
�

�

Abstract

1 Introduction

AN ANALYSIS OF ERRORS IN A REUSE-ORIENTED

DEVELOPMENT ENVIRONMENT

Dept. of Computer Science

University of Maryland

College Park, MD 20742

School of Information Systems

Queensland Univ. of Technology

Brisbane, QLD 4001, Australia

Dept. of Computer Science

University of Maryland

College Park, MD 20742

This was supported in part by the National Aeronautics and Space Administration grant NSG{5123.

Reuse has been advocated as a technique with great potential to increase software

development productivity, reduce development cycle time, and improve product quality

[AM87, Bro87, BP88]. However, reuse will not just happen{rather, components must be

designed for reuse, and organizational elements must be in place to enable projects to take

advantage of the reusable artifacts.

Basili and Rombach present a framework of comprehensive support for reuse, including

organizational and methodological properties necessary to maximize the bene�t of reuse

[BR91]. For reuse to attain a signi�cant role in an environment, organizational changes

must be made to facilitate the change in development style. Maintaining a library of reusable

parts may require resources including personnel, hardware, and software. While increasing

1

William M. Thomas Alex Delis Victor R. Basili

Component reuse is widely considered vital for obtaining signi�cant improvement

in development productivity. However, as an organization adopts a reuse-oriented

development process,the nature of the problems in development is likely to change. In

this paper, we use a measurement{based approach to better understand and evaluate

an evolving reuse process. More speci�cally, we study the e�ects of reuse across seven

projects in narrow domain from a single development organization. An analysis of the

errors that occur in new and reused components across all phases of system development

provides insight into the factors in
uencing the reuse process. We found signi�cant

di�erences between errors associated with new and various types of reused components

in terms of the types of errors committed, when errors are introduced, and the e�ect

that the errors have on the development process.

2 Reuse-Oriented Software Development

the amount of reuse in an environment may reduce certain development activities (e.g.,

code creation), it will also require additional e�ort in other activities (e.g., searching for

components). With respect to product quality, it is also clear that \reused" does not imply

\defect-free." An investigation into the bene�ts of reuse in the NASA Goddard Space Flight

Center (NASA/GSFC) showed that even among components that were intended to be reused

verbatim, while their error rate was an order of magnitude lower than newly created code,

the error rate is still signi�cant [TDB92]. By analyzing the nature of the defects in the reuse

process, one can tailor the process appropriately to best achieve the organization's goals.

There have been several studies into techniques to stock an initial reuse library [CB91,

DK93]. One factor to be considered is the structure of the candidate reusable component.

Selby investigated various characteristics of new versus reused code in a large collection

of FORTRAN projects [Sel88]. Basili and Perricone analyzed tradeo�s between creating a

component from scratch versus modifying an existing component [BP84]. This work extends

these studies by investigating the nature of errors occurring in a reuse oriented develop-

ment environment, and drawing conclusions as to their impact in such an environment. In

particular, we analyzed a collection of eight medium scale Ada projects developed over a

�ve year period in the NASA/GSFC with respect to the defects found in newly developed

and reused components. The goal of the study was to learn about the nature of problems

associated with reuse-oriented software development, thereby allowing for improvement of

the reuse process. We found signi�cant di�erences between errors associated with new and

with various types of reused components in terms of when errors are being introduced, the

e�ect that they have on the development process, and the type of error being committed.

We also found some similarites and some di�erences with the �ndings of other investigations

into component reuse.

This paper is organized as follows. Section 2 provides a brief overview of reuse-oriented

software development, while section 3 gives background about using error analysis for process

improvement. Section 4 describes the goals of the study and the data analyzed. The �ndings

from our analysis are presented in section 5, and section 6 summarizes and identi�es the

major conclusions.

Reuse has been cited as a technology with the potential to provide a signi�cant increase

in software development productivity and quality. For example, Jones estimates that only

15 percent of the developed software is unique to the applications for which it was developed

[Jon84]. Reduced development cost is not the only bene�t of reuse{in fact, the greatest

bene�t from reuse may be its impact on maintenance [LG84, Rom91]. The potential for

substantial savings from reuse clearly exists. Unfortunately, achieving high levels of reuse

still remains an di�cult task. A number of issues must be addressed to e�ectively increase

the level of reuse in an organization, including the forms of reuse, and language and organi-

zational support to encourage reuse.

2

�

�

�

2.1 Types of Reuse

In this study we examined three modes of reuse:

verbatim reuse, in which the component is unchanged,

reuse with slight modi�cation, in which the original component is slightly tailored for

the new application,

reuse with extensive modi�cation, in which the original component is extensively al-

tered for the new application.

While di�erentiating verbatim reuse and reuse via modi�cation is trivial, distinguishing

between slight modi�cation and extensive modi�cation is more di�cult. Our intent is to

distinguish between cases where a component is left essentially intact, but needs some small

change for the new application, and cases where a component is signi�cantly altered for its

new use. The three types of reuse, and a their expected impact on development are described

in the following paragraphs.

Intuitively, verbatim reuse appears to hold the greatest bene�t to software development.

Development e�ort is minimized and veri�cation e�ort is reduced, since the component has

previously been developed, tested, and used. There may be an increased cost in integration

e�ort, as the reused component may not squarely �t in the new system, and the develop-

ers may not be as familiar with the reused component as they would be with a custom

component.

Another means of reuse is achieved by slight modi�cation of an existing component.

Here a component remains for the most part unchanged, but is adapted slightly for the new

application. For example, a sort routine may be modi�ed to sort a di�erent type of objects.

