Defining Factors, Goals and Criteria
for Reusable Component Evaluation

Presented at the CASCON ’96 conference, Toronto, Canada, November 12-14, 1996.

Jyrki Kontio, Gianluigi Caldiera and Victor R. Basili
University of Maryland
Department of Computer Science
A.V.Williams Building
College Park, MD 20742, U.S.A.
Emails: [jkontio | caldiera | basili] @cs.umd.edu

Abstract:

This paper presents an approach for defining
evaluation criteria for reusable software
components. We introduce a taxonomy of factors
that influence selection, describe each of them,
and present a hierarchical decomposition method
for deriving reuse goals from factors and
formulating the goals into an evaluation criteria
hierarchy. We present some highlights from two
case studies in which the approach was applied.
The approach presented in this paper is a part of
the OTSO' method that has been developed for
reusable component selection process.

1. Introduction

Software reuse is considered an important
solution to many of the problems in software
development. It is credited with improving the
productivity and the quality of software
development [1,4,15,24,30,33], and many
organizations have claimed significant benefits
from it [13,23].

Some organizations have implemented
systematic reuse programs [13], which have
resulted in in-house libraries of reusable
components. Other organizations have supported
their reuse with component-based technologies
and tools. The increased commercial availability
of embeddable software components,
standardization of basic software environments
(such as Microsoft Windows, Unix), and the

! OTSO stands for Off-The-Shelf Option. The OTSO
method represents a systematic approach to evaluate
such an option.

explosive popularity of the Internet have resulted
in a new situation for reusable software
consumers: there are many more accessible reuse
candidates. Consequently, many organizations
are spending much time in reusable component
selection since the choice of the appropriate
components has a major impact on the project
and resulting product.

Despite their importance, the issues and
problems associated with the selection of suitable
reusable components have rarely been addressed
in the reuse community. Poulin et al. present an
overall selection process [23] and include some
general criteria for assessing the suitability of
reuse candidates [32]. Some general criteria have
been proposed to help in the search for potential
reusable - components [24,25]. Boloix and
Robillard recently presented a general framework
for assessing the software product, process and
their impact on the organization [6]. However,
none of this work is specific to off-the-shelf
(OTS? software selection, and the issue of how
to define the evaluation criteria is not addressed.
Furthermore, most of the reusable component
literature does not seem to emphasize the
sensitivity of such criteria to each situation.

We have developed a method that addresses the
selection process of packaged, reusable software,
or OTS as we refer to it in this paper. The
method, called OTSO, supports the search,

2 “OTS” stands for “off-the-shelf”. The term
originates from the term “COTS software”, i.e.,
commercial off-the-shelf software. In this paper OTS
refers to both commercial and in-house source code,
executables, design, documentation, test cases, etc.

evaluation and selection of reusable software, and
provides specific techniques for defining the
evaluation criteria, comparing the costs and
benefits of alternatives, and consolidating the
evaluation results for decision making [18,19,21].
The main characteristics of the OTSO method
are as follows:

¢ A defined, systematic process that covers the
whole reusable component selection process.

e A method for estimating the relative effort or
cost benefits of different alternatives.

* A method for comparing the “non-financial”
aspects of alternatives, including situations
involving multiple criteria.

Requirement
specification

hanges lo
requiremenlts

-

Allernslives

External OTS
SW sources ™\
Product
knowledge
Screening
Product
in-house OTS /k"“l‘dg'
SW sources

selecied alternatives
for evaluation

Evaluation

ion results

e a predefined template for product quality
characteristics to be tailored and used in each
instance of the selection process.

