THE EXPERIENCE FACTORY
STRATEGY AND PRACTICE

Victor R. Basili Gianluigi Caldiera
basili@cs.umd.edu gcaldiera@cs.umd.edu

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, Maryland 20742

ABSTRACT

The quality movement, that has had in recent years a dramatic impact on all industrial sectors, has
recently reached the systems and software industry. Although some concepts of quality management,
originally developed for other product types, can be applied to software, its specificity as a product which
is developed and not produced requires a special approach. This paper introduces a quality paradigm
specifically tailored on the problems of the systems and software industry.

Reuse of products, processes and experience originating from the system life cycle is seen today as a
feasible solution to the problem of developing higher quality systems at a lower cost. In fact, quality
improvement is very often achieved by defining and developing an appropriate set of strategic capabilities
and core competencies to support them. A strategic capability is, in this context, a corporate goal defined
by the business position of the organization and implemented by key business processes. Strategic
capabilities are supported by core competencies, which are aggregate technologies tailored to the specific
needs of the organization in performing the needed business processes. Core competencies are non-
transitional, have a consistent evolution, and are typically fueled by multiple technologies. Their selection
and development requires commitment, investment and leadership.

The paradigm introduced in this paper for developing core competencies is the Quality Improvement
Paradigm which consists of six steps:

1. Characterize the environment 4. Execute the process
2. Set the goals 5. Analyze the process data
3. Choose the process 6. Package experience

The process must be supported by a goal-oriented approach to measurement and control, and an -
organizational infrastructure, called Experience Factory. The Experience Factory is a logical and physical
organization distinct from the project organizations it supports. Its goal is development and support of
core competencies through capitalization and reuse of life cycle experience and products.

The paper introduces the major concepts of the proposed approach, discusses their relationship with other
approaches used in the industry, and presents a case in which those concepts have been successfully
applied.

This work was supported by NASA Grant NSG-5123 and by Hughes Applied
Information Systems, Inc.

1. INTRODUCTION

The presence of software in almost every activity and institution is a
characteristic of our society. Our dependence on software becomes evident when
software problems and related events make the headlines of newspapers.
However, this dependency on software, although highly visible, is not yet well
understood by the business community. Software is still too often perceived as
the easiest part of a system, the part that can be easily modified and adapted to
fit to the main business of the organization.

This idea that "software is easy" or, ultimately, "cheap" is hard to eradicate, even
when there is substantial evidence that it is not true anymore. In particular, there
is a certain difficulty in dealing with software quality, both it terms of definition
(What is quality software?) and implementation of quality programs (How can
we produce quality software?).

The starting point of every discussion on software quality is the recognition that
software is an industrial product whose quality can be managed in a similar way
to the quality of other products or services. A software system is the result of the
concurrent effort of teams of people working according to a traditional
engineering paradigm (a conception phase followed by an implementation
phase, very often with several iterations). In fact, we call "software engineering"
the systematic approach to the development, operation and maintenance of
software systems (and associated documentation and data).

As with every industrial product, the quality of software is defined as "fitness
for use" over its lifetime. Therefore, the goal of a quality management program is
to incorporate quality into a software system in the most economically
convenient way, i.e., by designing a high quality system. The challenge of
software quality is to implement techniques and programs in order to fill the
existing gap between demand and our ability to produce high-quality software
in a cost-effective way.

The software product, however, presents the following critical combination of
characteristics:

. Software is a logical aggregate of invisible parts: The quality of such
aggregate depends on the appropriateness of the logical
structuring of the parts and on a precise and easy-to-understand
documentation of this structure;

. Software is designed for user applications which are expected to evolve
continuously: The quality of application software depends on the

precise conceptual understanding of user needs, and on the
adaptability of design to a changing environment; good
communication between designers and users, and user perception
are essential components of good software design;

. Software is developed and not produced: Each software product is like
a prototype, therefore many statistical concepts that help us in
measuring and controlling quality in industrial products do not
apply completely to software products;

. Software is a human based technology: The quality of the software
product is dependent on the individuals involved, therefore
appropriate use of individual skills, individual satisfaction and
motivation are key issues in achieving substantial improvements in
quality and productivity.

We believe that the quality of a software system should and can be managed in
two ways. First, the effectiveness of the software development process should be
improved by reducing the amount of rework and reusing software artifacts
across segments of a project or different projects. Second, plans for controlled,
sustained, and continuous improvement should be developed and implemented
based on facts and data.

But software engineering does not make extensive use of quantitative data.
Therefore software quality management is based on a very immature and
unstable paradigm. A major problem is that many data regarding the quality of
a system can only be observed, and measured when the system is implemented.
Unfortunately, at that stage the correction of a design defect requires the
redesign of some, sometimes large and complex, components and is very
expensive. In order to prevent the occurrence of expensive defects in the final
product, quality management must focus on the early stages of the engineering
process, in particular on the requirements analysis and design phases, and use
quantitative data in order to record and support inspection and decision making.
Those early stages are, however, the ones in which the process is less defined
and controllable with quantitative data. Therefore, software engineering projects
do not regularly collect data and build models based upon them.

There are many software project that can be considered successful from a quality
point of view; generally this means that the techniques and procedures applied
in the project have been effective, in particular those aimed at assuring quality.
The goal of quality management is to make this success repeatable in other
projects, by transferring the knowledge and the experience that are at the roots
of that success to the rest of the organization. Therefore, a software organization
that manages quality should have, besides the quality assurance infrastructure

associated with each project, a corporate infrastructure that links together and
transcends the single projects by capitalizing on successes and learning from
failures.

Quality management and infrastructure, however, do not just happen; they must
be planned and implemented by the organization through specific programs and
investments. This paper is about the need for a strategic approach to software
quality management, as a part of a corporate strategy for software, aimed at
pursuing and improving quality as an organization and not as a group of
individual projects.

We will motivate the need for such an approach, discuss it in the context of some
of the most relevant concepts developed by the management disciplines, and
provide a framework for a solution, which has been applied in practice with
convincing results.

We believe there is no solution that can be mechanically transferred and applied
to every organization (the famous "silver bullet”), and this applies also to the
concepts presented in this paper. The proposed approach, however, can be used
by every organization, after appropriate customization, in order to improve
software quality in a controllable way.

2. THE PROBLEM OF SOFTWARE QUALITY

Quality is the totality of characteristics of a product or service "that bear on its
ability to satisfy stated or implied needs" [ISO1]. It is a multidimensional concept
that includes the entity of interest (the product or service), the viewpoint on that
entity (the user, the producer, a regulatory agency, etc.) and the quality
attributes of that entity (the characteristics that make it fit for use). A recent
international standards [ISO3] identifies the following characteristics:

 Functionality « Efficiency
* Reliability e Maintainability
o Usability o Portability

In some cases, such as regulated environments in which some safety critical
factors must be determined (aeronautics, nuclear power, etc.), these attributes
are specified by a standard or a contract; but in the majority of cases they are
identified and defined during the design process, and modified throughout the
life cycle of the system. The ability of an organization to identify and define the
quality attributes that are closer to the "stated or implied needs" of a user is the
critical success factor in the market of the 90's.

