of activities,
because much of this activity is not tagged to
individual SCRs, and we do not want to present a
misleading picture of how much time is spent in these
activities. As expected, software maintainers spent
more effort on isolation activities when correcting code
than when enhancing it. Conversely, they spent much
more time on inspection, certification, and consulting,
when enhancing code than when correcting it. The
proportions of effort spent on design and codehit test
are almost the same for the two types of change
requests.

Figure 3. Programmer effort distribution across five maintenance activities for error
correction and enhancement maintenance changes

469

4.3 Testing changes vs. release changes

In this section we consider the following question
related to Goal 1:

Q1.5. What is the impact of the errors inserted into
the projects by the maintainers with respect to
maintenance effort and code changed?

In this study we distinguished two types of change
requests: user and tester change requests. The original
content of the release consists of change requests

submitted by users. During the implementation of
each release some errors may be introduced by the
maintenance work. If these errors are caught by the
testers, they in turn generate tester change requests,
which become part of the same release delivery. The
25 complete releases contained 187 user change
requests, which required 138,000 SLOC. The same
releases had 101 tester change requests, which required
3600 SLOC. Thus the tester change requests accounted
for 35% of the SCRs in the release, but only 2.5% of
the SLOC, as is shown in Figure 4.

Tester
3%

Tester

35% User User
65% 97%

SCRs SLOC

Figure 4: SCR count and SLOC differences between user and tester
change requests (for 25 releases)

The effort data associated with individual SCRs is
incomplete for releases which began before August
1994 (when the authors revised the WMEF), so the
percent of effort associated with tester SCRs is unclear,
but the SLOC count suggests that it is a small
percentage. In a preliminary attempt to examine the
distribution of effort between tester change requests and
user change requests, the authors selected 5 releases
started and completed between August 1994 and June
1995 (see Figure 5). Since enhancements tend to be
larger than error corrections, and since all tester change

requests are error corrections, we ignored the
enhancements requested by the users (there were no
adaptations), In this sample 42% of the error correction
SCRs are tester SCRs, but these tester SCRs account
for only 27% of the programmer effort associated with
the error correction SCRs in these 5 releases. The
number of SLOC added, changed, or deleted for these
tester SCRs corresponds to 29% of the total number of
SLOC changed, added or deleted for all error correction
SCRs.

User
58%

User User
73% 71 %

SCRs

Figure 5: SCR count, Effort, and SLOC

In order to better comprehend the differences between
user and tester SCRs with regard to effort and SLOC
we calculated the level of significance of these
differences. To do so, we used the Mann-Whimey U
non-parametric tests [Hinkle et al. 19951.

We assumed significance at the 0.05 level, i.e., if the
p value is greater than 0.05, then we assume there is no
observable difference between tester and user SCRs.

Effort SLOC

differences between 5 completed releases

The results of these tests as well as other descriptive
statistics are provided in Table 1. These statistics are
shown for the sake of completeness and also because
they help us interpret the results of the analysis in the
remainder of this section. In addition, these statistics
will facilitate future comparisons of results in similar
studies since they will help explain differences in
results through differences in statistical distributions.

470

As this table shows, the mean productivity for user
SCRs (3.50) is almost the same as for tester SCRs
(3.76). Productivity is defined as the total SLOC
added, changed and deleted, divided by the total effort
spent to add, change, or delete that SLOC. Based on
the results presented .in Table 1, we can conclude that
there is no significant difference between the user SCRs
as compared to tester SCRs from the perspectives of
effort, SLOC and productivity (all the p values are
greater than 0.05). Therefore, even though the
maintainers already spent time understanding the code
to be modified when the change was fiist requested,

Descriptive User SCRs Tester SCRs
Statistics SLOC hours Produc. SLOC hours Produe.

MaximlIIIl 300 68 27.27 75 23
Minimum 3 2 0.15 4 3 0.1 Hours 0.263
Median 24 19 1.26 16 16 1.92
M m 57 26.63 3.50 32.75 13.53 3.76
Std Dev 89.45 22.82 7.94 31.05 7.72 5.21
i L

they are not significantly more productive when
correcting their own mistakes than they were earlier
correcting errors reported by the users. This surprising
result is an additional motivation to eliminate errors
introduced during the maintenance process.
Understanding why tester SCRs are not easier to correct
in the current maintenance process may lead to
substantial productivity gains.

However, we cannot confirm if this is only a
particular situation which happened on these 5
completed releases. We must continue to pursue this
analysis in order to verify the validity of these results.

