A STUDY OF SYSTEMS IMPLEMENTATION LANGUAGES
' FOR THE POCCNET SYSTEM

Victor K. Basili
James W, Frank{in‘
bepartment of Computer Science

University of Maryland

August 27, 1976

Prepared for Goddara Space Ftight Center
under Contract NAS 5-272581

ABSTRACT: 7 _ L

' This reporf presents the results of & rstudy of systems
imp{emgntation Languagés for the Pavyload Operations Control
Center Network (POCCNET). Criteria are developed for evaluating
the tanguages, and fifteen exisiing leanguages are evaluated on
the basis of these criteria.

POCCNET Language Study

Table of Contents

Te INTRODUCTION , | | | 1-1
2. CRITERIA AND EVALUATION OF THE L ANGUAGES . 2~1
2¢1s BLISS-11 ' . 2=5
2+etete LANGUAGE FEATURES S . 2-5
2¢142. CHARACTERISTICS | - 2-10
ez ¢ ' _ ' 2-14
202+.1¢ LANGUAGE FEATURES : . 214
2:242+. CHARACTERISTICS . ' - 2=20

" Ze3. CONCURRENT PASCAL o o 2-23
€e3a1¢ LANGUAGE FEATURES o | o 223
2.3:2. CHARACTERISTICS . o 2-31
2ebs (S=4 zase Language. | 2-34
2ebols LANGUAGE FEATURES | 2-34
Cebe2s CHARACTERISTICS o . - , o 2-44
2.5, FLECS o - 2-47
2e5e1s LANGUAGE FEATURES o S 2-47
2+5¢2+ CHARACTERISTICS . . 2=50
206 HAL/S - o | 2-53
2e6ele LANGUAGE FEATURES | - 2-53
2a6e2+. CHARACTERISTICS | S 2-61
207« INTERDATA FORTRAN V | . 2-¢s
2+7.1s LANGUAGE FEATURES = 3 ' 2-65
24742, CHARACTERISTICS | 2-69
2.8+ JOSSLE . ' ' 2-72
248¢1+ LANGUAGE FEATURES | o 2-72
28420 CHARACTERISTICS ' | . 2-78
209s JOVIAL/J3B | : - 2-81
2+9.1. LANGUAGE FEATURES -) _ 2-81
2.942+. CHARACTERISTICS | o 2~87
2410+ LITTLE _ : 2-91
£010+1. LANGUAGE FEATURES ' C2-91
2¢10.2. CHARACTERISTICS | 2~94
2.11. PASCAL - S 2-97

2+1%e1. LANGUAGE FEATURES L 2-97

POCCNET Language Study

Ze1%22. CHARACTERISTICS

2e12.

PRES T4

201241, LANGUAGE FEATURES
201242+ CHARACTERISTICS

del3,

SIMPL=T

2e13+41+ LANGUAGE FEATURES
201342, CHARACTERISTICS

2otk

SPL / Mark 1V

2el4.7. LANGUAGE FEATURES
2el642. CHARACTERISTICS

c.15.

STRCMACS.

2e15¢1¢ LANGUAGE FEATURES
2+15424 CHARACTERISTICS

3. POCCNET

REQUIREMENTS

4. LANGUAGE FEATURE TABLES FOR THE LANGUAGES

'_—4.1.

beZa

be3e
hobe
4e5a
bebo.
4.7,
hoBa
4u9.
4e10..
4.11.

INTRODUC TION
MODUL ARITY
MODIFIABILITY

RELIABILITY

DATA STRUCTURING FEATURES
CHARACTER STRING PROCESSING
BIT STRING PROCESSING =
NUMERICAL PROCESSING
EFFICIENCY

SPECIAL SYSTEM FEATURES
ERROR CHECKING AND DEBUGGING

5. RECOMMENDATIONS

- S5et.
542
5,32,
Sede
545
5e6e.
5074

Introduct ion

Language Recommendatidns
Families of Languages
Use of a3 Single Language
Use of Fortran |
Remaining Languages

Summary

5=10
T5=11

[BART4T

[BAST4]

(BAS7 62T

[BAS76b1]

[BEY?5a]
(BEY75b3

CCHES8]

[DEC74]

[DES76al

CDEST 6]

{FREZ5]

POCCNET tLanguage Study
REFERENCES
Barth, C., wrandle, STRCMACS: An Extensive Set of

Macros for Structured Programming in 08#360'Assémnty

Language, Goddard Space Flight Center, Greenbelt,

'Marytand;-19?4.