Figure 1

Quality as business
opportunity

Quality as a
management tool

MANAGEMENT

Quality as a
controllable problem

FUNDAMENTAL
(ISO 9000)

Today the success of a software organization is measured by its
cost/performance attributes: it delivers (or updates) the needed systems
generally on time and without budget overruns. In the longer run, though, if we
take into account today's market, characterized by shrinking budgets and
increased global competition, we can expect, for the second half of the '90s, that
the most successful organizations will probably be the ones that have been able
to converge to better levels of productivity and quality. The influence of
international standards such as the ISO 9000 Series [ISO2] is already evident.
Many organizations are now seeking registration and the ability to develop
quality systems in compliance with the requirements of the standard.
Registration, however, is a means and not an end: spending resources on
developing a quality system without a quality improvement program that uses it
to gain a competitive advantage would be a waste of money. This is why, along
with ISO 9000 registration programs, we see quality improvement programs
being started. We can expect that in a few years all this movement will lead to a
higher quality baseline for all the software that is being purchased and
developed around the world. On top of this baseline the organizations will be
able to build their own quality management programs and their continuous
improvement strategies. In this way quality will complete its transformation
from problem (search for defects) to tool (defined processes) to business
opportunity used to distinguish an organization from its competitors(Figure 1).

At that point, the real advantage will come from the ability of the software
organization to deliver solutions that not only satisfy, but also anticipate the
needs of the system users, enhancing their business and adding a substantial
amount of value to their products and services [Hamel and Prahalad, 1991].
Competition in the '90s is a more complex and dynamic playing field, in which
the basic factors for success are the understanding of trends and the response to
changing needs. The traditional rigidity of software organizations must to be
adapted to the new ground rules. New professional skills, beyond the traditional
programmer/analyst/manager triangle, are necessary in order to capitalize on
the experience of the organization and work on specific lines of business instead
of developing isolated products.

If we survey the approaches to software quality available to the industry, we see
a variety of paradigms, mostly coming from the manufacturing industry.

Some organizations apply to their software processes an improvement process
based on the Shewart-Deming Cycle [Deming, 1986]. This approach provides a
methodology for managing change throughout the steps of a production process
by analyzing the impact of those changes on the data derived from the process.
The methodology is articulated in four phases:

Plan: Define quality improvement goals and targets and
determine methods for reaching those goals; prepare
an implementation plan.

. Do: Execute the implementation plan and collect data.

Check: Verify the improved performance using the data
collected from the process and take corrective actions
when needed.

. Act: Standardize the improvements and install them into
the process.

Some organizations use the Total Quality Management (TQM) approach, which
is a derivative of the PDCA method applied to all business processes in the
organization [Feigenbaum, 1991]. Actually, more than a specific method TQM is
a family of management philosophies based on the fact that quality is measured
by the user of a product, and that everyone in the organization has specific
responsibilities for the quality of the final outcome. Therefore, in TQM
programs, quality improvements, identified during a preliminary
characterization effort, are usually experimented by pilot groups and then
institutionalized across the whole organization. The TQM approach usually
results in the establishment of cross-functional quality improvement teams
chartered to addressing specific quality improvements within a strategic quality
plan developed by the top management.

A different approach is adopted by organizations that model their improvement
on an external scale that is meant to represent the best practices in quality. The
goals of the improvement program are, in this case, not internally generated but
suggested by those best practices. A model of this kind, which is today very
popular in both the USA and Europe, is the SEI Capability Maturity Model [SEI;
Bootstrap] which measures the maturity of a software organization on the basis
of its dependence on individual skills and on the presence of certain
technologies. In a low maturity organization, the success of a task depends on
the efforts of people involved in it, professionals and managers. Their ability to
control risk, to solve or even prevent problems is the major asset of the
organization. In a more mature organization, the success is based on the use of
sound managerial and engineering techniques coordinated by a pervasive, well-
defined set of processes for the execution of the needed tasks. At the highest
level of maturity, the organization effectively cap1tal1zes on its experiences and
improves its processes. The improvement is achieved by bringing the
organization through these levels of maturity.

All these approaches, and variations on them, have been used by the software
industry, with mixed outcomes. Some outstanding successes have been reported,

7

such as the one shown in Figure 2 [Dion, 1993], by combining those approaches.
The major problem with all these approaches is that they either do not deal
specifically with the nature of the software product (Deming Cycle, TQM) or, if
they do, they assume that there is a consistent picture of what a good software
product or process is (SEI model).

We argue that this is not enough for two reasons: the first one is that in order to
be really effective a software quality program should deal with the nature of the
software business itself; the second is that there is really no such thing as an
explicit consistent picture of a good software product.

Figure 2

Raytheon Experience
Costs
e $ 1 million: Investment on the improvement program for each year
(1987-1992)
Benefits
e $15.8 million: Rework costs eliminated
Return on investment
e 7.7:1in1990

Changes in % project time by cost type from 1988 to 1990

Performance: Cost of building it right the first time, from 34% to 55%;
Non conformance: Cost of rework, from 44% to 18%;

Appraisal: Cost of testing, from 15% to 15%;

Prevention: Cost of preventing non-conformance, from 7% to 12%.

On one hand, if we look at processes and technologies in isolation, like in the
Plan/Do/Check/Act and TQM approaches, we have very little chance to get to
the right level of abstraction that provides reusable units across different
processes. Those approaches do not really build "model abstractions" because
they manipulate the process explicitly. For instance: if we apply TQM to the
order entry process, we have well defined elementary actions performed to enter
an order. We can describe them with a flow chart and analyze the process, apply .
changes and assess their impact. We will have very soon many instances of that
process to build a control chart and bring it under control. Unfortunately, the
same approach cannot be used on a software process (e.g., structured design),
which cannot be reduced to elementary units and is not replicated many times in
a short period.

On the other hand, if we base our judgment upon an external model, like in the
SEI and similar approaches, we might loose characteristics that make an
organization's environment "special." Those characteristics are, in many cases, at

the roots of the competitive advantage of that organization, therefore their loss is
very damaging for the improvement program.

The approach that will be presented in the next sections of this paper is an
attempt to learn from the successes obtained through the different paradigms
sketched in this section, and to avoid the problems encountered in their
application to software environments. It rests on the lean enterprise concept
[Womack, 1989] by concentrating production and resources on value-added
activities that represent the critical business processes of the organization. Such
processes, after having been recognized, are conceptually redesigned in a
modular way and associated with models, data, techniques and tools, in order to
reuse them according to the needs and characteristics of specific projects. Total
quality management [Feigenbaum, 1991] and Concurrent engineering [Dewan
and Riedl, 1993] can be used in order to keep the structure efficient, responsive
to the needs of any external entity (customer or supplier), and to make it rest
upon partnership and participation, with many feedbacks and measures of the
effectiveness of communication.