Figure 1 shows the main activities in the
OTSO reusable component selection process
using a dataflow diagram notation. Each activity
in presented as a process symbol — a circle - and
artifacts produced or used are presented as data
storage symbols in Figure 1. In the search phase,
the goal is to identify potential candidates for
further study. The screening phase selects the
most promising candidates for detailed
evaluation. In the analysis phase, the results of
product evaluations are consolidated, and a
decision ‘about reuse is made. As the selected

Design
specification

Organizational

Project plan characteristics

design and architectyre Process «iol.inilion,
consmim't
c

application specific and

C X Teuse siralegy, capabilities,
functionat requiremanis

current practices, exisling
infrasiruclure, managemen!
commitment

Evaluation
criteria
definition

Criteria feedback

selocted criteria

Criteria definitions Evaluation

criteria

detailed criteria
definitions

»

Selected OTS
SW

T Evaluation
results {data)

Cost models

Evaluation
data

Value
«——Dacision{s} Analysis of estimation
resuits models

Figure 1: The main phases in the OTSO process

alternative is used (deployed), the effectiveness of
the reuse decision, eventually, can be assessed.
Reuse candidates are evaluated in different ways
in all phases. The OTSO method is based on
incremental, evolutionary definition and use of
the evaluation criteria so that the criteria set can
be gradually refined to support each phase. While
Figure 1 presents the overall OTSO process, this
paper presents the goal-driven criteria definition
process of the method that has not been described
publicly so far. Details about other aspects of the
method are available in separate reports and
- publications [18,19,21].

The structure of this paper is as follows.
Section 2 presents the factors that influence the
OTS software selection and how the reuse goals
can be formulated. Section 3 presents how the
evaluation criteria can be defined and
decomposed. Section 4 presents applicable results
from the two case studies with the OTSO method.
Finally, the conclusion section discusses the
relevance of our results,

2. Factors in Reusable Software
Selection

The overall relationships among influencing
factors, reuse goals and evaluation criteria are
presented in Figure 2. The first main task in
reusable software evaluation is to define the reuse
goals. This must be based on a careful analysis of
the influencing factors. We identified five groups
of factors that primarily influence the OTS
software selection. In the following sections we
discuss each of these groups.

Application requirements are likely to be. the
most important factor in evaluating reusable
software. Such requirements can include
functional requirements (such as the ability to
manage and display graphical geographical data)
and non-functional requirements (such as
available memory or speed of operations). The
requirement specification, if available, should be

used as a basis for interpreting such
requirements.

The requirement specification, however, can
only give partial support for the interpretation of
software reuse goals for two reasons. First, the
requirement specification typically does not
define how the system should be implemented or
what components could be implemented through
OTS software. Considering the use of OTS
software in a system means making some
assumptions about the architecture of the system,
and requires some decisions on which system
features should be covered by the OTS software.
Second, the requirement specification may not be
detailed enough for evaluating OTS software
alternatives. In both of these cases the
formulation of software reuse goals requires
interpretation and further refinement of
requirements, and some design concepts.

Application and domain architecture introduce
additional elements that need to be evaluated.
The architecture, in this context, provides a set
of constraints deriving from how particular
applications are built: this includes, for instance,
components and design patterns used or assumed,
communication and interface standards,
platform characteristics. All of this introduces a
set of constraints that may make integration of
some alternatives impractical or costly. Some
kind of application mediator, or “middleware”,
may be used to overcome such problems. This
mediator, however, needs to be either developed
or acquired from another source and this
provides, for instance, a cost increment that
needs to be estimated.

The application- domain may also have some
specific characteristics that are not addressed by
OTS software developed for other domains (for
example, real-time¢ applications vs, batch
processing). Sometimes the architecture is a
given and acts as a constraint in the OTS
software selection; sometimes the selection of the
right OTS software may determine or influence
the system architecture.

Application
architecture and
design

Organization

Application
requirements

roject objectives,
constraints

Avallability of

infrastructure Vo requirement libraries
’°33§?JL°" specification project fleglures snd chanscleristicy
lan
constraints P
reuse OTS SW
maturity information
v v
. ™
Reuse Goals and Constraints
Product Development aintenance
characleristics r0cesS process
e.g., functionality, o fost schedule e.g., maintenance
quality O ’ costs
N J
e ~

criteria criteria

FANPZAN

o ain

//1\\1\7/\\\ A"’\'\“/'\Zn“/f\

.