Basili, Ve Ray and Turner, A. Jday SIMPL-T: A
Structured Programming Language, Cbmputer Science
Centér,_Univ. of Marylanc, Computer Note CN-14, 1974._
Basili, Victor R., “"The SIMPL Family of Programming

-Languages and Compilers*, - Graphénspréchen. urng

Algorithmen aut Graphen, Carl Hansen Verlag, Munich,

Germany, 1976, 49-85. Also Computer - Science

Technical Repoft-#305, Qniv. of Maryland, June 1974,

Basilis Vvictor R., Language as a Tool for Scientific

Programming, Department of Computer Sciencey Unive of

Maryland, 1976.

Beyer; Terry, FLECS: User~”s Manual, Computer Science
Department, Unive. of Oregon, 1975. ' |

Beyer, "Terry, - FLECS General Information _Letfer,
Computer Science bepartment, Univ. of Oregon, 1975,
Cheathams, Te Eoy et aley ™On the basis for ELF - an

extensible language fac?;ity#, Proce. AFIPS 1968 FJCC,

Vole 33#2, 937-948. .

BLISS-11 Programmer”s Manuat, Digital Equipment
Corporation, Maynard, MassQ, 1974, ' , | _
desJardins, Re; and Hahny J.; A Concept for & Payload
Opgrations Control_Cehter_Netuork (POCCNETJ, Goddard
Space Flight Center, Greenbelt, Maryland, 1976.
desJardins, Richard, Systems Definition. Phase Project
Plan for Paytoad Operations Controtl Center‘Nethorg,
Goddard Space Ftight Center, Greenbelt, Maryland,
1976 | | o
Frenchy, Asy and Mott-Smith, J., Draft of AFSC HOL
Stancerdization Program - Phase 1 Report, ESD/MCIT,
Hanson kir Force Base, Bedfdrd; Massey 1975,

THAM7 63

[HAN?S5a3

{HAN?SbJ
CHANT 5S¢
LIEE75]
CINT75a)

CINT?50]

CINTET42]
CINTE74bT

CINTE?4c]

[JENT 4]
" LJOHT3]

[KAF75]

POCCNET iLanguace Study

Hamlet, Rithard, . SIMPL-XI = An Introduction to High
Level Systéms Programming, bepartment of Computer
Science, Univ. of Maryland, Lecture Note LN=4, 1976,

Wansen, Per Brinch, CONCURRENT PASCAL Introduction,

-Information Sciencé, California Institute of Techa.,

1975.

.Bansen, Per Brinch, CONCURRENT PASCAL Report,

Information Science, California Institute of Techa,
1975,

Hansen, - Per Brinch, The SOLC Operating System,
Information Science, California Institute of Tecna, -
1975, o

Proc. 1st National Conference on Scefiware
Engineering, 1EFE Camputer Society, Washington, D.Ca.,
1975 | ' ' |
CS-4 Language Reference Manual and (S-4 Operating

"System Interface, Intermetri;s Inces Cambridges,

Masso., 1975,

HAL/S Language Spe;ification; Intermetrics Inc e,
Cambridge, Massey 1975 7 _

FORTRAN 'V Level 1 Reference Manual, Interdata Inc.,
Oceanport, Nedoy 1974,

FORTRAN V¥ Level 1 User”s Guide, Interdats Inces
Oceanbort, Nedes 1974,

FORTRAN .V Level 1 Run Time Library Manual; Interdats.
Inc., 6ceanport, N.J., 19?4; | 7

Jensen, Kee and Wirthy Nes PASCAL User Manual' and

Report, Lecture Notes in Computer Science Series,
Springer—-verlag, New York, 1974, _