Table 1 : Descriptive statistics of userand tester SCRs and Mann-Whitney U test msults

4 .4 Release productivity

For this paper, our major concern is how to estimate
the cost of subsequent maintenance releases. Planning
the next release so as to maximize the increase of
functionality and the improvement of quality is vital to
successful maintenance management. By analyzing the
various relationships between effort and other variables
(see Goal2), we suggest for our environment a
predictive model (Goal 3) based upon lines of code per
release. By following our procedure (Goals 1 ,2 and 3)
other organizations can develop their own predictive
models, based upon their specific characteristics and the
relationships between variables found in their
organization. In this section we are interested in
answering the following questions related to Goal 3:

Q3.1. What is the productivity model for the 3
different types of maintenance releases (i.e.,
enhancement, error correction, and mixture) within
the SEL?

Q3.2. Does a constant amount of overhead exist for

Evaluating the data available on 25 completed
maintenance releases within the SEL environment,
provided insight into potentially different kinds of
maintenance releases. In attempting to develop a cost

any type of maintenance release?

model for software maintenance releases, we first
plotted the size of maintenance releases (measured in
SLOC added, changed, and deleted) against the total
effort expended on the release. Initial evaluation of this
data (by visual inspection) showed that the data seemed
to break into 4 different groups.

One group of 4 releases had very high productivity.
In trying to find some reason to explain why these
releases differed from the others, we noted that the
average ratio of units added versus changed for these 4
releases (1.4) was much higher than for the other 21
releases (0.1). Were the added units primarily reused
units (either verbatim or with modification), rather than
newly written units, we might assume that the high
productivity of these 4 releases was due to their high
reuse. But the source of the units added to these 4
releases was not consistent. Sometimes the added units
were predominantly borrowed from other projects and
reused with modification. But other times the added
units were predominantly newly written units. In the
latter case, reuse is not the answer.

The answer may be the header, PDL*, comment, and
blank lines which SLOC includes in its definition.
Newly written units typically contain a high percentage
of such lines, but older units-and the maintenance
changes made to them-often include a much smaller
percentage of such lines. The older units often do not

* In the FDD, pseudocode, referred to as Program Design
Language (PDL), is included in the source code file.

47 1

have PDL, so PDL is often not updated when the code
is changed. Although more study is needed to verify
this hypothesis, this reinforces the need to have a
thorough knowledge of the process and products in
order to interpret the data and build accurate models.

Dismissing these four releases as unusual, we
continued to evaluate the remaining 21 releases. Based
on an inspection of the data, we developed a scheme for
characterizing the other 3 kinds of releases. The three
groups seemed to be divided into those releases that
were primarily made up of enhancements, those made
up primarily of error corrections, and those that fell
into neither of these two categories. The scheme used
to divide the releases is based on the percentage of
change requests within the release that were
enhancements or corrections and the percentage of
SLOC that was added, changed, or deleted as a result of
enhancements or corrections. Two criteria are
established for testing the release type:

Criterion 1 - (Percentage of Change Requests that are
enhancements > 80) or (percentage of SLOC due to
enhancements > 80)

Criterion 2 - (Percentage of Change Requests that are
corrections > 80) or (percentage of SLOC due to
corrections > 80)

Release type was then determined based on the
following test:

If (criterion 1) and Not (criterion 2)
then Release type = Enhancement

Elseif (Criterion 2) and Not (Criterion 1)
then Release type = Correction

Else Release type = mixed
Endi f

This test subdivided the remaining 21 releases into
14 enhancement releases, 3 correction releases, and 4
mixed releases.

The major result of this study is the development of
a predictive cost model for maintenance releases that are
primarily composed of enhancements. Figure 6 shows
the results of a standard linear regression of total release
effort versus total lines of code added, changed, and
deleted. This model has a coefficient of determination
(R2) of 0.75, which is statistically significant at the
O.Oooo6 level. By estimating the size of a release, an
effort estimate can be determined. The equation for the
line fit is:

Effort ~ U E S = (0 .36 * SUX) + 1040

0 4wo 8050 8050 14wo 18050

Total SLOC Added, Changed, or Deleted In R

x Enhancement Releases 0 Error Correction Releases
A Mixed Releases -Linear Regression Fit for Enhancement Release

Figure 6. Linear Regression Results for Enhancement Releases

Any maintenance release will have some overhead. It
is likely that this overhead stems partly from regression
testing and comprehension activities which are
somewhat independent from the size of the change.
The y-intercept of 1040 hours seems to imply that

there is an average release overhead of approximately
1040 hours for enhancement releases in the FDD.