Evaluation Criteria

Functional Quality Domain and Strategic

architecture

critesia criteria
A m/_.k,.
AN AN AN AN A M
/}\\ A A A

J

Figure 2: Factors influencing the selection of reusable off-the-shelf software

Project objectives and constraints may
influence the library selection through the
schedule or the budget of the project. For
instance, early deadlines or low personnel
budget’ may require the use of externally
produced software. Project objectives may also
imply the use of external software if, for example,

* Note that this example is not meant to imply that the
use of OTS software necessarily results in lower
overall costs. The example highlights the usual
situation where the use of OTS software changes the
cost structure of a project, e.g., development costs
may be lowered but software acquisition costs are
higher.

these external libraries may provide a better way
to comply with standards or may be proven
reliable in implementing some aspects of the
library. There may also be some organizational
constraints that are set for the project, such as
availability of personnel with specific skills.

The availability of features in software reuse
candidates also affects the evaluation criteria
definition. This works in two ways. On one hand,
it is important to check that the evaluation
criteria are based on realistic expectations. That
is, the criteria set should not assume
characteristics that are not provided by any OTS
software alternative. On the other hand, it may be
useful to know about the possibilities that OTS

software alternatives offer but that may not have
been included in the requirement specification.

Finally, an organization’s reuse infrastructure
and reuse maturity should also be considered
when defining reuse goals. Reuse maturity
comprises several issues: an organization’s
experience in reuse, its commitment and interest
in continuing systematic reuse, the knowledge
and skills of personnel responsible for reuse, the
availability of specific tools for supporting reuse
(configuration management tools, information
databases, etc.), and the existing software
development environment [9,17]. Reuse maturity
is particularly important for the in-house
production of reusable components. Also, if an
organization has no experience in OTS software
reuse, it may have a limited ability to integrate
OTS software and to estimate the effort required
for OTS software integration.

The main point of this discussion is that the
evaluation criteria should be developed with full
awareness of all these factors. In most cases, this
requires that each factor be explicitly analyzed,
and documented and used as input in the final
definition of the evaluation criteria.

Each OTS software reuse situation is different,
and so are the reuse goals associated with it.
Based on the analysis of factors as described in
the previous section, the reuse goals for the
project need to be stated explicitly. The OTS
software reuse goal statement essentially should
describe the following:

« Where and how OTS software is to be used in
the application;

¢ The expected benefits of OTS software reuse,
such as functionality, quality, schedule impact,
or effort savings;

* Possible constraints for OTS software reuse;
¢ Cost budget for the use of OTS software,

The reuse goal statement should be
documented explicitly, although initially the goal
statement may seem abstract and simple. Our
experience indicates that it will be revised and
become more detailed as the OTS evaluation
progresses.

Reuse objectives can be divided into
development process goals, maintenance process
goals and product characteristics goals.
Development process goals relate to the cost,
effort and schedule of the development project.

The maintenance process goals deal with issues
such as the ease or cost of maintenance and who
will be responsible for maintenance. Product
characteristics goals refer to product functionality
and product quality.

3. Evaluation Criteria
3.1 Classes of evaluation criteria

The factors and goals described in Figure 2
determine the reuse goals for the system. The
content and priorities of these goals determine
which characteristics must be considered in the of
the OTS software selection process. The
evaluation criteria themselves can be categorized
into four main areas: (i) functional requirements,
(i) product quality characteristics, (iii) strategic
concerns, and (iv) domain and architecture
compatibility.

Functional requirements: These refer to
identifiable, functional features or characteristics
that are specific to the particular situation. These
criteria are derived from the requirement or
design specification and are expressed in the
form of requirements. Here are two examples
from an application dealing with geographical
data:

¢ Display ocean bathymetry data
¢ Show political boundaries.

Product quality characteristics are common
to a broader set of reuse sitnations. Typically the
structure and relationships of these
characteristics remain the same but their
acceptable values may vary from case to case.
Three examples are:

» Defect rate

e Compliance to the project user interface
guidelines

¢ Clarity of documentation.