Johnsony Mark Se, et-ai., A‘Basic Guide to JOSSLE,
Debartment of 'Computer Science, Univ. of Californisa
at Santa Barbaré, 1972,

Katfen, Ney and Rodeheffer, T., PREST4 - A Highly
Structured Fortran Language for Systems Progremming,
Computer Science Departmenty Ohio State Univ e,
TR=75-4s 1975, ' ' '

TKER7 4]
[LIS74]
CMAR7 43

CMAR7S]

[mMeEI753

LPRE73]

[REI7S]

CRIC761]

[RIT741
[RUS7 6]

[spC7 0l
[SHI741
[S1675]

LSOF75]

tevel Languages, SIGPLAN

‘Reinschmidt,
"SofTech Ince, Waltham, Mass., 1975,

JOVIAL/J3EB

POCCNET Language Study

Kernighan, Brian W,., “Programming in (--A Jutoriat",
Documents for Use with the UNIX Time*sharing System,
Beltl Laboratories; Murray Hills Nedoy 1974,

Zilles, S,
Proce Symposium on Very High

Liskov, Bcj -and Hith

Abstract Date

"Programming
Types®, l
Notices, 'Vo{. GH#4, April
1974, _ -

Martin, Fred He, HALSS =~ ThE‘Prqgramming Language for
Shutfle, Intermetrics Incey Cambridge, Massey 1974

Martin, Fred He, JSC HAL Support Note & 15-75,

~Intermetrics Inc., Cambridge, Masss., 1975,

Meissner, Loren P., "On Extending Fortran fontrol

Structures to. Facilitate Structured Programming",

'SIGPLAN Notices, Vol. 10#9, Sept. 1975, 19-30.

Pressery, L.y and white, Jey “A Tool for Enforcing
System Structure", Proc. ACM 1973, Attanta, 114-118,
Marlene,'JOVIAL/JBB'ProgramMer‘s Guide,

Richmond, George He, "“PASCAL SIGPLAN
Notices, Vol. 11#2, February 1976, 38-42,

Mey "C Reference Manual", Documents

NeuSlétter“,

Ritchie, Dennis

for Use with the UNIX Time~sharing System, Bell

'Laboratories, Murray Hill, Nedsy 1974,

Russelly Dey and Sue, Joy, "Implementation of a PASCAL
Compiler for the 'IBM 350",
Experience, Vol. 6, 1976, 371-376,

SPL / Mark IV Reference Manual, System Devétopment

Software Practice and

Corpe, Santa Monica, Calif., 1970,
Shieldss David, 6uide to the LITTLE tanguage, New
York Univey, 1974,

Proca. Internafional Conference on Reliable Software,
SIGPLAN Notices, vol. 10#6, June 1975. '
Lénguage .Specification -

Extension 2,
SofTech Incey Waltham, ¥Mass., 1975; ' '

POCCNET Languace Study FAGE 1-1

1+ INTRODUCTION

This report presents an éevaluation of systems implémentation
languages for the Payload (Operations Control Center. Network
(POCCNET), 'yhich is a8 general hardware/software concept adopted
by GSFC 85 & means of devetobing and operating payload operations
control centers ' in the 1980"s. The POCCNET system
[DES765,0ES76b1 will provide hardware and software
resource~sharing via a distributed computer network and & package
of standardized applications softﬁare. . This report develops
criteria. for évatuafing POCCNET impliementation languages, and
then compares f{fteen exfsting languages on the basis of these
criteria. _ o
An attempt was made during. this study to examine a wide
range of existing languages, from & Low level macroraSSeﬁbLer to
the iery Large and High"level_ lahguage £s~-4, The following
~fifteen languages were examined in detail: A
BLISS<11 ' '_' - A systems implementation language

for the PDP-11'series.

£ _' - The language-df the UNIX operating
. system. ' ' '
" CONCURRENT PASCAL - A high tevet language for writing

_ 'operating'sysxems.' _
s =-4 Bése Language - An extensible language being
- | developed for the Navy.
FLECS '_ ~ A Fortran preprocessora.
HALIS '-: ' - The NASA language for the Space
. Shuttle Drbgram. '

INTERDATA FORTRAN V =~ An extension of ANSI Ffortran,

JOSSLE _ - A ' PL/I derivetive for writing

‘ compilers.