3. TOWARDS A MATURE SOFTWARE ORGANIZATION

If we analyze carefully some of the most successful and trend-setting business
stories of the last 10 years [Stalk, Evans and Shulman, 1992], we can ascribe the
reported successes to the application of four basic principles:

1. Business processes are the building blocks of the corporate
strategy.
2. Competitive success depends on understanding and transforming

the key business processes into strategic capabilities.

3. Strategic capabilities are created by sustained long-term
investments in a support infrastructure that links together and
transcends the business units.

4. A capability-based strategy must be sponsored by the top
management of the corporation.

It is important to understand these four principles in the context of on a software
organization.

The first principle sets the focus on business processes: this is consistent with the
current tendency to emphasize the role of software processes in a successful
project. Software is a logical aggregation and an intellectual product, which is,
therefore, strongly dependent on the processes executed for developing or
maintaining it. The analysis of those processes and the ability to reuse them in
the appropriate context are a key competitive factor for every software
organization. The corporate strategy must focus on identification and
characterization of the key business processes used in developing and
maintaining software, so that the business units, relieved from process related
concerns, can focus more on the individual systems and services that are
developed and delivered to individual clients.

The second principle is about "strategic understanding” of business processes.
This means that the organization must understand its key business processes
sufficiently to transform them into reusable units available to all its business
units where needed. Not every process used in the organization has the
characteristics of criticality that make it worthy of being transformed into a
strategic capability: it is only from the analysis of the relationship between
software processes and the mission of the organization that we can obtain a
strategic level of understanding and a consolidated hypothesis of what should

10

become a strategic capability. A system developer or integrator, for instance,
produces software in order to deliver services to a particular group of users (e.g.,
electronic messaging). In this case a good cost/benefit ratio for the system or
service is probably the most crucial issue. Therefore, the process of making
acceptable estimates and to develop a plan based on them has a criticality
definitely higher than the process of assuring the highest possible reliability. On
the other hand, for a manufacturer of systems dependent on -software (e.g.,
cellular phones) the cost/benefit ratio for software is distributed over a large
number of products and therefore not extremely crucial for the single software
package. Therefore, the process of assuring reliability has a higher criticality in
comparison with the ability of making acceptable estimates of software costs.

The third and the fourth principles call for long-term investments and top
management sponsorship, which translates into a permanent structure that
develops and supports the reuse of the strategic capabilities. This is particularly
new for the software industry, which is, in its large majority, driven by its
business units and, therefore, has little ability to capitalize on experiences and
capabilities. The required permanent structure is designed to provide a double
support cycle:

. Control cycle: Support is provided to the everyday operation of
software projects by comparing their current performance with the
normal performance of similar projects;

. Capitalization cycle: Support is provided to future projects by
continually learning from past experience and packaging this
experience in a reusable way.

The development of strategic capabilities and competencies to support them,
which is the key to all four of the presented principles, has, in the case of
software, some basic requirements:

1. The organization must understand the software process and
product.
2. The organization must define its business needs and its concept of

process and product quality.

3. The organization must evaluate every aspect of the business
process, including previous successes and failures.

4. The organization must collect and use information for project
control.

11

5. Each project should provide information that allows the
organization to have a formal quality improvement program in
place, i.e. the organization should be able to control its processes,
to tailor them to individual project needs and learn from its own
experiences.

6. Competencies must be built in critical areas of the business by
packaging and reusing clusters of experience relevant to the
organization's business.

Part of the problem with the software business is the lack of understanding of
the nature of software and software development. To some extent, software is
different from most products. First of all, software is developed in the creative,
intellectual sense, rather than produced in the manufacturing sense, i.e., each
software system is developed rather than manufactured. Second, there is a non-
visible nature to software. Unlike an automobile or a television set, it is hard to
see the structure or the function of software, or to reason about it in a
straightforward way. Therefore, the development of strategic capabilities in
software requires understanding, model building and continuous feedback from
the process.

This means that we must rethink the software business and expand our focus to
a new set of problems and the techniques needed to solve them. Unfortunately,
the traditional orientation of a software project is based on a case-by-case
problem solving attitude; the development of strategic capabilities is based,
instead, on an experience reuse and organizational sharing attitude. Figure 3
outlines the traditional focus of software development and problem solving,
along with the expanded focus, proposed here for experience reuse.

The obvious question to be asked now is: are there any practical models that can
be used in order to develop a strategy with the new focus? Such practical models
can be software organizations that have tried to implement a capability-based
strategy (or at least parts of it) and have carefully collected lessons learned and
data, empirical studies in-the-large based on the scientific method (observe,
formulate a hypothesis, measure and analyze, validate/refute the hypothesis)
that have published their findings in a workable form, controlled experiments
in-the-small.

12

Figure 3

Traditional Focus New Extended Focus
» Delivering specific products « Developing capabilities
and services
» Decomposing a complex « Unifying different solutions into
problem into simpler ones more general ones
+ Design/implementation « Analysis/Synthesis process
process
« Instantiation * Generalization and formalization
« Validation and verification ¢ Experimentation

In Section 5 we will illustrate an experience that we, together with large part of
the software engineering community, consider a practical model. The reason for
choosing this one, besides the personal involvement of the authors of this paper
with it, which provides us with considerable insight, is its almost unique blend
of an organizational strategy aimed at continuous improvement, of a data-based
approach to decision making, of an experimental paradigm, along with many
years of continuous operation and data collection.

13

4 A STRATEGY FOR IMPROVEMENT

This section will present a strategy for improvement based on the development
of strategic capabilities.

The main concept of this strategy is the central role played by a methodological
framework addressing the development and improvement of strategic
capabilities in form of reusable experience. This framework will be presented
and discussed in the form of a process called "Quality Improvement Paradigm"
[Basili, 1985]. In order to manage this conceptual framework we will need two
tools

. A control tool: The goal-oriented approach to measurement
addressing the issue of supporting the improvement process with
quantitative information [Basili and Weiss, 1984];

. An organizational tool: An infrastructure aimed at capitalization
and reuse of software experience and products [Basili, 1989].

In the next section we will see the methodological framework and the associated
tools at work in a specific and practical example.

41 THE QUALITY IMPROVEMENT PARADIGM

A strategic capability is for us a corporate goal defined by the business position of
the organization and implemented by key business processes. Strategic
capabilities of software organizations are identified by the analysis of the
categories of products/services that the organization intends to deliver in the
future, of the level of project control needed in order to deliver those
products/services at the appropriate level of quality, and of the strengths and
weaknesses of the organization. Examples of strategic capabilities are

14

"o Certify the reliability of the system that is being released for
acceptance by the customer;

. Have a design-to-cost process, i.e., tailor the design of a software
system to the amount of available resources (money, people,
computers, etc.);

. Use flexible standards, i.e. standards that can, case by case, be
tailored to the needs and the characteristics of each project;

. Have a short cycle-time, i.e.,, reduce the elapsed time from the
identification of a solution to its deployment.