The number of data points for error correction
releases and mixed releases makes development of
accurate models for them difficult. More data points

472

will be needed to determine if similarly accurate models
can be developed. The preliminary data suggests,
however, that the productivity for error correction
releases and mixed releases is significantly lower than
for enhancement releases. This suggests that error
corrections are less productivein terms of SLOC per
hour-than are enhancements. The error correction
releases and mixed releases tend to be smaller than most
of the enhancement releases. The interpretation of
these observations can result in different courses of
action for the manager. If improving productivity is
the main concern, then it may be wise to try to avoid
scheduling small error correction releases. Instead the
manager should try, when possible, to package small
error corrections in a release with larger enhancements.
If the enhancements require making changes to the
same units or group of units as required by the error
corrections, then the savings would likely be larger
still. On the other hand, there may be criteria other
than productivity to be considered: certain error
corrections may be vital to a mission, and thus cannot
be put off until another release, or the defect may be of
such severity that unless the error correction is
performed the system is unusable. The scheduling of
error corrections will involve tradeoffs regarding
productivity.

5 . Limitations of the data collection and
lessons learned

During this research effort, many valuable lessons
were learned. These lessons can be divided into general
results for studying maintenance and results for data
collection.

In the area of lessons learned for studying
maintenance, the following statements can be made:

An overall understanding of the maintenance process
and the maintenance environment is crucial to any
maintenance study. The combination of qualitative
understanding with quantitative understanding has
been invaluable. The qualitative understanding
helped to drive and improve the data collection
process.

Understanding the environment provides valuable
context for the data analysis. Without a thorough
understanding of the environment four outlier
enhancement releases might not have been
recognized as a distinct subset.

In the area of lessons learned on data collection:

Recognize the limitations of the data and work
within those limitations. Data collection by its
nature is inexact. Researchers must work within
the limits of the data and recognize that the
conclusions are only as valid as the data.
Qualitative evidence (i.e., structured interviews,

analysis of products and process documentation)
should be actively used to gain more confidence in
the results.

Assuring the quality of the data collected is a difficult
task.

The following paragraphs describe the quality
assurance procedures and analysis of the quality of the
data for this study. The SCRs are tracked very
effectively by the FDD configuration management
(CM) team. Their logging and tracking database
provided a thorough check on release contents. By
comparing the contents of the SEL database with the
CM database, we were able to identify any SCRs
missing from the SEL database. Copies of these
missing SCRs were then acquired from the CM team
and entered into the SEL database. Thus, in general,
the release contents were characterized to a high level of
confidence.

Two minor problems were encountered with the SCR
data. First, from talks with maintainers it was learned
that the maintainer does not always agree with the
change type specified by the user or tester. The user
may call a change request an error correction, whereas
the maintainer might judge it to be an enhancement.
This is not thought to occur in many cases.

Secondly, during the course of the study we learned
that not all maintainers were using the same definition
in reporting lines of code added, changed, or deleted.
The SEL usually uses source lines of code (SLOC),
which includes all PDL lines, comment lines, and
blank lines, as well as regular lines of code. Most
maintainers were using this definition for lines of code
on the SCR form. In addition to SLOC, however, the
FDD sometimes reports lines of code without counting
any PDL, comments, or blanks. The authors learned
that some maintainers had been reporting this number
on their SCR forms. Luckily most cases were confined
to a single project and a single release. For this release
the task leader supplied accurate totals of SLOC added,
changed, and deleted.

The tracking of weekly effort is not nearly as
thorough and rigorous as the tracking of SCRs. No
formal audit process exists to assure that all personnel
are submitting WMEFs each week they work on a
project. Many managers do try to assure that their
personnel submit the forms, but the process is not

Still, we feel confident that the effort data is
reasonably complete and accurate. When possible, data
validation has been done with the WMEF data. For
example, in some cases we found that SCRs had been
submitted (after the revised WMEF went into effect)
but that no maintainer had listed this SCR on the
WMEF. The maintainers who worked on these SCRs
were then identified and were required to revise their
WMEFs.

guaranteed.

473

6 . Conclusions and Future Directions

In this paper, we described descriptive models of a
software maintenance environment and an incremental
approach for the construction of release productivity
models for that environment. The former type of
models helped us understand better how and why effort
is spent across releases while raising new process
improvement issues. The latter type of models helped
us provide management tools for maintenance task
leaders. In order to validate our approach, a case study
was conducted at the NASA Software Engineering
Laboratory, where we showed the feasibility of building
such models. In addition, we derived a set of lessons
learned about our maintenance process which allowed
us to propose concrete improvement steps. We would
like to emphasize that the models produced in this
study are specific to a particular environment. Software
organizations seeking such models should not directly
apply our models, but instead should construct models
specific to their organization by using the process we
presented in this paper. Based on these results, some of
the many issues that should be further investigated are
discussed below.