JOVIAL/J3B) | - A close relative of JOVIAL/J3, the
Air Force standard lahguage for
command and control applications.

ﬂITTLE : - A Ffortran derivative that operates

on bit strings of arbitrary lengthe

POCCNET Language Study PAGE 1-7

PASCAL - A highly structured,s general
' burpose Langsuage,

PRESTS ~ A Fortran preprocesscre.

SIMPL=~T . The base member of a highty

- Lstructufed family of languages.,
SPL / MARK TV - A h{gh ievel language with many
' _ machine-oriented features, _
STRCMACS - A cotlection of structured
programming macros for IBM 0$/360

assembly lLlanguage.

The ianguage evaluations in this report.afe based solely on the

tanguage reference manuals and other papers. Listed in the

referencess We have immediate access to the compilers for only

“two of the fifteen languages (L and SIMPL-T),

T he criteria for evaluating the leanguages 'and the
preiiminary evaluations are'presented in the second chapter of
this repart, Each evaluation is composed of two éections. ‘The
first section provides a detailed ‘summary of the following
syptactic features of the language:

(1) basic data types and cperators

(2) control structures =
'(3}_da§a structures

(4) othe? interesting features

fS)-tanguage syntax

(6) rumtime environment .

The secand section of each -evaluafion presents the
characteristics of the language:

(1) machine dependence

(2) efficiency

(3) Level of the tanguage

(4) size of the tanjuage and compiler

(5) special system features

(&) error checking and débugging

(7> design | support ..(modutarity, VImodifiability, -and

~ rebkiability) N ‘ ' ' |
{8) use and.availabftity of the {anguage_o"

POCCNET Language Study a PAGE 1~3

In the thirg chapter we give a summary of the functional

subsystems in POCCNET, -and then identify the programming
application areas within the network. POCCNET will require a
language or .group of. languages supporting .generaf sjstem
programming, real-tims processing, data base management,

numerical processing, and data formatting and conversion. As can
be seeny; the application areas in POCCNET are qiverse;

The fourth chapter contains a series of tables pfoviding a
cress reference between the language features and Llanguages
discussed in; Chapter 2. Each table is devoted to one of the
specific POLCNET fequirements: each contains the’ {anguage
features contributing to the POCCNET requirement, and indicates
for each'hanguage feature thg presence cor absence of that feature
in the fifteen languages., . '
| In the fifth and final chapter we aive our Eécomhendafions
and a discussion of possible’ candidates for the ?OCCNET

“implementat¥on language.

POCCNET Language Study PAGE 2~1%

2, CRITERIA AND EVALUATION OF THE LANGUAGES

In this chapter we give a detailed evaluation of the fifteen
téhguages covered by this. study.. Each of the languaaes is
evaluated on the syntactic features of the language {(such as
basic cata types, control structures, and date structures) and on

the character1st1cs cf the language {sucth as machine dependence,

_efficiency, and design support). . The evaluations are based

solely on the language reference manuals and other papers Listed
in the reierences.
' The section on language features contains the following

subsections:

(1) A short introduction indicating the source of the tanguage

"-and the intended application area;

(2) The primitive data types of the language and the operators

and functions for manipulating them;

.(3).The control structures in the language, These are describeg
' using a simpley BNF- l:ke metalanguage. Syntactic entities

in the language are enclosed in the symbols "<¥ and “>%,
language keyﬁords are always capitalized, and any optional
features are enclosed in braces "{", "}". wWhere a choice is
avaitable betueen severat features they are l1sted one above

the other, single spaced. For example'
1f <poolean-expr> THEN <stmt> { ELSE <stmt> }

WHILE <boolean-expr> REPEAT <stmt-List> END ;
UNTIL
DO <stmt=-#> <var> = <e~-1>, <e-2> { ,<e-3> 3
<stmt-List>