Strategic concerns: These are the short-term
and the long-term effects of the reuse candidate,
the cost-benefit issues and the organizational
issues beyond the scope of the project in question.
These help to consolidate information for
decision making. Three examples are:

o Acquisition costs
* Effort saved
¢ Vendor’s future plans.

Domain and architecture compatibility: An
application domain or the software architecture

Attribute of GQM Explanation Examples

Object (entity) The entity being analyzed, e.g., OTS product, OTS | OTS product | OTS vendor
vendor

Focus (issue) The attributes that are of interest, e.g, cost, Cost Viability
reliability, or efficiency.

Purpose Evaluate: evaluate the characteristics of the entity | Evaluate Evaluate
w.r.t. a relevant benchmark. This attribute is
typically the same in all reuse evaluation cases.

Point of view Whose interest is being expressed, e.g., project Customer Development

(perspective) manager, corporation, customer, developer, etc. organization

Table 1: GQM-based evaluation criteria definition template

may also require specific characteristics from
reuse candidates. For instance; all flight-control
software must be very reliable and must be
developed with time-sensitive and reactive issues
in mind. A reuse candidate originally developed
for accounting software may have fundamental
design and performance characteristics that make
it unsuitable for such an application area.

Domain compatibility refers to how well the
reuse candidate and its features map into the
domain terminology and concepts. In the case of
object oriented reuse candidates, this can refer to
a match between domain objects and object
definitions in the reuse candidate. Architecture
compatibility refers to software or hardware
architecture requirements that are common to the
application area.

Examples are listed below:

Domain compatibility:
¢ system states can be modeled and represented
¢ geographical data manipulation capability

Architecture compatibility:
e supports or is compatible with CORBA
* compatible with Microsoft Windows OLE.

The evaluation criteria must be customized for
each selection situation. The functional
requirements, which often are central to the
selection process, are often unique to each
application. For the product quality
characteristics and - strategic concerns, it is
possible to define some templates that have stable
elements accross applications. As an input to
product quality characteristics, there are several
possible sources [5,7,10,16]. Figure 3 shows an
example of the product quality factors we defined
for one of our case study projects.

3.2 Hierarchical decomposition of
evaluation criteria

The evaluation criteria are derived from the
factors and goals discussed in the previous
sections. The first step in this process is to define
the evaluation goals using the GQM approach, as
it provides a well-defined template for
documenting such evaluation goals [2,3]. Table 1
presents the template used for GQM goals. The
object attribute and focus attributes can be
derived often directly from reuse goals. For
example, if a reuse goal is to reduce development
cycle time, we are evaluating the process (object)
and its duration (focus).

The purpose attribute can range from simple
characterization to understanding, evaluation and
even prediction [2]. However, most often the
purpose is evaluation. The point of view attribute
is relevant when there are different stakeholders
interested in the results and their views need to
be considered. For example, developer and user
perspectives may be different in terms of required
functionality of the product.)

The basic steps of criteria decomposition are the

following [18]:

1. Identify and formulate evaluation goals using
the template given in Table 1. For example, an
evaluation goal could be stated as follows:
object/entity:

2. For each evaluation goal, define a set of high-
level criteria or questions that characterize it.

3. For each criterion, write down an
unambiguous definition of it.

4. If the value for the criterion can be determined
with an objective measurement, observation or
judgment, call it an evaluation attribute, and

Type of Evaluation the criteria. Rephrasing the AHP
¥ Attribute Examples approach in the OTSO
framework, the evaluation

Measurement | < z‘;??;yl;ﬁxm loaded proceeds as follows [11,27]:
e number of bugs found during evaluation L. Define the importance of

» support of incremental image loading factors on each level.

Description o list of reported bugs 2. Define the preferences of
o description of the “undo” function alternatives over the lowest
Subjective o estimate of vendor’s growth potential level factors in the criteria tree.
assessment ¢ look and feel of GUI 3. Check the consistency of

Table 2: Examples of evaluation attributes

continue to decompose and define other
criteria. If the criterion is too abstract to be
measured with a single metric, if it has too
many aspects to be assessed through
observation or if it cannot be judged
objectively, continue decomposing it.