An improvement in terms of reduced development e�ort and increased quality is expected,

although perhaps not to the same degree as in the reused verbatim components. Again,

the integration of modi�ed components may be more di�cult than that of newly created

components; but, because the modi�ed components may be adapted to better match the

application, the integration is perhaps not as di�cult as with the verbatim reused com-

ponents. As with verbatim reuse, there may be new errors introduced in the component

selection process. However, since the developer does have a greater understanding of the

implementation of the modi�ed component, one is more likely to detect that error earlier

than if the component was reused verbatim.

Our third category of reuse occurs through extensive modi�cation of an existing com-

ponent. For example, one may want to change the underlying representation of a particular

type while maintaining the operations on the type. If the component was not designed with

the representation isolated in the implementation, this may require changes throughout the

component. Reuse in this manner is likely to be bene�cial only if the component is of a

su�cient size and complexity to justify modi�cation as opposed to simply creating a new

component from scratch. Since much of the component is new, in many ways this type of

reuse may appear similar to new development. However, there are some important distinc-

tions. The number of coded lines is likely to be reduced relative to newly developed code, so

3

2.2 Language Issues in Software Reuse

one might expect a decrease in error density. However, the extensive modi�cation activity

may be more error prone than standard component creation, since the original abstraction is

being signi�cantly altered. This mode of component creation may result in more of a \hack"

than a well-conceived component. New types of errors may arise, such as removing too much

or not enough of the old component.

The Ada programming language contains a number of constructs that encourage e�ective

reuse, including packages and generics [Ich85, WCW85, GP87, EG90]. A package is used to

group a collection of declarations, such as types, variables, procedures and functions. The

package construct allows for the encapsulation of related entities, encouraging the creation

of well-de�ned abstractions such as encapsulated data types. For example, a stack package

of a particular type can be created, containing the element type and operations such as push

and pop. Through a simple modi�cation of the element type, the package can be adapted

to support operation on a di�erent type. This would enable one to move toward the second

type of reuse, tailoring the component slightly to suit the new application.

Ada's generic construct provides more support for verbatim reuse, as it enables the

creation of more abstract entities. A generic program unit is a template for a module.

Instantiation of the generic program unit yields a module. The generic units may be param-

eterized, i.e., they may require the user to supply types or operations to create a module.

This provides a great deal of
exibility in their use. For example, one may parameterize the

stack package such that the user must supply the element type to create an instance of the

stack. The generic stack can then be used without modi�cation in support of a number of

di�erent types.

High levels of reuse may be achieved in languages without such features, however, the

approach taken to achieve such reuse will be di�erent. Such di�erences were reported in a

study comparing FORTRAN and Ada reuse in the NASA/SEL [BWS93]. The Ada approach

was to develop a set of generics that can be instantiated to support a variety of application

types. In contrast, the FORTRAN approach was to develop a collection of libraries speci�c to

each application type. On projects within a very narrow domain, both approaches achieved

similar high levels of reuse. However, when there was a signi�cant change in the domain,

the Ada approach achieved a sizable amount of reuse (50 percent verbatim reuse), while

the FORTRAN approach showed less than 10 percent verbatim reuse [BWS93]. Thus it

would appear that the parameterized, generic approach is better suited to development in a

dynamic, evolving domain.

While improved language features may help to enable reuse, they alone have not resulted

in large-scale reuse in software development. There are other important factors involved{

applications must be structured to allow and encourage reuse, and software organizations

must be tailored to support a reuse-oriented development paradigm.

4

A
AAnaa

Analyze Specify

IntegrateTest

Specifications

Components

Project Organization Factory Organization

Test

Search Select

Reuse
or Create

2.3 Organizational Support for Reuse

Figure 1: Interaction of a Project Organization with the Component Factory

One model that integrates reuse into a development is the \component factory" organi-

zation, which is a dual-organization structure consisting of two parts: a factory organization

and a project organization. The factory organization provides software components in re-

sponse to requests from the various projects being developed in the project organization

[BCC92]. Figure 1 illustrates the component factory concept in support of a project orga-

nization. In this setting, the development organization makes requests to the component

factory to provide components to be integrated into the desired product. If the component

factory is e�ective, the activity of component creation can be signi�cantly reduced, and

the quality of the components that are delivered to the integration team can be increased,

reducing the costs of development and of rework. The key features of the component fac-

tory are the repository of the components for future reuse, and the focus on
exibility and

continuous improvement. Thus a measurement{oriented approach must be utilized, such

as that proposed in the TAME project [BR88], which provides an experimental view of

software development, allowing for analysis and learning about the e�ectiveness of the new

technologies.

Reuse-oriented development will require some e�ort to be expended in activities that

are not a part of traditional software development. For example, although the component

factory will allow the e�ort spent in component creation to be reduced, it will also require

additional activity in searching for and selecting the appropriate component for the particular

application. These new activities may also be a potential source of errors in the system, and

thus a source of rework e�ort. Introducing an activity of selecting a component from a

repository may introduce new types of errors, for example, selecting a component that does

not provide the intended function.

5

3 Using Error Analysis to Optimize the Development

Process

Characterize

Set Goals

Choose processes

Execute

Analyze

Package

The Quality Improvement Paradigm provides a framework to build a continually im-

proving organization relative to its evolving set of goals [Bas85, BR88]. The QIP consists of

six steps:

1. the current project and environment.

2. for project performance and improvement.

3. , as well as models and metrics, appropriate for the project.

4. the processes, and collect the prescribed data, and provide real-time feedback

for corrective action.

5. the data to evaluate current practices and make recommendations for future

improvement.

6. the experience in a form suitable for reuse on future projects.

The �rst two steps deal with determining the nature of the project, including goals for

performance and improvement. Based on the characterization and goals, the third step se-

lects the most suitable processes for the project; establishes the measurement plan, including

choosing appropriate models and metrics, and sets up the mechanism for real-time feedback

as the project progresses. The fourth step starts the selected processes, collects and the data

as prescribed by the measurement plan, and uses the selected models and metrics to provide

feedback to the development organization. The �fth and sixth steps occur o�-line, as the

data is analyzed and packaged into the experience base for use in other projects.