Strategic capabilities are always supported by core competencies, which are
aggregate technologies tailored to the specific needs of the organization in
performing the needed business processes. For instance: in order to certify the
reliability of a system, an organization needs to master the quality assurance
process owning competencies such as statistical testing and reliability modeling;
in order to design to cost the organization must use flexible processes owning
competencies such as process modeling and control, and concurrent engineering.

Core competencies have characteristics that distinguish them from simple
technologies or clusters of technologies:

o They are non-transitional: although sometimes they appear to be
fashionable concepts, they don't come and go;

o They have a consistent evolution: a paradigm for their interpretation
and application is built over time and some consensus is generated
throughout the user community;

* They require commitment, investment and leadership;

 They are typically fueled by and work with multiple technologies;

 They generally support multiple product/service lines.

The acquisition of core competencies that support the strategic capabilities is the
goal of the process we will present in this section. If a competency is a key factor
in a strategic capability, the organization must be sure to own, control and

properly maintain this competency at state-of-the-art level, and know how to
tailor it to the characteristics of specific projects and business units.

15

Strategic capabilities come into the improvement process as constituents of
characteristics and goals. On the basis of the characteristics of the environment
and of the transformation of those capabilities into specific goals for the software
organization, the improvement paradigm provides a disciplined way to build
the competencies necessary to support those capabilities.

The improvement process is articulated into the following six steps (Figure 4):

1.

Characterize: Understand the environment based upon available
models, data, intuition, etc. Establish baselines with the existing
business processes in the organization and characterize their
criticality.

Set Goals: On the basis of the initial characterization and of the
capabilities that have a strategic relevance to the organization, set
quantifiable goals for successful project and organization
performance and improvement. The reasonable expectations are
defined based upon the baseline provided by the characterization
step.

Figure 4

Package Characterize

Execute Choose Process

Choose Process: On the basis of the characterization of the
environment and of the goals that have been set, choose the
appropriate processes for improvement, and supporting methods
and tools, making sure that they are consistent with the goals that
have been set.

Execute: Perform the processes constructing the products and

providing project feedback based upon the data on goal
achievement that are being collected. The processes will be

16

executed according to the needs dictated by the problem and to the
process chosen in the previous phase.

5. Analyze:” At the end of the execution, analyze the data and the
information gathered to evaluate the current practices, determine
problems, record findings, and make recommendations for future
project improvements.

6. Package: Consolidate the experience gained in the form of new, or
updated and refined, models and other forms of structured
knowledge gained from this and prior projects, and store it in an
experience base so it is available for future projects.

The Quality Improvement Paradigm implements the two major cycles, control
and capitalization, introduced in section 3:

. The project feedback cycle (control cycle) is the feedback that is
provided to the project during the execution phase: whatever the
goals of the organization, the project should use its resources in the
best possible way; therefore quantitative indicators at project and
task level are useful in order to prevent and solve problems,
monitor and support the project, realign the process with the goals;

. The corporate feedback cycle (capitalization cycle) is the feedback
' that is provided to the organization and has the purpose of

. Providing analytical information about project
performance at project completion time by comparing
the project data with the nominal range in the
organization and analyzing concordance and

discrepancy;

. Understanding what happened, capturing experience
and devising ways to transfer that experience across
domains;

. Accumulating reusable experience in the form of

software artifacts that are applicable to other projects
and are, in general, improved based on the
performed analysis.

The execution of the quality improvement paradigm by an organization is

structured as an iterative process that repeatedly characterizes the environment,
sets appropriate goals and chooses the process in order to achieve those goals,

17

then proceeds with the execution and the analytical phases. At each iteration
characteristics and goals are redefined and improved (Figure 5).

Figure 5

isting environment

t Goals First Iteration

Gharacterize
@- d environment
et Goals

The reader has probably realized at this point that there is a deep similarity
between the QIP and the Total Quality Management (TQM) philosophy. Figure 6
outlines some other correspondences between the two models.

The relationship between the QIP and the Plan/Do/Check/Act cycle is even
closer. Both approaches are an offspring of the modern scientific method: first an
hypothesis is generated, then an experiment is planned in order to validate the
hypothesis, data are collected and analyzed, and the hypothesis is evaluated.
The concept of feedback is also critical to both approaches: during the execution
of the processes that have been planned and at the end of the execution data are
analyzed in order to understand the impact of the changes introduced into the
process. The real major difference between the two approaches appears at the
end of the cycle: the PDCA approach incorporates the changes into the normal
operation of the process, while the QIP develops a series of models that reflect
the changes. This is due, as we said before, to the relatively smaller number of
process instances that we have in the case of a software process, when compared
with a manufacturing process.

18

Figure 6

TOM QIP
Total Quality Management Quality Improvement Paradigm

» Implements a corporation-wide » Implements a program for reuse

quality improvement program and improvement of software
experience, artifacts, and
processes

e Focuses on customer satisfaction | ¢ Focuses on customer satisfaction
and partnership for quality and partnership for quality

» Customers are both external and | « Capitalizes on project
internal to the organization achievements

o Customers are both external and
internal to the organization

» Develops a flexible corporate » Incorporates flexibility into the
culture software process and product
» Bases decision making on facts « Bases decision making on facts
and data collected across
different projects

4.2 THE GOAL-ORIENTED MEASUREMENT

The Goal/Question/Metric Approach [Basili and Weiss, 1984; Basili and
Rombach, 1988] provides a method to identify and control key business
processes in a measurable way. It is used to define metrics over the software
project, process and product in such a way that the resulting metrics are tailored
to the organization and to its goals, and reflect the quality values of the different

viewpoints (developers, users, operators, etc.).

The result of the application of the Goal/Question/Metric Approach is the
specification of a measurement system targeting a particular set of issues and a
set of rules for the interpretation of the measurement data. The resulting
measurement model has three levels:

1. Conceptual level (GOAL): A goal is defined for an object, for a
variety of reasons, with respect to various models of quality, from

19

various points of view, relative to a particular environment. Objects
of measurement include

. Products: Artifacts, deliverables and documents that
are produced during the system life cycle; E.g.,
specifications, designs, programs, test suites.

. Processes: Software related activities normally
associated with time; E.g., specifying, designing,
testing, interviewing.

. Resources: Items used by processes in order to
produce their outputs; E.g., personnel, hardware,
software, office space.

. Knowledge objects: Models of the behavior of other
items derived from past observations; E.g., resource
models, reliability models.

2. Operational level (QUESTION): A set of questions is used to define
in a quantitative way the goal and to characterize the way the
specific goal is going to be interpreted based on some
characterizing model. Questions try to characterize the object of
measurement (product, process, resource, knowledge object) with
respect to a selected quality issue and to determine its quality from
the selected viewpoint.

3. Quantitative level (METRIC): A set of data is associated with every
question in order to answer it in a quantitative way.