<stmt-#> CONTINUE

(4)‘The datg structures in the language, and the ‘opéra;ors' for
manipulating them, ALL but one of the languages in this
study have arrays, others provide record structuresg tables,y

setsy typed pointers, and fite types;

POCCNET tanguage Study o . PAGE 2«2

(3 Any interesting features in the language not covered in the

first four subsections.' This typically includes macro
processorsy, 1/0 facilities, CONSTANT declarations, ‘and
“incdude™ statements for - copying source files into a

program;

(&3 Tﬁe approximete number of productionms imn the BNF ‘grammar
used to describe the tanguage. Since the gfammars used in
the reference -manuals. vary froﬁ syntax charts to the
grammars_ used by the preduction compilers, this numbe?~only
provides & rough Mmeasure 61 the size ang complexity of ;he
Language. o

Ary rules containing the BNF OR-operator ™"!" are
considered. to be multiple productions. Thus, the rule
<loop~stmt> ::= (wHiLE_!-UNTIL) <boqlean—expr}
| REPEAT <stmt-list> END
is coensidered to be two pfoductions;- - C

(?)rThe runtime énuironment required to 'supbort the Llanguage.
' For example, a Llanguage that permits recursive pfocedures
&il{ require a runtime stack, and languages with full
bharacter string processing will require a runtime stack or
dynamic §torage area to store‘temporary results during fhe
eva{wafion ©f ‘string expressions. Other laﬁghages require
routines for.pnocéss management , real-time scheduling, IIO,.

~interrupt handling, and error monitors.

The section on language characteristics contains the

~tollowing subsections:

.(1) Machine dependence. Some of fhe L anguages ih 'this_ report
| are truly transportable, while others contéin machine or
imptemeniation debendent features such as inline assembly
language, EQUIVALENCE statements for overtayihg-daté items,
user specified allocation of data items in records ~(word
position and bit position within a word), and éccess to

hardware registers;

POCCNET Language Study PAGE 23

(2) Efficiency of the language, Languages with high level

(3

(4)

(5)

(6

operators and 2 structured control structure permit & great
deal of optimizétioh' to be performed. Overlays, wuser
specified at(oqation of recorcs, and packing attributes on
tables can be useg toAconserve storage space. Some of the
langwagesr‘have compiler -directives for reguesting that
certain program variables be aliocated 1in high speed
storage, cr to tforce procedures to be expanded iniine at the
point. of dinvocation (rather.3than generating a calling

sequence);

Level of the Language., The languages in this report range
from very low level (STRCMACS) to high Level XCS-4, HAL/S,
PASCAL). The Low level ianguages are typeless and generally
have " many machine~oriented ?eatures. The high fevel
ltanguages, on the other hand, are fully tybed and have a
'lérge numober of data types, gata structuresy and control
strutthres. Méchine Idependent features 'are forbiddeﬁ or
carefully isolated, as in (S=4;

&

Size of the language and compiler, The size and complexity

of the tanguage directly influences the effort required to

teara the language and to implement a compiler for the
language. The languages in.this study range from very small
(STRCMACS) to very lLarge ((S=~4). For some of the Languages
the actual size of t he compilef in source Language

statements is known;

Special System features., Most ot the fifteen Llanguages

_provide a number of teatures that would be particularly

helpful for system dimplementations These dinclude dntine

‘assembly language, Process -~ management and real-time

scheduling, bit and character data typesy, pointers and

record structures, the ability to suppress type checking,

reentrant or recursive procedures, and access to hardware

registers;

Error checking'and debugging. Compilers for fully typed

POCCNET Language Study E PRGE 2«4

languages can detéct many errors during compilation that can
not be detected until the debugging phase in the typeless
[anguages. Typeless pointer variables are pérticularty
troublesome., Languages that do not provide‘ default
dectarations or automatic type conversion cén aiso - detect
more errors at compile time. ‘7

' A number of the ‘Ltanguages providg special debugging
tools, including traces of progranm variables, 'statement
Labed - flow history, execut fon statistics,y. timing

information, and cross reference and attribute listings;