Examining the various dimensions of errors in an organization can yield important

lessons learned that may be used to improve software development. The goal of error anal-

ysis is to learn about the nature of errors in the current environment so that improvement

can be made (e.g., process tailoring) in subsequent projects, and feedback can be provided

to the current project. Thus error analysis can be associated with either of the two feedback

loops in the model, the project loop, occurring in step 4, in which the results are in real-time

provided back to the project, or the corporate loop, in steps 5 and 6, in which results are

made available for subsequent projects in the organization. Our focus in this paper is on the

corporate loop; i.e., the analysis and packaging steps for subsequent development, from the

perspective of reuse-oriented software development.

A number of recent studies have shown that product metrics can be used to determine

the areas in a program that are at a greater risk of containing a fault [AE92, SP88, BBH93,

BTH93, MK92]. These studies indicate that models can be developed to isolate faulty

components in a system based on characteristics of the components and their environment.

Our goal is to develop an understanding of the di�erences between traditional development

methods and reuse-oriented methods in terms of the characteristics of their errors. Increased

6

4 Description of the Analysis

knowledge about the types of errors in an environment can be used to optimize the process

for that environment.

Basili and Selby found that the e�ectiveness of error detection techniques varies with

the type of fault encountered [BS87]. For example, code reading was found to be the most

e�ective technique for isolating interface errors, while functional testing was found to be

more e�ective at �nding logic errors. As such, a-priori knowledge of the distribution of

the type of errors allows one to select veri�cation techniques most appropriate for the that

distribution. Suppose two thirds of the errors are interface errors, and one third logic errors.

In this case, we would want to be sure to use techniques that are e�ective in �nding interface

errors. Given a limited budget for veri�cation and validation, we may choose to expend more

resources in code reading and fewer in functional testing. On the other hand, if a di�erent

project is much more likely to have logic errors than interface errors, it may be more e�ective

to focus the veri�cation activities on structural testing.

Knowledge of when the errors are being introduced enables one to apply veri�cation

techniques at the most suitable time. If a large number of errors are being introduced in the

design phase, adding design inspections to the development process may reduce the number

of errors impacting later phases. On the other hand, if most errors are being introduced

during coding, design inspections may not be as cost-e�ective. In this case, one may choose

not to inspect design, but choose to have additional veri�cation e�ort in the coding phase.

The QIP can be used to take advantage of such knowledge. To incorporate this reuse

information into the development process, we can develop a mapping to the QIP. The �rst

step of the QIP, characterize the project, can be tailored to include determining the amount

and type of reuse expected on the project. The second step, select appropriate models, can

include selecting models of expected error pro�les based on the characterization of reuse.

The third step is to select the appropriate processes. Here, one can choose the processes

expected to be most e�ective for the expected error distribution. The fourth and �fth steps

are to execute the processes, collect data, and feedback the results. This can be seen as

measuring the actual reuse pro�le, and measuring the e�ectiveness of the error mitigation

strategies, and making a determination of whether to modify the selected processes based on

the new information. For example, if the actual reuse pro�le is very di�erent from original

expectations, one should attempt to understand the factors that led to the di�erence, and,

if appropriate, develop a new projection of the expected error pro�le.

Since its origin, The NASA/GSFC SEL has collected a wealth of data from their software

development [SEL94]. Selby performed a study on the characteristics of reused components

on a collection of FORTRAN projects from this environment [Sel88], in which the level of

reuse averaged 32 percent. Because of the support for reuse provided by the Ada language, as

discussed in section 2.2, we chose to analyze the Ada projects in this environment. A much

higher level of reuse than what was reported in [Sel88] has been achieved more recently in

this environment [Kes90]. The high levels of reuse have been attributed in part to the Ada

language constructs and object-oriented methods [Kes90, Sta93, BWS93]. More recently,

7

Project Pct. Total Pct. Verbatim E�ort

ID KSTMT Reuse Reuse (SM)

A 27.1 31 4 175

B 14.4 31 13 85

C 13.7 38 19 72

D 24.8 85 27 117

E 13.8 97 88 30

F 12.8 78 44 73

G 13.7 100 89 16

Table 1: Overview of the Examined Projects

however, even the FORTRAN systems have been showing high levels of reuse, although the

nature of the reuse is di�erent than reuse in the Ada development environment.

We analyzed a collection of seven medium-scale Ada projects from a narrow domain, as

all are simulators which were developed at the NASA/GSFC Flight Dynamics Division. An

overview of the projects examined is provided in Table 1. The projects ranged in size from

61 to 184 thousand source lines, or 12.8 to 27.1 thousand Ada statements (KSTMT). They

required development e�ort of 16 to 175 technical sta� months. Reuse ranged from 4 to 89

percent (verbatim), and from 31 to 100 percent (verbatim and with modi�cation).

While this environment is not organized along the lines of the Component Factory dis-

cussed in section 2, it does have some characteristics in common with that organization. In

the SEL, generalized architectures were developed explicitly to facilitate large scale reuse

from project to project [Sta93], so it is clear that signi�cant e�ort has been applied towards

the goal of reuse in the organization. As such, new systems have been developed in accor-

dance with the packaged experience of reusable architectures, designs and code. One aspect

of the Component Factory organization is the separate organization that produces or re-

leases all reusable software products [BCC92]. While this feature is not present in the SEL,

it is apparent that less e�ort is being spent on project-speci�c development activities. The

percentage of e�ort spent in the Coding/Unit Test phase has dropped from 44 percent on an

early simulator, to only 18 percent on one of the more recent simulators [Sta93]. This sug-

gests that there is a signi�cant leveraging of the stored experience, and as such, the observed

e�ort on the SEL projects is becoming more in line with the pro�le one would expect in the

Component Factory's project organization, i.e., dominated by design and testing activities.