Figure 7
% Goal 2
Question Question Question Question| | Question

N/ i\? 2}% =
[Metric | [Metric | | Metric | [Metric Metric Metric

A GQM model is a hierarchical structure (Figure 7) starting with a goal
(specifying purpose of measurement, object to be measured, issue to be

20

measured, and viewpoint from which the measure is taken). In order to give an
example of application of the Goal/Question/Metric approach, let's suppose we
want to improve the timeliness of change request processing during the
maintenance phase of the life-cycle of a system. The resulting goal will specify a
purpose (improve), a process (change request processing), a viewpoint (project
manager), and a quality issue (timeliness) (Figure 8). The goal is refined into
several questions that usually break down the issue into its major components.
The goal of the example can be refined to a series of questions, about, for
instance, turn-around time and resources used. Each question is then refined
into metrics. The questions of our example can, for instance, be answered by
metrics comparing specific turn-around times with the average ones. The same
metric can be used to answer different questions under the same goal. Several
GQM models can also have questions and metrics in common, making sure that,
when the measure is actually taken, the different viewpoints are taken into
account correctly (i.e., the metric might have different values when taken from
different viewpoints). The Goal/Question/Metric Model of our example is
shown in Figure 8.

Figure 8
Goal Purpose Improve
Issue the timeliness of
Object (process) change request processing
Viewpoint from the project manager's viewpoint
Question Is the performance of the process improving?
Metrics Current average turnaround time

Baseline average turnaround time

Subjective rating.of manager's satisfaction

Question Is the distribution of resources changing?

Metrics _ Percent effort spent on problem analysis
Percent effort spent on solution identification
Percent effort spent on solution implementation
Percent effort spent on solution testing

21

In conclusion, we can also use the Goal/Question/Metric Approach for long
range corporate goal setting and evaluation. The evaluation of a project can be
enhanced by analyzing it in the context of several other projects. We can expand
our level of feedback and understanding by defining the appropriate synthesis
procedure for transforming specific, valuable information into more general
packages of experience. As a part of the Quality Improvement Paradigm, we can
learn more about the definition and application of the Goal/Question/Metric
Approach in a formal way, just as we would learn about any other experiences.

4.3 EXPERIENCE FACTORY: THE CAPABILITY-BASED ORGANIZATION

The concept of the Experience Factory [Basili, 1989] has been introduced in order
to institutionalize the collective learning of the organization that is at the root of
continuous improvement and competitive advantage.

Reuse of experience and collective learning cannot be left to the imagination of
single, very talented, managers: in a capability-based organization they become
a corporate concern like the portfolio of businesses or the company assets. The
experience factory is the organization that supports reuse of experience and collective
learning by developing, updating and providing upon request clusters of competencies to
the project organizations . We call these clusters of competencies, experience
packages. The project organizations supply the experience factory with their
products, the plans, processes and models used in their development, and the
data gathered during development and operation; the experience factory
transforms them into reusable units and supplies them to the project
organizations, together with specific support made of monitoring and
consulting.

The experience factory organization can be a logical and/or physical
organization, but it is important that its activities are clearly identified and made
independent from those of the project organization.

As we have seen at the beginning of this paper, the packaging of experience is -
based on tenets and techniques that are different from the problem solving
activity used in project development. Therefore the projects and the factory will
have different process models: each project will choose its process model based
upon the characteristics of the software product that will be delivered, while the
experience factory will define (and change) its process model based upon the
nature of the work, and organizational and performance issues.

22

Figure 9 provides a high-level picture of the experience factory organization and
highlights activities and information flows among the component sub-
organizations.

The project organization, whose goal is to produce and maintain software,
provides the experience factory with project and environment characteristics,
development data, resource usage information, quality records, and process
information. This provides feedback on the actual performance of the models
processed by the experience factory and utilized by the project.

The experience factory provides direct feedback to each project, together with
goals and models tailored from similar projects. It also produces and provides
upon request baselines, tools, lessons learned, and data, parametrized in some
form in order to be adapted to the specific characteristics of a project. The
support personnel sustain and facilitate the interaction between developers and
analysts, by saving and maintaining the information, making it efficiently
retrievable, and controlling and monitoring the access to it.

Figure 9

. Environment
Characterize Characteristics > Project
Set Goals l I Support
‘.
Choose Process T
Goals, Processes, Tools,
Products, Resource Models, Package
Execution Defect Models, ...
Plans .
l I EXPERIENCE Generalize
Data, Lessons
il Learned BASE Tailor
Execute Process |« I I =
. . Formalize
~ Project Analysis

Project Organization

Experjengg Factory

23

The main product of the experience factory is a set of core competencies
packaged as aggregates of technologies. Figure 10 shows some examples of core
‘competencies and the corresponding aggregation of technologies:

Core competencies can be implemented in a variety of formats. We call these
formats "experience packages". Their content and structure vary based upon the
kind of experience clustered in it. There is, generally, a central element that
determines what the package is: a software life cycle product or process, a
mathematical relationship, an empirical or theoretical model, a data base, etc.
We can use this central element as identifier of the experience package and
produce a taxonomy of experience packages based upon the characteristics of
this central element; e.g.:

. Product packages: Programs, Architectures, Designs;

Figure 10

Core Competencies Aggregate Technologies

e Use of an integrated software ¢ Toolintegration
engineering environment tailored to < Domain analysis and architectures
one or more specific application < Data sharing and communication in
domains ~ heterogeneous environments

e Availability of reusable components < Reuse libraries, mechanisms and
(modules, algorithms, architectures) methods
and tools portable across different < Domain analysis and architectures
platforms < Object-oriented techniques

e Availability and use of a software < Measurement and data collection
management environment based on and analysis
"local” data for estimate, control and < Data and process modehng
prediction of projects < Defect counting, categorization and
analysis

. Tool packages: Constructive and Analytic Tools;
. Process packages: Process Models, Methods;

. Relationship packages: Cost and Defect Models, Resource Models,
etc,;

. Management packages: Guidelines, Decision Support Models;

24

o Data packages: Defined and validated data, Standardized data, etc.

The operation of the two components is based on the Quality Improvement
Paradigm introduced in the previous section. Each component performs
activities in all six steps, but for each step one component has a leadership role.

In the first three phases (Characterize, Set Goals, and Choose Process) the focus
of the operation is on planning, therefore the project organization has a leading
role and is supported by the analysts of the experience factory. The outcome of
these three phases is, on the project organization side, a project plan associated
with a management control framework, and on the experience factory side a
support plan also associated with a management control framework. The project
plan describes the phases and the activities of the project, with their products,
mutual dependencies, milestones and resources. As far as the experience factory
side is concerned, the plan describes the support that the experience factory will
provide for each phase and activity, also with products, mutual dependencies,
milestones and resources. The two parts of the plan are obviously integrated
although executed by different components. The management control
frameworks are composed of data (metrics) and models for monitoring the
execution of the plan.

In the fourth phase (Execute) the focus of the operation is on delivering the
product or service assigned to the project organization, therefore the project
organization has again a leading role, and is supported by the experience
factory. The outcome of this phase is the product or service, which represent a
set of potentially reusable products, processes, and experiences.