(7) Design support., Design support is broken down into 'three
categories: modularity, modifiability, and reliability.
Some of the features éontributing toward wmodularity are a-
structured cantrol structdre, a data absfrattion facility
tas in CS-4), and independent:cbmpiLation of procedures and
functions. A macroprocéssor' and some form of “include®
feature for copying source files into - a program greatly
enhances modifiaoility, High level data. structures and
cperators also improve mod1f1ab1l1ty by making programs
shorter and more readable. o :

Features contributing to reliability are full type
ctheckingy, a data abstraction.facitity,'a strucfured control
structure, 2 small number of compiler- suppL1ed defaults, and

few ar carefutly isclated system features,.

(8) Use of the Llanguage. This section"incLudés 1nformat1on
. about the use of the Language in Large programming pro]ects,
what machines have compilers for the tanguage, and how
easily the compiler could be transported to other mathines,
Some of this information was found in LFRE753, the reémainder

was found in the language reference manuals.

The remainder of this chapter is devoted to the evaiuations

of the Languages (listed in alphabetical order).

POCCNET tanguage Study | PLGE 2-5
2:1. BLISS=11

2e1e¢le LANGUAGE FEATURES

BLISS=1T [DEC741 is a-systems,programming tanguage for the
POP-11 serfes ‘that was developed by & group at Carnegie Mellon
Univefsitx With soms assistance from Digital . Equipment
Corporatian. Although the lLanguage is highly structured, it is
typeless and generaliy to&élevelg BLISS-11 differs from
conventional prograﬁming Languages in several important Wayse
First, BLISS-11 is expression oriented, so that all control
structures return a value. for exampley; P = (INCR I FROM 1 70 10
BY 100 IF +AL.IJ EQL J THEW EXITLOOP «I) - is a Llegal BLISS=11
constructaon. Secondly, BLISS identifiers evaluate to a pointer
" to the named item, andg not to the 1va{ue cf the item,- A dot
'operatpr is .provided for dereferencing these po{nters. For
example, ¥f A is @ 3LISS identifier then the - expression A
“evaluates t& the addfess of item A, . A to the value of item A,
and;..A to the value of the item pointed to by‘item As

o

- ¢

g |
L
13
"
L]

re
ijs a typele

i

5 2

i

£

ir-r

A. B2 ors

kO
v W

pera
ess la

-

[sc iy {7
[e

S nguage. ALl operators operate on
16-bit uardg, and it is the user”s responsibility to insure that
the information contained 'in the operang word(s) is of the
correct type for the operaztor. BLISS-11 allows five types of
constants to. appear in express1ons- character str1ncs, “integersy
real numbers, octaL numbers, and pointerse. ‘

The foltouing operators are provided for.operating on 16=-bit
Words:

arithmetic operators

+y =y *y /4y unary minus

MODy MAX, MIN

<expr=1> * <expr-2>
Shift operator y?elding value of <expr -1> shifted
teft or right by <expr-2> bits. The sicn of
<expr-2> determines the direction of the shift.

<expr—1> ROT <expr-2> '

POCCNET Language Study ' PAGE

Left or right circular shift.

relaticnal operators
EQLs NEG, LSS, LEQ, GTR, GEQ
EQLY, NEQU, LSSU, LEGU, GTRU, GEQU
Relational operators for signed and unsigned ("U™)
operands, The reiationatioperators return an integer

result (0 for false, 1 for trued.

togical operators
 NOT, AND, OR, XOR, EQV
. Bitwise complement, anc, or, exclusive or, and

equivalence.

other
' « SBXPIr>
Pointer dereferenc1ng operator yielding the object
po1nted to by the <expr>
expr <pose len>
Partword selector for extracting bits from'a worde.
<var> = <expr> |

Assignment operator. The vatlue of the' expression

rad

1S

stored &t the location pointed to by the <var>. Thus

if A were a 3L1SS-11 1dent1f1er, ‘the expression A =

+A+1 would . increment the value of A. Note that
pointer derefereﬁcing oberator must be used
right-hand side Qf the expression, but 'not on
left-hand side. | |

- - ——— A -

Bs Controk Structures

- IF <test-expr> THEN <expr> { ELSE <expr> 3} ;

(Standard conditionat.)