We developed a set of questions with which to compare newly created, modi�ed, and

reused verbatim components:

1. What is the impact of reuse on error density?

2. Are errors in reused units easier to isolate or correct?

3. Are the errors typically being introduced at di�erent phases?

4. Are errors associated with reused units detected earlier in the lifecycle?

8

with

5 Results of the Analysis

Component No. Pct.

Origin Comp. KSTMT KSTMT

New 1095 44.2 36.5

Extensively Modi�ed 152 8.8 7.2

Slightly Modi�ed 517 21.6 17.8

Reused Verbatim 1495 46.6 38.5

All Components 3259 121.2 100.0

Table 2: Pro�le of each class of component origin

5. Are there di�erent kinds of errors associated with reused units?

6. Are there structural di�erences between new and reused units?

Several types of data were used in our analyses. The �rst type of data has to do

with the origin of a component|whether it was newly created or reused. At the time

of component creation a form was �lled out by the developer indicating the origin of the

component{whether it was to be created new, reused from another component with extensive

modi�cation (more than 25 percent changed), reused with slight modi�cation (less than 25

percent changed), or reused verbatim (without change). Table 2 provides a summary of the

number of components and source statements in each category of component origin. A larger

amount of source code was created in the new and reused verbatim categories than in either

of the categories of reuse with modi�cation.

The SEL uses \Change Report Forms" to collect data on changes to components for

various reasons, such as error corrections, requirements changes, and planned enhancements.

In this analysis, we examined the changes made to correct errors. For each reported error, the

form identi�es the modules that needed to be changed, the source of the error, (requirements,

functional speci�cation, design, code, or previous change), the type of the error (initialization,

computational, data value, logic, internal interface, or external interface), and whether or

not the error was one of omission (something was not done) or commission (something was

done incorrectly).

Finally, we analyzed the systems with a source code static analysis tool, ASAP [Dou87],

which provided us with a static pro�le of each compilation unit, including, for example, basic

complexity measures such as McCabe's Cyclomatic Complexity and Halstead's Software

Science, as well as counts of various types of declarations and statement usage. ASAP

also identi�es all statements, so we were able to develop measures of the external

declarations visible to each unit.

This section presents the major �ndings from our analysis. We used non-parametric

statistical methods to test the hypotheses there were signi�cant di�erences among the classes

9

5.1 Structural Characteristics

Component Ave. No. Ave. No. Ave. No.

Origin Statements Parameters Withs

New 45.8 2.1 3.5

Extensively Modi�ed 59.9 2.1 7.5

Slightly Modi�ed 41.6 1.9 4.0

Reused Verbatim 24.5 2.8 1.1

All Components 36.8 2.3 2.7

Table 3: Structural Characteristics of Subprogram Bodies

of component origin in terms of the the nature and impact of the errors in each class.

Structural characteristics of the components are discussed in 5.1, and the remaining sections

describe �ndings associated with with the various dimensions of errors.

Table 3 shows a collection of measures that characterize the structure of compilation

units by class of reuse. Only compilation units that are subprogram bodies were considered,

so as not to bias the results with characteristics of instantiations or package speci�cations.

The average number of Ada statements provides an indication of the typical size of a compo-

nent. The number of parameters is a rough measure of the generality of a component. The

number of context couples (i.e., the number of \with" statements) provides an indication of

the external dependencies of a particular unit.

What we see is that the reused verbatim components are simpler in terms of their size and

external dependencies, as evidenced by the number of source statements and with statements.

The reused verbatim units average 24.5 statements and 1.1 withs per unit, while the new units

average 45.8 statements and 3.4 withs per unit. The extensively modi�ed units tend to be the

most complex, as they average 59.9 statements and 7.5 withs per unit. The slightly modi�ed

units tend to be slightly smaller than the new units, but with roughly the same number of

external dependencies. It is interesting to note that the extensively modi�ed components

are the most complex, both in terms of their size and external complexity. These results are

similar to what was reported by Selby in his analysis of reuse in a collection of FORTRAN

systems{the reused components tend to be simpler than newly created components in terms

of size and interaction with other modules [Sel88]. This additional complexity may result

in an increase in di�culty associated with these components in terms or their error density

and error correction e�ort.

We did note one result that is in contrast to Selby's study. He reported that the verbatim

reused modules tend to have a smaller interface than newly created units. We observed the

opposite{that the verbatim reused modules tend to have more parameters than either the

modi�ed or new components. The verbatim reused components averaged 2.8 parameters per

unit, versus 1.9 to 2.1 in the new and modi�ed components. This di�erence is signi�cant at

the 0.01 level (i.e., there is less than a one percent chance that there actually is no di�erence

10

error

defect

5.2 Error Density

Ave. No. Ave. No. Ave. No.

Project Statements Withs Params.

A 15 0.3 1.9

B 14 0.2 1.8

C 14 0.2 1.8

D 18 0.9 2.7

E 31 1.1 3.0

F 26 1.2 2.1

G 26 1.5 3.1

Table 4: Structural Characteristics in Verbatim Reused Components as Reuse Increases

between the classes). Units that are more highly parameterized have an increased generality

that may allow them to be more readily integrated into new applications. As such, we should

expect to see a greater number of parameters in the unchanged modules. This di�erence

may be indicative of the approach being taken to reuse in the environment. As previously

noted, the Ada approach in this environment was based on the use of well-parameterized

generics, while the FORTRAN approach was based on libraries of more specialized functions

[BWS93]. As such, we might expect a lower level of parameterization in reused FORTRAN

modules. Another reason for the di�erence from Selby's study may be that his measure of a

module's interface is a sum of counts of the parameters and global references in the module.