As more releases are completed, predictive models for
the other categories of releases can be developed.
Having cost models for all three types of releases,
along with an understanding of the outlier subset of
high productivity releases, would complete the cost
modeling area of our study. Good cost models for the
other types of releases might not be obtainable, but
further understanding of the overhead of a release might
give better guidance on release content.

In addition to the current model, there is a need for an
effort prediction model at the change level. This would
help the maintainers perform costknefit analysis of
the change requests and thereby better determine the
release content within budget constraints.

The suite of predictive models can also be expanded
to include reliability. We would like to be able to
predict, for example, the number of errors uncovered
during each maintenance release. Such information
will lead to more guidance on release content, and to a
better understanding of the release testing process.

Acknowledgment

We want to thank Roseanne Tesoriero for her
valuable suggestions that helped us improve both the
content and the form of this paper.

[sasili & Rombach 19881 Basili, V. R. and D. Rombach.
“The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Trans. on Software
Engineering, 14 (6), June 1988, pp. 758-773.

Briand, L., V. R. Basili, Y.-M. Kim
and D. Squier. “A Change Analysis Process to
Characterize Software Maintenance Projects,” Proc.
Int’l. Con$ on Software Maintenance, Victoria, B. C.,
Canada, 1994, pp. 38-49.

[sriand e t a l . 19951 Briand, L., W. Melo, C. Seaman,
and V. Basili. “Characterizing and Assessing a Large-
Scale Software Maintenance Organization,“ Proc. 17th
Int’l. Con$ on Software Engineering, Seattle, WA,

[Briand et al. 19941

1995, pp. 133-143.
[Hazizaetal. 19921 Haziza, M., J. F. Voidrot, E.

Minor, L. Pofelski and S. Blazy. “Software
Maintenance: An Analysis of Industrial Needs and
Constraints,“ Proc. Con$ on Software Maintenance
1992, Orlando, Florida, pp. 18-26.

[Harrison & Cook 19901 Harrison, W. and C. Cook.
“Insights on Improving the Maintenance Process
Through Software Measurement,” Proc. Con$ on
Software Maintenance 1990, San Diego, CA, pp. 37-
45.

[Hinkle et al. 19951 Hinkle, D. E., W. Wiersma and S . G.
Jurs. Applied Statistics for the Behavioral Sciences,
Boston: Houghton Mifflin, 1995.

WcGarry et al. 19941 McGarry, F., G. Page, V. R. Basili,
and M. Zelkowitz. An Overview of the Software
Engineering Laboratoiy, SEL-94-005, December 1994.

Paulk, M., B. Curtis, M-B Chrissis,
C. Weber. “Capability Maturity Model, Version 1.1 ,”
IEEE Software, July 1993, pp. 18-27.

[Pigoski & Nelson 19941 Pigoski, T. M. and L. E.
Nelson. “Software Maintenance Metrics: A Case Study,”
Proc. Int ’1. Con$ on Software Maintenance, Victoria,
B.C., Canada, 1994, pp. 392-401.

Rombach, H., B. Ulery and J.
Valett. ”Toward Full Life Cycle Control: Adding Main-
tenance Measurement to the SEL,“ J . Systems and
Software, Nov. 1992, pp. 125-138.

[Schneidewind 19941 Schneidewind, N. “A Method-
ology for Software Quality: Metrics for Maintenance.”
Tutorial presented at the Int’l. Conf. on Software
Maintenance, Victoria, B. C., Canada, 1994.

[Valett et al. 19941 Valett, J., S . Condon, L. Briand, Y.-
M. Kim and V. Basili. “Building an Experience Factory
for Maintenance,” Proc. 19th Annual Software Eng.
Workshop, NASA Goddard Space Flight Center,
November 1994.

waligora et al. 19951 Waligora, S., J. Bailey and M.
Stark. Impact of ADA and Object-Oriented Design in the
Flight Dynamics Division at Goddard Space Flight
Center, SEL-95-001, 1995.

paulk et al. 19931

[Rombach et al. 19921

References

[Abran & Nguyenkim 19911 Abran, A. and Nguyenkim,
H. “Analysis of Maintenance Work Categories Through
Measurement,” Proc. ConJ on Software Maintenance
1991, Sorrento, Italy, pp. 104-113.

474