The number of items at each level should be
less than 10, preferably around 3 to 5.

The objective of the criteria-definition process
is to decompose criteria into a set of concrete,
measurable, observable or testable evaluation
attributes. An evaluation attribute can be an
observation, a measurement, or a piece of
information to be obtained. Table2 lists
examples of possible types of evaluation
attributes.

Once the criteria have been defined, the OTSO
method relies on the use of the Analytic
Hierarchy Process (AHP) for consolidating the
evaluation data for decision-making purposes.
The AHP technique was developed by Thomas
Saaty for multiple-criteria decision-making
situations [26,27]. The technique has been widely
and successfully used in several fields [28],
including software engineering [11] and software
selection [14,22]. It has been reported effective in
several case studies and experiments
[8,12,28,31]. Due to the hierarchical treatment of
our criteria, AHP fits well into our evaluation
process as well. AHP is supported by a
commercial tool that supports the entering of
judgments and performs all the necessary
calculations [29].

The AHP is based on the idea of decomposing
a multiple-criteria decision-making problem into
a criteria hierarchy. At each level in the
hierarchy the relative importance of factors is
assessed by comparing them in pairs. Finally, the
alternatives are compared in pairs with respect to

rankings and revise them if
necessary.

4, Present the results of the
evaluation, the alternative with the highest
priority being the one that is recommended as
the best alternative.

The rankings obtained through paired
comparisons between the alternatives are
converted to normalized rankings using the
“eigenvalue” method, preferably using a software
tool that automates the calculation process [27].

This process can be illustrated with a simple
example. Assume that one needs to decide which
Web browser to use, Internet Explorer or
Netscape (alternatives). Assume that the
evaluation criteria decomposition process has
resulted in just criteria, price and popularity.
According to the AHP method we would first
determine the relative importance of factors,
resulting in weights for each. New both
alternatives (Internet Explorer and Netscape) are
compared against these two criteria and their
relative rankings (weights) are obtained. Based
on this information, the relative preferences of
alternatives can be calculated and expressed as
numbers totaling one. More information about
the details of the AHP method or the Expert
Choice tool is available separate publications
[26,27,29].

From our perspective, the main advantage of
AHP is that it provides a systematic, validated
approach for consolidating information about
alternatives using multiple criteria. AHP can be
used to “add up” the characteristics of each
alternative. Furthermore, an additional benefit of
AHP is that we can choose the level of
consolidation. We recommend that consolidation
be carried out only to a level that is possible
without sacrificing important information. On the
other hand, some consolidation may avoid

overwhelming the decision makers with too much
detailed, unstructured information.

The weighting of alternatives is done using the
AHP method, preferably using a supporting tool
[29]. Preferences are collected and consolidated
to the level stakeholders prefer. The AHP allows
the consolidation of all qualitative information
and financial information into a single ranking of
alternatives. However, we believe that this would
condense valuable information too much. Instead,
we recommend that information about the
evaluation be consolidated to a level where a few
main items remain so that stakeholders can
discuss their impact and preferences. The full
consolidation can be done at the end as a sanity
check, if desired.

4., Case Studies

We carried out two case studies using the OTSO
method. The results of these case studies are
reported separately [18,19,21]. The first case
study assessed the overall feasibility of the
method and the second one focused on the
comparison of analysis methods. Both case
studies took place in the NASA’s Earth Orbiting
System (EOS) program with Hughes Information
Technology Corporation and were dealing with
real softiware development projects facing a
COTS selection problem.

Our first case study dealt with the selection of a
library that would be used to develop an
interactive, graphical user interface for entering
location information on Earth’s surface areas.
This case study used the OTSO method’s
hierarchical and detailed criteria definition
approach. Part of the criteria hierarchy is
presented in Figure 3. The main conclusion was
that the OTSO method was a feasible approach in

COTS selection and its overhead costs were
marginal [18].