In the FORTRAN modules that he examined, this sum is likely to be dominated by the

count of global references; as such, the variation in the count of subprogram parameters

among the classes of reuse can not be observed.

Table 4 shows the pro�le of the reused components over time, as the projects are listed

in chronological order of their development start date. We see an increasing complexity (ex-

pressed both in terms of module size and external dependencies) in the reused components.

Also, we see a rise in the number of parameters per subprogram in the verbatim units, sug-

gesting an increasing generality among them. Low level utility functions were the �rst to

be reused, but as the organization gained reuse experience, more and more complex units

were reused as well. Thus while utility functions may be among the best components to

initially stock a repository, a reuse process is not limited to them. As an organization gains

experience, more and more complex units, at higher levels of the application hierarchy may

be reused.

Table 5 shows the error and defect densities (errors/defect per thousand source state-

ments) observed in each of the four classes of component origin. We use to refer to

a change report in which the reason for the change was attributed to an error correction.

A change report can list several components as requiring correction due to a single error.

We refer each instance of a component requiring modi�cation due to an error as a .

11

Component No. Defect Error S/A Err.

Origin Comp. KSTMT Density Density Density

New 1095 44.2 24.8 13.0 8.4

Extensively Modi�ed 152 8.8 19.5 14.0 8.9

Slightly Modi�ed 517 21.6 10.5 7.4 2.5

Reused Verbatim 1495 46.6 2.1 1.2 0.7

All Components 3259 121.2 13.1 7.6 4.4

Table 5: Error densities in each class of component origin

As such, there can be several defects associated with a single error. Two measures of error

density are shown{the �rst includes all errors from unit test through acceptance test, while

the second only includes those detected in system and acceptance test. The �rst measure

can provide an indication of the total amount of rework, while the second shows the amount

that is occurring late in the development life-cycle. The measure of defect density shown in

the table includes defects from unit through acceptance test.

We used a non-parametric test to obtain a statistical comparison of component error

density by class of component origin. This comparison shows a signi�cantly lower error den-

sity among the reused verbatim components compared to each of the other classes. Similarly,

there is a signi�cant di�erence between the slightly modi�ed components, and the new and

extensively modi�ed components. No signi�cant di�erence was observed between new and

extensively modi�ed components.

In terms of error density, reuse via extensive modi�cation appears to yield no advan-

tage over new code development. There is a bene�t from reuse in terms of reduced error

density when the reuse is verbatim or via slight modi�cation. However, reuse through slight

modi�cation only shows about a 50 percent reduction in total error density, while verbatim

reuse results in more than a 90 percent reduction. When we only look at the errors that

are encountered during the system and acceptance test phases, we still see a greater than

90 percent reduction in defect density in the reused verbatim class (0.7 errors per KSLOC,

compared to 8.4 errors per KSLOC in the new components). The slightly modi�ed com-

ponents, with 2.5 errors per KSLOC, show a reduction of nearly 70 percent compared to

the new components, with 8.4 errors per KSLOC. Verbatim reuse clearly provides the most

signi�cant bene�t to the development process in terms of reducing error density, but reuse

via slight modi�cation also provides a substantial improvement, one which is even more

noticeable in the test phases.

A number of studies have found higher defect/error densities in smaller components than

in larger components [BP84, SYTP85, LV89, MP93]. As shown in table 6, our data supports

their �ndings. Small components (25 or less statements) have defect density more than

twice that of the larger components (more than 25 statements), and this di�erence is highly

signi�cant. The only class of reuse where we saw no signi�cant di�erence was the reused

verbatim components, as they have the same defect density regardless of size. The defect

density in the small components was more than twice that of the larger components in the

new and extensively modi�ed classes, and nearly four times greater in the slightly modi�ed

12

5.3 Error Isolation/Completion Di�culty

Component Small Large

Origin No. Comp. Def. Dens. No. Comp. Def. Dens.

New 638 49.8 457 19.8

Extensively Modi�ed 67 35.7 85 17.7

Slightly Modi�ed 283 26.5 234 7.4

Reused Verbatim 952 2.3 543 2.0

All Components 1940 22.6 1319 10.9

Table 6: Relationship of defect density and component size

class. One explanation for higher error density in the small components is that a system

composed of small components will have more interfaces than a system composed of large

components; and interfaces are frequently noted as a major source of error in development.

Basili and Perricone, in their study of a FORTRAN development project, reported

that modi�ed components typically required more correction e�ort than new components

[BP84]. We see a similar result in the two classes of modi�ed components, and also see the

same pattern occurring in the reused verbatim components. Table 7 shows the percentage

of errors in each class of reuse that were categorized as di�cult to isolate or di�cult to

complete (de�ned as more than one day to isolate or complete, resp.), and the relative

rework e�ort, a crude approximation of relative e�ort (sta�-hours per KSTMT) in isolating

and correcting these errors. In terms of e�ort to isolate, we see little di�erence among

the classes of component origin. Newly created components had the smallest percentage

of di�cult-to-isolate errors, but it was not signi�cantly di�erent from any of the classes of

reused components. This result is not surprising, as the isolation activity is associated more

with understanding the intended functions rather than with their implementation. As such,

the origin of the components may not have as great an impact on isolation e�ort as it will

have on completion e�ort.

We do see an increase in the e�ort to complete an error in reused components relative

to new components. The new components had the lowest percentage of errors requiring

more than 1 day to complete a change and the reused verbatim components had the highest

percentage, while the modi�ed components fell in between. The di�erence between the new

and the reused verbatim components is signi�cant at the 0.05 level. One explanation for

this e�ect is that the developers have a greater familiarity with the newly created compo-

nents, so less time is needed to understand the components that must be changed. Another

explanation is that the majority of the \easy" errors had previously been removed from the

reused component, leaving only the more di�cult ones.