In the fifth and the sixth phases (Analyze and Package) the focus of the operation
is on capturing project experience and making it available to future similar
projects, therefore the experience factory has a leading role and is supported by
the project organization that is the repository of that experience. The outcomes of
these phases are lessons learned with recommendations for future
improvements, and new or updated experience packages incorporating the
experience gained during the project execution.

Structuring a software development organization as an experience factory offers
the ability to learn from every project, constantly increase the maturity of the
organization and incorporate new technologies into the life cycle. In the long
term, it supports the overall evolution of the organization from a project-based
one, where all activities are aimed at the successful execution of current project
tasks, to a capability-based one, which executes those tasks and capitalizes on
their execution.

25

Some important benefits that an organization derives from structuring itself as
an experience factory are

To establish an improvement process for software substantiated
and controlled by quantitative data;

To produce a repository of software data and models which are
empirically based on the everyday practice of the organization;

To develop an internal support organization that represents a
limited overhead and provides substantial cost and quality
performance benefits;

To provide a mechanism for identifying, assessing and
incorporating into the process, new technologies that have proven
to be valuable in similar contexts;

To incorporate reuse into the software development process and
support it;

To approach in a more software specific way a Total Quality
Management program.

The concept of experience factory is an extension and a redefinition of the
concept of software factory, as it has evolved from the original meaning of
integrated environment to the one of flexible software manufacturing
environment [Cusumano, 1991]. The major difference is that, while the software
factory is thought of as an independent unit producing code by using an
integrated development environment, the experience factory handles all kind of
software-related experience. The software factory can be seen as a part of the
experience factory, recognizing in this way that its potential benefits can be fully
exploited only within this framework.

26

5. IMPROVEMENT IN PRACTICE: THE NASA SOFTWARE
ENGINEERING LABORATORY

In this section we will present and discuss a practical example of experience
factory organization. We will show how its operation is based on the Quality
Improvement Paradigm and we will use the case of a specific technology in
order to illustrate the execution of the steps of the paradigm.

The organization that provides the example is the Software Engineering
Laboratory (SEL) at NASA Goddard Space Flight Center. The laboratory was
established in 1976 as a cooperative effort among the Department of Computer
Science of the University of Maryland, The National Aeronautic and Space
Administration Goddard Space Flight Center (NASA /GSFC), and the Computer
Sciences Corporation (CSC). The goal of the SEL was to understand and improve
key software development processes and products within a specific
organization, the Flight Dynamics Division.

In general, the goals, the structure and the operation of the SEL have evolved
from an initial stage, a laboratory dedicated to experimentation and
measurement, to a full scale organization aimed at reusing experience and
developing strategic capabilities. At the same time, the awareness of the quality
improvement process used in the laboratory has generated the operational
paradigm described in this paper as Quality Improvement Paradigm. Today the
SEL represents a practical and operational example of experience factory [Basili
et al., 1992].

The current structure of the SEL is based on three components:

. Developers, who provide products, plans used in development, and
data gathered during development and operation (the Project
Organization);

. Analysts, who transform these objects provided by the developers
into reusable units and supply them back to the developers; they .
provide specific support to the projects on the use of the analyzed
and synthesized information, tailoring it to a format which is
usable by and useful to a current software effort (the Experience
Factory proper);

27

. Support infrastructure, which provides services to the developers, on
one hand, by supporting data collection and retrieval, and to the
analysts, on the other hand, by managing the library of stored
information and its catalogs (the Experience Base Support).

The activities of these three sub-organizations, although not separated and
independent from each other, have their own goal and process models and
plans. Figure 11 outlines the difference in focus among the three sub-
organizations.

Figure 11
DEVELOPERS ANALYSTS SUPPORT
FOCUS FOCUS INFRASTRUCTURE
FOCUS
Software development | Experience Support developers
packaging and analysts
Single application Application domain | Organization
Decompose a problem | Generalize and Categorize and
into simpler ones formalize solutions organize
and products
Tailor and apply the Analyze and Store and retrieve the
process synthesize the process information
process
Validation and Experimentation Efficient retrieval
verification

Figure 12 gives an idea of the overall size of the organization and of it
components.

We will now show the operation of the SEL following the development of a
particular core competence through the six steps of the improvement paradigm.

28

Figure 12

DEVELOPERS Data S/W ANALYSTS
STAFF 275-300 FTE —® | STAFF 5-10 FTE
AVGPROJSIZE 150-200KLOC | gy, |FUNCTION - Set goals
ACTIVE PROJ 6-10 (same time) | Pack - Design experim.
PROJSTAFFSIZE 15-25people laos_ - Analysis
FUNCTION Develop/Maint. - Tech Transfer
1976-1991 90 projects 1976-1991 250 Deliverables
DATA BASE SUPPORT
STAFF 2.5 FTE Library |
FUNCTION - Process data (QA) Database
- Maintain Database
- Operate library

Fixed Overhead = 15/300 = 5%
Variable Overhead = 5%

In the late 80's the software engineering community, within and outside NASA,
was discussing, among other technologies, the Ada programming language
environment and technology [Ada, 1983]: the language had been developed
under a major effort of the US Department of Defense and its application was
being considered also in areas outside DoD. NASA was, at that time, considering
the use of the Ada technology in some major projects such as the Space Station.
More and more systems would have used Ada as development environment,
and many organizations would have to be involved with it. In consideration of
this fact Ada had to be transformed from simple technology to core competence
for the software development organizations within NASA.

Associated with Ada there was the issue of object-oriented technologies. It is not
very important for our discussion that our reader knows what is an object-
oriented design technique. Anyway, Figure 13 provides some basic characteristic
elements [Sommerville, 1992] of the object-oriented approach.

29

Figure 13

Characteristics of the Object-Oriented Approach

o A system is seen as a set of objects having at each
time a specific state and behavior

« Objects interact with each other by exchanging
messages

e Objects are organized into classes based on
common characteristics and behaviors

e All information about the state or the
implementation of an object is held within the
object itself and cannot be deliberately or
accidentally used by other objects

The Ada language environment implements several of those features and can be,
to a certain extent, considered object-oriented. The design of systems to be
implemented in Ada definitely takes advantage of the concepts of object-
oriented design. Therefore, from the beginning, there was the impression in the
SEL that the two technologies should be packaged together into a core
competence supporting the strategic capability of delivering systems with better
quality and lower delivery cost. After recognizing that this capability had a
strategic value for the organization, the SEL selected Ada and the object-oriented
design technology for supporting it, measured its benefits, and provided
supporting data to the decision of using the technology.

The process followed is illustrated in the following steps according to the QIP:

1.

Characterize: In 1985, the SEL had achieved a good understanding of how
software was developed in the Flight Dynamics Division. The
development processes had been defined and models had been built in
order to improve the manageability of the process. The standard -
development methodology, based on the traditional design and build
approach, had been integrated with concepts aimed at continuously
evolving systems by successive enhancements.