The first case study also showed that OTS
package features can change the application
requirements: one of the OTS alternatives was
able to display ocean bathymetry data
graphically. Although this was not initially
specified as a requirement, the application
designers considered it a valuable feature and
proposed it to be included in the requirements
specification. This important feedback loop is
characterized by the arrow from the
search/screening/evaluation contour in Figure 1.

The second case study dealt with the selection
of a hypertext browser for the EOS information
service. This case study included a comparison
between two analysis methods, the AHP method
and a weighted scoring method.

A total of over 48 tools were found during the
search for possible tools. Based on the screening
criteria, four of them were selected for hands on
evaluation. The evaluation criteria were derived
from existing, broad requirements. However, as
in the first case study, the requirements had to be
elaborated and detailed substantially during this
process.

This case study further supported our
conclusion of the low overhead of the OTSO
method. Furthermore, this case study involved
several evaluators, and our criteria definition
approach improved the efficiency and consistency
of the evaluation. We also found an unexpected
result when comparing the two analysis methods:
they yielded different rankings of the COTS
alternatives even though they were based on the
same data [19,20]. In our opinion, this highlights
the importance of appropriate analysis and data
consolidation techniques in such evaluations.

Interoperabitity

Non-functional
application
characteristics

Standards
compliance

Product
quality
characte-
ristics

Application
architecture

Security

Defect rate

Reliability

Fault tolerance

Recoverability

Operability

Usability

Understandability

Learnabllity

Pitngnge
systems langyage

User interlace l——-—i 1) guidelines

Code fayout I—-——————l Changes needed |

Module interfaces l———-———{ Changes needed l

aming
conventions

Changes needed

Sysiem sl
atchitectyre incompatibitities

[etall of
documentation

are of com-
mented LOC

vailabiity of on-
fine help

Analyzabitity

ist ol undo-
cumented areas

Availability of en-
ling wtotisl

Maintaina-
bility

Change abitity

system

otal duration o
courses

Stabllity

vailabitity o
training matetial

Code complexity
metric

Module iterface
complexity metric

' mouni&cetai of

Testability

code commenis

Quality of code
comments

Avallability of lesy
support

Efficiency

Time behavior

Time to scroll

Response ime
tesis

Resource
behavior

Memoty usage

iZe of object
cods

Memory lsakage

Adaptability

Time 1o instalt

Portability

Instatlabiiity

fnsialialion
problem tist

Conformance

onal W
and HW needed

Figure 3: Example of a product evaluation criteria hierarchy

eatures nol
supporied

ncompatible
foalures

5. Conclusions

The OTSO method was developed to consolidate
some of the best practices we have been able to
identify for OTS software selection. The
experiences from our case studies indicate that
our method is feasible in an operational context:
it improves the efficiency and consistency of
evaluations, it has low overhead costs, and it
makes the COTS selection decision rationale
explicit in the organization. The detailed
evaluation criteria also contribute to the
refinement of application requirements.

The evaluation criteria definition approach
presented in this paper is a central element of the
OTSO method. The underlying assumption of our
approach is that as each situation is different, the
factors, goals and evaluation criteria will need to
be defined for each situation separately. By
formalizing this criteria definition process, it is
possible to reuse the OTS software selection
experiences better, leading to a more efficient and
reliable selection process.

Although our case studies were both performed
in the same application domain, we have not
encountered any domain specific characteristics
that would limit the applicability of the method
in other domains. Also, while the case studies
themselves were relatively small, the evaluation
processes, and the resulting criteria, were quite
extensive. This leads us to suggest that the
method may be able to scale up to larger
situations as well. However, further validation is
necessary to determine this with more
confidence.

6. Acknowledgments

This work has been supported by the Hughes
Information Technology Corporation and the
EOS Program, as well as by the Software
Engineering Laboratory, a joint software process
improvement organization between NASA,
Computer Sciences Corporation and University of
Maryland.