To determine whether the increased error correction cost in the reused components

outweighs bene�t of their having fewer errors, we computed a rough measure of the amount

of error rework expended in each class. Unfortunately, our data for e�ort spent in error

13

P
=1

n

i i

�

RR
� e

S
:

5.4 Source of Errors

Component No. Pct. Di�. Pct. Di�. Rel. Rework

Origin KSTMT Errors. Isolation Completion E�ort

New 44.2 574 12.4 10.1 118.3

Extensively Modi�ed 8.8 124 14.5 17.7 157.4

Slightly Modi�ed 21.6 160 13.8 13.1 76.8

Reused Verbatim 46.6 58 14.3 22.4 14.7

All Components 121.2 916 13.2 12.6 73.9

Table 7: Di�culty in error isolation/correction

correction and isolation is categorical, so we approximated the true e�ort simply by the

midpoint of the category (). Rework was then computed as the sum of this approximation

over all errors. Our relative rework measure (RR) was computed by dividing rework by the

number of statements (S), i.e.:

=
()

Again, we used a non-parametric test to determine whether there is a signi�cant dif-

ference in the relative rework e�ort among the four classes of component origin. The tests

found a signi�cant di�erence among the classes with one exception. When comparing the

extensively modi�ed components and the new components we found the level of signi�cance

to be only 0.18. There may be an increase in the rework cost of extensively modi�ed com-

ponents, however, our data does not con�rm this. In any event, it is not clear whether such

an increase in rework cost would be o�set by the expected bene�t of reduced component

creation cost.

For all other pairs, the result was signi�cant at the 0.01 level. Reuse via slight modi-

�cation shows a 35 percent reduction in rework cost over newly created components, while

verbatim reuse provides an 88 percent reduction. For these modes of reuse, the bene�t of

fewer errors clearly outweighs the cost of more di�cult error correction. This measure of

bene�t is somewhat conservative, as it does not account for the expected reduction in com-

ponent creation cost, or for the impact of errors as \obstacles" in the development process

(e.g., the cost of delays due to e�ort spent correcting errors). As such, we expect these modes

of reuse to yield an even greater improvement over new development. This shows that there

is a shift in costs of reuse compared to traditional development, with the reuse-oriented

development showing less development e�ort and fewer, but more costly, errors.

Understanding the activity in which the error is introduced allows for corrective action

to be applied at the appropriate time. Table 8 shows, for each class of component origin,

the percentage of errors from each error source (when the error was introduced). Across all

14

5.5 Time of Error Detection

Component Rqmts. or Previous Any

Origin Fun. Spec. Design Code Change Error

New 7.3 16.8 68.1 7.8 100

Extensively Modi�ed 5.6 20.2 59.7 14.5 100

Slightly Modi�ed 4.4 26.9 60.1 10.6 100

Reused Verbatim 3.4 3.4 74.1 19.0 100

All Components 5.7 18.2 66.1 10.0 100

Table 8: Percentage of errors in each class of error source by class of reuse

classes, coding errors are the most common error; however, errors associated with require-

ments, functional speci�cation and design occur at a slightly higher rate in new components

than in reused components. The Basili-Perricone study reported the opposite e�ect of reuse

on the speci�cation errors [BP84]. They found that modi�ed modules had a higher propor-

tion of speci�cation errors than did the new modules, and explained the result by suggesting

that the speci�cation was not well-enough or appropriately de�ned to be used in di�erent

contexts. A similar result was reported by Endres [End75]. A di�erence from the environ-

ments examined in those studies is that reuse has been well planned for in this environment.

The organization is not structured as a pure \component factory" as described in section 3,

but it is moving in that direction. As such, the architecture, design and speci�cations have

improved in this environment to better allow and encourage reuse. This result suggests that

the reused functionality is more likely to be well speci�ed. This is not surprising, since the

reused components have been speci�ed previously, with the expectation that they would be

reused. As such, any speci�cation errors are more likely to a�ect new components rather

than reused components. The result also indicates that reuse, whether formal or informal,

is occurring in this environment at a higher level than simply code.

A second item of interest is the increased percentage of design errors in the modi�ed

components. This suggests that there is increased di�culty in designing an adaptation of

an existing component to a new role. This is more di�cult because the reuser must be

concerned with two pieces of information: the intended function and the existing function.

In creating a new component, one only needs to be concerned with the intended function.

A misunderstanding of the existing function can result in an error, and that error is likely

to be attributed to the design.

Errors detected late in the development life-cycle can have a much greater cost than

those detected early. Table 9 shows, by class of component origin, the percentage of all errors

and the more di�cult errors that escape unit test. Across all errors, we see little di�erence

between the classes of new, extensively modi�ed, and reused verbatim components, as nearly

two thirds of the errors in these classes escaped unit test. This is signi�cantly higher than

what we observed in the slightly modi�ed components, where only 43 percent escaped unit

15

5.6 Nature of the Errors

Component Pct. All Pct. Di�. Pct. Di�.

Origin Errors. Isolation Completion

New 69 86 80

Extensively Modi�ed 66 81 87

Slightly Modi�ed 43 74 58

Reused Verbatim 62 100 100

All Components 64 84 78

Table 9: Percentage of errors that escape unit test

Component Error of Error of

Origin Omission Both Comission Any

New 35.4 28.6 36.0 100

Extensively Modi�ed 40.3 29.4 30.3 100

Slightly Modi�ed 39.6 20.8 39.6 100

Reused Verbatim 26.3 26.3 47.3 100

All Components 36.2 27.2 36.6 100

Table 10: Percentage of errors of omission and commission

test.

Of the di�cult isolation errors (those taking more than one day to isolate), there is not

much di�erence among the classes{a relative high percentage of these errors escape in all

classes. However, again, the slightly modi�ed components do show the lowest percentage.