Set Goals: Realizing that object-oriented techniques, implemented in the
design and programming environments that support new languages, like
C++ and Ada, offered potential for major improvements in the areas of

_productivity, quality and reusability of software products and processes,

the SEL decided to develop a core competence around object-oriented

30

design and the use of the programming language Ada. The first step was
to set up expectations and goals against which results would be
measured. The SEL well-established baseline and set of measures
provided an excellent basis for comparison. Expectations included

e A change in the effort distribution of development activities: an
increase of the effort on early phases, e.g., design, and a decrease of
the effort on late phases, e.g., testing;

o Increased reuse of software modules, both verbatim and with
modification;

" o Decreased maintenance costs due to the better quality of reusable
components;

o Increased reliability as a result of lower global error rates, fewer
high-impact interface errors, and fewer design errors.

Choose process: The SEL decided to approach the development of the
desired core competence by experimenting with Ada and object-oriented
design in a "real" project. Two version of the same system would be
developed

System A: To be developed using FORTRAN and following the
standard methodology based on functional
decomposition. This system will become operational
and its development will follow the ordinary schedule
constraints.

System B: To be developed using Ada and following an object-
oriented methodology called OOD. This system will
not become operational.

The data derived from the development of System B would be compared
with those derived from the development of System A. Particular
attention would be dedicated to quality and productivity data. The data
collection and comparison would be based on the Goal Question Metric
Model shown in Figure 14.

31

Figure 14

Goal Purpose Evaluate the impact of
Object the object-oriented approach and Ada
Issue on the quality and productivity
Viewpoint within the Flight Dynamics Division
Question 1 What is the impact on the cost to develop
software?
Metrics 1.1 _ Number of hours per statement developed
for System A
1.2 Number of hours per statement developed
for System B
Question 2 What is the impact on the cost to deliver
software?
Metrics 2.1 Number of hours per statement included in
System A
22 Number of hours per statement included in
' System B
Question 3 What is the impact on the quality of the
delivered software?
Metrics 3.1 Number of defects per 1000 lines of code in
System A
3.2 Number of defects per 1000 lines of code in
System B
Question 4 What was the amount of reuse that
occurred?
Metrics 4.1 Percentage of reused code

Execute: System A and B were implemented and the desired metrics were
collected. During the development changes had to be applied to the
approach that was used for using Ada and also adaptations had to be
made in order to use OOD. For instance: some review procedures that
were particularly suited for a design based on functional decomposition
did not fit the approach used for System B. Therefore new review
procedures were drafted for that development.

Analyze: The data collected based on the previous GQM model showed
an increase of the cost to develop (Metrics 1.1 and 1.2) that was
interpreted as due on one hand to the inexperience of the organization
with the new technology and on the other hand to the intrinsic
characteristics of the technology itself. The data also showed an increase
in the cost to deliver (Metrics 2.1 and 2.2) interpreted as due to the same

32

causes. The overall quality of System B showed an improvement over
System A (Metrics 3.2 and 3.1) in terms of a substantially lower error
density. Reuse data across systems (Metric 4.1) were obviously not
available for System B because of the new implementation technology.
The comparative data are shown in Figure 15.

Figure 15
Measure System A | System B
Cost to develop (Hrs per Stm) 0.70 1.00
Cost to deliver (Hrs per Stm) 0.65 1.00
Defect density (Def. per 1000 3.90 1.80
lines of code)
Reuse (%) 30% N/A

6. Package: The laboratory tailored and packaged an internal version of the
methodology which adjusted and extended OOD for use in a specific
environment and on a specific application domain. Commercial training
courses, supplemented with limited project-specific training, constituted
the early training in the techniques. The laboratory also produced
experience reports containing the lessons learned using the new
technology and recommending refinements to the methodology and the
standards.

The data collected from the first execution of the process were encouraging,
especially on the quality issue, but not conclusive. Therefore new executions
were decided and carried over in the following years. In conjunction with the
development methodology, a programming language style guide was
developed, that provided coding standards for the local Ada environment. At
least 10 projects have been completed by the SEL using an object-oriented
technology derived from the one used for System B, but constantly modified and
improved. The size of single projects, measured in thousand lines of source code
(KSLOC), ranges from small (38 KSLOC) to large (185 KSLOC). Some
characteristics of an object-oriented development, using Ada, emerged early and -
have remained rather constant: no significant change has been observed, for
instance, in the effort distribution or in the error classification. Other
characteristics emerged later and took time to stabilize: reuse has increased
dramatically after the first projects, going from a traditionally constant figure of
30% reuse across different projects, to a current 96% (89% verbatim reuse).

Over the years the use of the object-oriented approach and the expertise with

Ada have matured. Source code analysis of the systems developed with the new
technology has revealed a maturing use of key features of Ada that have no

33

equivalent in the programming environments traditionally used at NASA. Such
features were not only used more often in more recent systems, but they were
also used in more sophisticated ways, as revealed by specific metrics used to this
purpose. Moreover, the use of object-oriented design and Ada features has
stabilized over the last 3 years, creating an SEL baseline for object-oriented
developments.

The charts shown in Figure 16 represent the trend of some significant indicators.

The cost to develop code in the new environment has remained higher than the
cost to develop code in the old one. However, because of the high reuse rates
obtained through the object-oriented paradigm, the cost to deliver a system in
the new environment has significantly decreased and lies now well below the
old cost to deliver.

The reliability of the systems developed in the new environment has improved
over the years with the maturing of the technology. Although the error rates
were significantly lower than the traditional ones, they have continued to
decrease even further: again, the high level of reuse in the later systems is a
major contributor to this greatly improved reliability.

Because of the stabilization of the technology and apparent benefit to the
organization, the object-oriented development methodology has been packaged
and incorporated into the current technology baseline and is a core competence
of the organization. And this is where things stand today.

Although the technology of object-oriented design will continue to be refined
within the SEL, it has now progressed through all stages, moving from a
candidate trial methodology to a fully integrated and packaged part of the
standard methodology, ready for further incremental improvement.

The example we have just shown illustrates also the relationship between a
competence (object-oriented technology) and a target capability (deliver high
quality at low cost), and shows how innovative technologies can enter the
production cycle of mature organizations in a systematic way. Although the
topic of technology transfer is not within the scope of this paper, it is clear from
the SEL example that the model we derive from it outlines a solution to some
major technology transfer issues.

Figure 16

0.80-

0.60-

0.40+

0.20

0.70}

120

110

120

0.00

Past

1985-86

1987-88

1988-89

1

1990-91

3 Cost to Develop (Hrs per Statement)
Cost to Deliver (Hrs per Statement)

4.00

3.50+

3.00

Error Deasity (Defects per 1000 Lines of
Code)

Past

1985-86

T T

o

1987-88 1988-89

1990-91

35

The purpose of an experience factory organization is larger than technology
transfer: it is capability transfer and reuse. If these capabilities are already
consolidated into a technology, available within the organization or outside it,
then the process is a process of technology transfer. If the capabilities are present
in the organization as informal experience, products prepared for other
purposes, and lessons learned, then the process is different from technology
transfer.