7. About the Authors

Jyrki Kontio is a researcher at the Department of
Computer Science at University of Maryland. His
research interests include risk management,
process improvement, process modeling,
technology management, and software reuse. He
is on a leave-of-absence from Nokia Research

Center, completing his Ph.D. on software risk
management. He can be reached at
jkontio@cs.umd.edu.

Gianluigi Caldiera is a Research Manager at
the Department of Computer Science at
University of Maryland. His research and
professional = activities are in sofiware
engineering, with special focus on software
quality assurance and management, software
metrics, software rcuse and software factories,
software process improvement, and quality
standards. In his more than 15 years of
professional and academic experience, he has
consulted for Government and industry in both
Europe and United States. He can be reached at
gealdiera@cs.umd.edu.

Victor R. Basili is a professor in the Institute for
Advanced Computer Studies and the Department
of Computer Science. He is a co-founder and a
director of the Software Engineering Laboratory.
Professor Basili is also co-editor-in-chief of the
International Journal of Empirical Software
Engineering. He <can be reached at
basili@cs.umd.edu.

8. References

{11 B. Barnes, T. Durek, J. Gaffney, and A.
Pyster., "A Framework and Economic
Foundation for Software Reuse,". In:
Tutorial: Saftware Reuse: Emerging
Technology, ed. W. Tracz. Washington:
IEEE Computer Society, 1988.pp. 77-88.

[2] V. R. Basili, "Software Modeling and
Measurement: The Goal/Question/Metric
Paradigm," CS-TR-2956, 1992. Computer
Science Technical Report Series. University
of Maryland. College Park, MD.

[31 V. R. Basili, G. Caldiera, and H. D.
Rombach. "Goal Question Metric
Paradigm,". In: Encyclopedia of Sofiware
Engineering, ed. J.]. Marciniak. New York:
John Wiley & Sons, 1994.pp. 528-532.

[4] T. Birgerstaff and C. Richter, "Reusability
Framework, Assessment, and Directions,"
IEEE Software, vol. 4, March. pp. 41-49,
1987.

[5] B. W. Boehm, J. R. Brown, and M. Lipow,
"Quantitative = Evaluation of Software
Quality,"” pp. 592-605, 1976. Pcodeedings of
the Second International Conference on
Software Engineering. IEEE.

[6] G. Boloix and P. N. Rabillard, "A Software
System Evaluation Framework,”" IEEE
Computer, vol. 28, 12. pp. 17-26, 1995,

{71 J. P. Cavano and J. A. McCall, "A
Framework for the Measurement of Software
Quality," ACM SIGSOFT Software
Engineering Notes, vol. 3, 5. pp. 133-139,
1978.

[8] A. T. W. Chu and R. E. Kalaba, "A
Comparison of Two Methods for
Determining the Weights Belonging to
Fuzzy Sets," Journal of Optimization Theory
and Applications, vol. 27, 4. pp. 531-538,
1979.

[9]1 T. Davis, "Toward a reuse maturity model,"
eds. M. L. Griss and L. Latour. pp. Davis_t-
1-7, 1992. Proceedings of the Sth Annual
Workshop on Software Reuse. University of
Maine.

[10] M. S. Deutsch and R. R. Willis. "Sofiware
Quality Engineering - A total Technical and
Management Approach,” Englewood Cliffs:
Prentice-Hall, 1988. 317 pages.

[11] G. R. Finnie, G. E. Wittig, and D. L. Petkov,
"Prioritizing Software Development
Productivity Factors Using the Analytic
Hierarchy Process,” Journal of Systems and
Software, vol. 22, pp. 129-139, 1995,

[12] E. H. Forman, "Facts and Fictions about the
Analytic Hierarchy Process," Mathematical
and Computer Modelling, vol. 17, 4-5. pp.
19-26, 1993.

[13] M. L. Griss, "Software reuse: From library
to factory," IBM Systems Journal, vol. 32, 4.
pp. 548-566, 1993,

{14} S. Hong and R. Nigam. "Analytic Hierarchy
Process Applied to Evaluation of Financial
Modeling Software,". In: Proceedings of the
1st International Conference on Decision
Support Systems, Atlanta, GA,
Anonymous1981.