There is a signi�cant reduction in the slightly modi�ed class in the percentage of di�cult-

to-complete errors that escape unit test, as only 58 percent of these errors escape unit test,

compared to 80 to 100 percent in the other classes. This suggests that the veri�cation process

is more e�ective in eliminating the di�cult errors for the slightly modi�ed components than

for other modes of component creation.

Table 10 shows the percentage of errors that were classi�ed as one of omission, com-

mission, or both. An error associated with a component that was reused verbatim is more

likely to be error of commission, and less likely to be one of omission. This suggests that the

reused component was typically complete, i.e., it contained the necessary functionality, but

at times was in error.

Extensively modi�ed components are more likely to have errors of omission than errors

of commission. This may be an indication of the greater complexity of these components.

Another possible explanation is that in the development of these components, the intended

16

5.7 Type of Errors

Component

Origin Procedural Interface Data All

New 41.2 14.1 44.6 100

Extensively Modi�ed 47.6 17.7 34.7 100

Slightly Modi�ed 31.8 31.2 36.9 100

Reused Verbatim 48.2 12.1 39.7 100

All Components 40.9 17.5 41.6 100

Table 11: Percent of errors of each type by class of component origin

function was not so clear, resulting in necessary parts being omitted. Additional review

of the completeness of the design of these components may be a means for removing these

errors at an earlier stage.

New and extensively modi�ed components have a higher rate of errors that are classi�ed

as both omission and commission than do the slightly modi�ed or reused verbatim compo-

nents. This may be due to the nature of new development{it is more likely to result in a

complex error.

Table 11 shows the percentage of errors that were classi�ed in each of the three classes:

procedural, interface, and data. Procedural errors are those that were classi�ed as either

a computational or a logic error, interface errors are those that were classi�ed as either an

internal or external interface error, and data errors are those that were classi�ed as either

an initialization or a data value error.

We see a signi�cant di�erence in the distribution of error types in the slightly modi�ed

components, as they have a much higher frequency of interface errors than any other class.

This suggests that the nature of the modi�cations is likely to be associated with the interface.

We also see that the new components are more likely to have data errors than the reused

components. Basili and Perricone found the opposite e�ect, namely, that the modi�ed

components had a greater percentage of data errors than did the new components. These

results suggest that a di�erent approach has been taken toward reuse. In the FORTRAN

project studied by Basili and Perricone, the approach may have been to tailor data values

and initialization to adapt the component to the new application. The approach taken in

the Ada environment is to create generalized modules that can be parameterized to create

instances suitable for the new application. As such, one might expect fewer data errors in

reused components in the Ada environment.

17

6 Conclusions

In this analysis we observed clear bene�ts from reuse{for example, reduced error density.

We found that verbatim reuse provides a substantial improvement in error density (more

than a 90 percent reduction) compared to new development. The other modes of reuse did

not approach this level of improvement. Reuse via slight modi�cation o�ered a 50 percent

reduction in error density compared to new development, but the improvement with this

mode of reuse was greater in errors detected late in development (a 70 percent reduction).

We observed a shift in costs of reuse-oriented development, with the reuse o�ering fewer,

but more di�cult errors. The e�ect of increased di�culty in error correction was apparent

across the three modes of reuse, although it was less evident in the slightly modi�ed com-

ponents. In both the verbatim and slightly modi�ed classes of reuse, the relative amount

of rework was less than in new code. This suggests that while there is a cost of increased

correction e�ort per error associated with such reuse, the cost is outweighed by the bene�t

of the reduced number of errors. Coupled with the reduction in development e�ort, these

modes of reuse appear to o�er a substantial bene�t to development.

Reuse via extensive modi�cation does not provide the reduction in error density that

the other modes of reuse yield, and it also results in errors that typically were more di�cult

to isolate and correct than the errors in newly developed code. In terms of the rework due

to the errors in these components, it appears that this mode of development is more costly

than new development. However, extensive modi�cation may o�er savings in development

e�ort that outweigh the increased cost of rework. This remains an issue for further study.

A di�erent pro�le of errors was observed for di�erent modes of reuse. For example, a

greater percentage of design errors were observed in the modi�ed components. The observed

increase in design errors may be due to errors in the additional activities of understanding the

function and implementation of the component to be modi�ed, as well as due to the fact that

less code was being written. Such information can be used to help in selecting appropriate

veri�cation methods for projects where there is signi�cant reuse via modi�cation. One may

want to increase the e�ort in design reviews on such projects, while on projects dominated

by new development, code reviews may receive more emphasis. This �nding also suggests

that one might want to investigate techniques to better describe the components stored

in the experience base so that the likelihood of a misunderstanding of the function and

implementation is lessened.

The experience with reuse in an organization and the approach taken toward reuse are

likely to in
uence the nature of errors observed in the organization. In this study of an

organization well experienced with reuse, we observe a number of e�ects that di�ered with

�ndings from other studies of environments where reuse was not planned for to such an

extent. The reused components appear to be simpler, have fewer dependencies, and be more

parameterized than new components. However, as this organization gained reuse experience,

the distinction became less apparent{more and more complex components, at higher levels

in the application hierarchy were reused. As an organization moves toward a reuse-oriented

development approach, it must evolve its practices to accommodate the new e�ects of reuse.

In the context of the QIP, error analysis can be a useful mechanism to provide insight into

the bene�ts and di�culties of reuse in software development.

18

References

IEEE Transactions on Software Engineering

Software Reuse: Emerging Technology

Proceedings

of the First Pan Paci�c Computer Conference

IEEE

Transaction on Software Engineering

ACM Transactions on Software Engineering and Methodology

Communications of the ACM

IEEE Transactions on Software Engineering

IEEE Transactions on Software Engineering

Software

Engineering Journal

IEEE Computer

IEEE Transactions on Software Engineering

Proceedings of the Fifteenth International

Conference on Software Engineering

Proceedings of the 18th Annual Software

Engineering Workshop

IEEE Computer

[AE92] W. W. Agresti and W. M. Evanco. Projecting software defects from analyzing

Ada designs. , 18(11), November

1992.