36

6. CONCLUSIONS

Clearly the nineties will be the quality era for software and there is a growing
need to develop or adapt quality improvement approaches to the software
business. Our approach to software quality improvement, as it has been
presented in this paper, is based on the exploitation and reuse of the critical
capabilities of an organization across different projects based on business needs.

The relationship between core competencies and strategic capabilities is
established by the kind of products and services the organization wants to
deliver and is specified by the strategic planning process. A possible mapping is
shown as an example in Figure 17, in the case of an organization whose main
business is development of systems and software for user applications.

Figure 17
- Strategic Capabilities Core competencies
* Cycle time reduction and
acceptability

Use of an integrated software
engineering environment tailored to one
or more specific application domains

Availability of reusable components
(modules, algorithms, architectures) and
tools portable across different platforms

» Cost reduction and acceptability

¢ Quality improvement and

acceptability Availability and use of a software

management environment based on
“local” data for estimate, control and

¢ Software planning, estimating and prediction of projects

management predictability

In this paper we have shown, through the NASA example, that all these ideas
are practically feasible and have been successfully applied in a production
environment in order to create a continuously improving organization.

But what does "continuously improving organization" really mean? It is an
organization that can manipulate its processes to achieve various product
characteristics. This requires that the organization has a process and an
organizational structure to

37

. Understand its processes and products;
. Measure and model its business processes;

. Define process and product quality explicitly, and tailor the
definitions to the environment;

. Understand the relationship between process and product quality;

. Control project performance with respect to quality;

. Evaluate project success and failure with respect to quality;

. Learn from experience by repeating successes and avoiding
failures.

Using the Quality Improvement Paradigm/Experience Factory Organization
approach the organization has a good chance to achieve all these capabilities,
and to move up in the quality excellence scale faster, because it focuses on its
strategic capabilities and value added activities. The Experience Factory
Organization is the lean enterprise model for the system and software business.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions given to this paper by
all those who participated in the experiences and discussions that originated the
concepts presented in this paper. The list of their names would be too long. A
particular acknowledgment goes to the personnel of the Software Engineering
Laboratory at NASA Goddard Space Flight Center and Frank McGarry who
made it possible. Other acknowledgments go to Jerry Page (CSC), Tony Jordano
(SAIC), Bob Yacobellis (Motorola), Paolo Sigillo (Italsiel).

38

REFERENCES

[Ada, 1983] ‘
ANSI/MIL-STD-1815A 1983: Reference Manual for the Ada Programming
Language.

[Basili and Weiss, 1984]
V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software
Engineering Data", IEEE Transactions on Software Engineering, November
1984, pp. 728-738.

[Basili, 1985]
V. R. Basili, "Quantitative Evaluation of a Software Engineering
Methodology", Proceedings of the First Pan Pacific Computer Conference,
Melbourne, Australia, September 1985.

[Basili and Rombach, 1988]
V. R. Basili, H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments', IEEE Transactions on Software
Engineering, June 1988, pp. 758-773.

[Basili, 1989]
V. R. Basili, "Software Development: A Paradigm for the Future (Keynote
Address)", Proceedings COMPSAC ‘89, Orlando, FL, September 1989, pp.
471-485.

[Basili, Caldiera, and Cantone, 1992]
V. R. Basili, G. Caldiera and G. Cantone, "A Reference Architecture for the
Component Factory”, ACM Transactions on Software Engineering and
Methodology, Vol. 1, No. 1, January 1992, pp. 53-80.

[Basili, Caldiera, McGarry, Pajersti, Page, and Waligora, 1992]
V. R. Basili, G. Caldier~, F. McGarry, R. Pajerski, J. Page, and S. Waligora,
"The Software Engineering Laboratory - An Operational Software
Experience Factory", Proceedings of the Fourteenth International Conference on
Software Engineering, V.elbourne, Australia, May 1992.

[Bootstrap]
2] Industrial Informatics, BOOTSTRAP Project Proposal and Mission
Statement, 21 GmbH, Haierweg 20e, D7800 Freiburg, Germany, 1990, 1991

[Cusumano, 1991]

39

M.A. Cusumano, Japan’s Software Factories, Oxford University Press, New
York, 1991.

[Deming, 1986]
W. Edwards Deming, Out of the Crisis, MIT Center for Advanced
Engineering Study, MIT Press, Cambridge, MA, 1986.

[Dewan and Riedl, 1993] ,
P. Dewan and J.Riedl, "Toward Computer-Supported Concurrent
Software Engineering", IEEE Computer, Special issue on Computer Support
for Concurrent Engineering, January 1993, pp. 17-27. '

[Dion, 1993]
R. Dion, "Process Improvement and the Corporate Balance Sheet", IEEE
Software, July 1993, pp. 28-35.

[Feigenbaum, 1991}
A. V.. Feigenbaum, Total Quality Control, Fortieth Anniversary Edition,
Mc Graw Hill, New York, NY, 1991.

[Hamel and Prahalad, 1990]
G. Hamel, C. K. Prahalad, The Core Competence of the Corporation,
Harvard Business Review, Vol. 2, No. ?, July-August 1991, pp. 79-?2.

[Hamel and Prahalad, 1991}
G. Hamel, C. K. Prahalad, Corporate Imagination and Expeditionary
Marketing, Harvard Business Review, Vol. 69, No. 4, July-August 1991, pp.
81-92.

[101]
ISO 8402:1986 Quality - Vocabulary

[1502]

ISO 9000: 1987

ISO 9001: 1987

ISO 9001-3: 1991

[1SO3]

ISO 9126: 1991

[SEI]

Quality Management and Quality Assurance Standards -
Guidelines for Selection and Use

Quality Systems - Model for Quality Assurance in
Design/Development, Production, Installation and
Servicing

Quality Management and Quality Assurance Standards -
Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software

Software Product Evaluation - Quality Characteristics and
Guidelines for their Use

W. S. Humphrey, W. L. Sweet, A Method for Assessing the Software
Engineering Capability of Contractors, Software Engineering Institute,
Technical Report, CMU/SEI-87-TR-23, September 1987.

M. C. Paulk, B. Curtis, M. B. Chrissis, Capability Maturity Model for
Software, Software Engineering Institute, Technical Report, CMU/SEI-91-

TR-24, August 1991.

[Stalk, Evans, and Shulman, 1992]
G. Stalk, P. Evans, and L. E. Shulman, "Competing on Capabilities: The
New Rules of Corporate Strategy"”, Harvard Business Review, Vol. 70, No. 2,
March-April 1992, pp. 57-69.

[Sommerville, 1992]

Ian Sommerville, Software Engineering, Fourth Edition, Addison-Wesley,
Wokingham, England, 1992.

[Womack, 1989]

J. P. Womack, D. T. Jones, D. Roos, D. S. Carpenter, The Machine that
Changed the World, Rawson Associates (MIT Study on Lean Production),
New York, NY, 1989.

41