[15] J. W. Hooper and R. O. Chester. "Software
Reuse: Guidelines and Methods," R.A.
Demillo (Ed). New York: Plenum Press,
1991.

[16] ISO. “Information technology - Sofiware
product evaluation - Quality characteristics
and quidelines for their use, ISO/IEC
9126:1991(E)," Geneve, Switzerland:
International Standards Organization, 1991.

[171P. Koltun and A. Hudson, "A Reuse
Maturity Model,” ed. W. B. Frakes. pp. 14,
1991. Proceedings of the 4th Annual
Workshop on Software Reuse. University of
Maine. Department of Computer Science.

[18] J. Kontio, "OTSO: A Systematic Process for
Reusable Software Component Selection,”
CS-TR-3478, 1995. University of Maryland
Technical Reports. University of Maryland.
College Park, MD.

[19] J. Kontio, "A Case Study in Applying a
Systematic Method for COTS Selection,"
1996. Proceedings of the 18th International
Conference on Software Engineering.

[20]1J. Kontio and S. Chen, "Hypertext
Document Viewing Tool Trade Study:
Summary of Evaluation Results," 441-TP-
002-001, 1995. ECS project Technical
Paper. Hughes Corporation, ECS project.

[21] J. Kontio, S. Chen, K. Limperos, R.
Tesoriero, G. Caldiera, and M. S. Deutsch,
"A COTS Selection Method and
Experiences of Its Use," 1995. Proceedings
of the 20th Annual Software Engineering
Workshop. NASA. Greenbelt, Maryland.

[22] H. Min, “"Selection of Software: The
Analytic Hierarchy Process," International
Journal of Physical Distribution & Logistics
Management, vol. 22, 1. pp. 42-52, 1992.

[23]1). S. Poulin, J. M. Caruso, and D. R,
Hancock, "The business case for software
reuse," IBM Systems Journal, vol. 32, 4. pp.
567-594, 1993,

[24]R. Prieto-Diaz, "Implementing faceted
classification for software reuse,"
Communications of the ACM, vol. 34,
5.1991.

[25) C. V. Ramamoorthy, V. Garg, and A.
Prakash, "Support for Reusability in
Genesis," pp. 299-305, 1986. Proceedings of
Compsac 86. Chicago.

[26] T. L. Saaty. "Decision Making for Leaders,"
Belmont, California: Lifetime Learning
Publications, 1982. 291 pages.

[27) T. L. Saaty. "The Analytic Hierarchy
Process," New York: McGraw-Hill, 1990.
287 pages.

[28] T. L. Saaty. "Analytic Hierarchy,". In:
Encyclopedia of Science & Technology,
Anonymous McGraw-Hill, 1992.pp. 559-
563.

[29] T. L. Saaty, Expert Choice software 1995,
ver. 9, rel. 1995. Expert Choice Inc. IBM.
Windows 95. :

[30] W. Schifer, R. Prieto-Dfaz, and M.
Matsumoto. "Software Reusability," W.
Schifer, R. Prieto-Dfaz, and M. Matsumoto
(Eds). Hemel Hempstead: Ellis Horwood,
1994,

[31} P. J. Schoemaker and C. C. Waid, "An
Experimental Comparison of Different
Approaches to Determining Weights in
Additive Utility Models,” Management
Science, vol. 28, 2. pp. 182-196, 1982,

[32] W. Tracz, "Reusability Comes of Age,”
IEEE Software, vol. 4, July. pp. 6-8, 1987.

[33] W. Tracz. "Software Reuse: Motivators and
Inhibitors,”. In: Tutorial: Software Reuse:
Emerging Technology, ed. W. Tracz.
Washington: IEEE Computer Society,
1988.pp. 62-67.

Note: Some of the technical reports and papers
describing the OTSO method are available
through “http://www.cs.umd.edu/users/jkontio/”.