[AM87] W. Agresti and F. McGarry. The Minnowbrook workshop on software reuse: A

summary report. In W. Tracz, editor, .

IEEE Computer Society Press, 1987.

[Bas85] V. R. Basili. Quantitative Evaluation of Software Methodology. In

, Australia, July 1985.

[BBH93] L. C. Briand, V.R. Basili, and C. J. Hetmanski. Developing interpretable models

with optimized set reduction for identifying high-risk software components.

, 19(11), November 1993.

[BCC92] V. R. Basili, G. Caldiera, and G. Cantone. A Reference Architecture for the Com-

ponent Factory. ,

1(1), January 1992.

[BP84] V. R. Basili and B. T. Perricone. Software errors and complexity: An empirical

investigation. , 27(1), January 1984.

[BP88] B. W. Boehm and P. N. Papaccio. Understanding and Controlling Software Costs.

, 14(10), October 1988.

[BR88] V. Basili and D. Rombach. The TAME Project: Towards Improvement{Oriented

Software Environments. , 14(6), June

1988.

[BR91] V. R. Basili and H. D. Rombach. Support for Comprehensive Reuse.

, 6(5), September 1991.

[Bro87] F. P. Brooks. No Silver Bullet: Essence and Accidents of Software Engineering.

, 20(4), April 1987.

[BS87] V. R. Basili and R. W. Selby. Comparing the e�ectiveness of software testing

strategies. , 13(12), December 1987.

[BTH93] L. C. Briand, W. M. Thomas, and C. J. Hetmanski. Modeling and managing

risk early in software development. In

, May 1993.

[BWS93] J. Bailey, S. Waligora, and M. Stark. Impact of Ada in the
ight dynamics

division: Excitement and frustration. In

. NASA/GSFC, December 1993.

[CB91] G. Caldiera and V. R. Basili. Identifying and Qualifying Reusable Software Com-

ponents. , 24(2), February 1991.

19

Proceedings of the 15th International Conference on Software

Engineering

Software Reuse with Ada

Pro-

ceedings of the International Conference on Software Engineering

IEEE Software

The Rationale for the Ada Programming Language

IEEE

Transactions on Software Engineering

Proceedings of the

15th Annual GSFC Software Engineering Workshop

IEEE Transactions on Software Engineering

IEEE Transactions on Software

Engineering

IEEE

Transactions on Software Engineering

Proceedings of the First International Software Metrics Symposium

Informa-

tion and Software Technology

Software Reuse: Emerging Technology

[DK93] M. Dunn and J. Knight. Automating the detection of reusable parts in exist-

ing software. In

, Baltimore, Maryland, May 1993.

[Dou87] D. Doubleday. ASAP: Ada Static Analyzer Program. Technical Report CS{TR{

1897, University of Maryland, May 1987.

[EG90] N. Ebel and C. Genillard. The reusability of Ada software components. In

R. Gautier and P. Wallis, editors, . Peter Peregrinus

Ltd., 1990.

[End75] A. Endres. An analysis of errors and their causes in system programs. In

, April 1975.

[GP87] A. Gargaro and T. Pappas. Reusability issues and Ada. , July

1987.

[Ich85] J. Ichbiah. . Cambridge Uni-

versity Press, 1985.

[Jon84] T. C. Jones. Reusability in programming: A survey of the state of the art.

, SE{10(5), September 1984.

[Kes90] R. Kester. SEL Ada Reuse Analysis and Representations. In

. NASA/GSFC, November

1990.

[LG84] R. Lanergan and C. Grasso. Software Engineering with Reusable Designs and

Code. , SE{10(5), September 1984.

[LV89] R. Lind and K. Vairavan. An experimental investigation of software metrics and

their relationship to software development e�ort.

, 15(5), May 1989.

[MK92] J. Munson and T. Khoshgoftaar. The detection of fault-prone programs.

, 18(5), May 1992.

[MP93] K. M�oller and D. Paulish. An empirical investigation of software fault distribution.

In , Baltimore,

Maryland, May 1993.

[Rom91] H. D. Rombach. Software Reuse: A Key to the Maintenance Problem.

, 33(1), January/February 1991.

[Sel88] R. Selby. Empirically analyzing software reuse in a production environment. In

W. Tracz, editor, . IEEE Computer Society

Press, 1988.

[SEL94] An Overview of the Software Enginnering Laboratory. Technical Report SEL-

94-005, Software Engineering Laboratory, NASA Goddard Space Flight Center,

December 1994.

20

IEEE Transactions on

Software Engineering

Proceedings of Eigth Annual Conference on Object-Oriented Programming

Systems, Languages and Applications

IEEE Transactions on Software Engineering

Ada: Moving Towards 2000 (Proceedings of the

Ada{Europe International Conference)

IEEE Software

[SP88] R.W. Selby and A.A. Porter. Learning from Examples: Generation and Evalu-

ation of Decision Trees for Software Resource Analysis.

, 14(11), November 1988.

[Sta93] M. Stark. Impacts of object-oriented technologies: Seven years of SEL stud-

ies. In

, October 1993.

[SYTP85] V. Shen, T. Yu, S. Thebaut, and L. Paulsen. Identifying error-prone software{an

empirical study. , SE-11(4), April

1985.

[TDB92] W. M. Thomas, A. Delis, and V. R. Basili. An evaluation of Ada source code

reuse. In J. van Katwijk, editor,

, Zandvoort, The Netherlands, June 1992.

Springer-Verlag.

[WCW85] A. Wolf, L. Clarke, and J. Wileden. Ada-based support for programmming in the

large. , March 1985.

21