= BEGIN <expr=1>; ... <expr-k>; <expr-k+1> END ;

(Compound expressione)

<test-sxpr> DO <expr>

E ;
(

whi{e and fepeat_&oops with test performed before

the
on
the

;he

- b0 <

- INCR
DECR

- CASE
- &g

- Ze
. TES

POCONET lLenguage Study FAGE ¢2-7

bedy is executedf)

expr> WHILE <test-expr> ;
UNTIL-

(While and repeat loops with the test performed after
the body s executeds The bvody will therefore be

éxeeUted at least onces)

'<var> FROM <e~1> TO <e=2>» BY <e=3> DO <expr-pody> ;

(For lLoaps. Programmer must choose a count-up or a

count-down loop when the program is written,)

<expr-iist> OF SET
xpré1>.}

xpr-ki

r

~{Simple <case =statement. The. expressions in the

<expr-list> are evaluated, and then each is used to

~select some <expr-i> in the body of the CASE

- SELE
g

<s
TESN

eéxpression for execution.)

CT <expr-List> OF NSET
etect-expr=1> : <expr-1>;

etect-expr-k> : <expr=k>

r

(Select statement. The expressions in the <expr-List>

are evaluated, rand each one “is then compared
seqguentially with the <setect-expr-i>. 1f an
éxpression' matches some <select-expr-i> then the
corresaonding <expr-i> is executede The keywords
ALWAYS and OTHERWISE may be used in _tﬁe.
<se£ect-expr-i>; ALWAYS farceé execution of . its

<expr-i>, OTHERWISE specifies that its <expr-i> is to
be executed only .if no . preceding <expr-i> is

executed,l

POCCNET Laznguage Study ' PAGE -8

-ROBTINE <ident> ({<parameter~lList>} .) = <gxpr-body> ;
(Stancard function construct. Since alt BLISS=11
constructs return a value, there is no procedure or

subroutine construct, Functions may be recursive.)

- <ident> ({<arg-list>)})

(Call to 2 routine.)

LEAVE <lapel> WITH <expr> ;
(Exit the labeled construct with the value of the

expression <expr>,).

LEAVE <lapel> ;
(Exit the labeled construct with a value of 0.)

EXITLOOP <expr> ;.-

C(Exit tne dnnermost loop with the value of <expr>.)

RETURN <expr> ; _ 7 _
(Return from body of 2 routine with the value of the

<expr>. ¥

SIGNAL <signal=-expr> ;
(Initiates scan of ENABLE blocks for a mhandter“’ for
condition . <signatl-expr>. The . SIGNAL and ENABLE
ﬁonstructs provide a feature somewhat similar to wuser
defined ON-conditions in PL/I.) | |

ENABLE
<expr-1> : <handler-expr-1> ;

.
<exp-k> : <handler-expr-k>

ELBANE ; '
(Used in conjunction with the SIGNAL construct, On
execution of a SIGNAL <signal-expr>, control passes to
“the most recently executed ENABLE blocks The
<signal-expr> is then compared with the <ekpr~i> in
the ERABLE statement; if some <expr-i> matcﬁes the

<signal-expr> then the <handler-expr> is‘executed, and

POCCNET Langusge Study PAGE 2-9

control passes out of the block containing the ENABLE
block. If no <expr-i> matches the <signal-expr> then
control uill pPass to the next most recent ENABLE
blocky and the search for a2 handler coentinues, SIGNAL
and ENABLE provide 8 "software interrupt" capability,

although no return from the interrupt is possible.)

BLISS—11 has two constructs for'creating more .complex data
'structuress. The first (STRUCTURE) defines a dats structure and an
access method for the dats structure, and the second (MAP) is
used to "map" or overlay a structure onto a previously
unstructured block of cores The declaration
| :STRUCTuRE”<ident> E<parameter~list>] =

: [<structure~size-expr>1l <access-method-expr> ;
defﬁnes the structure <ident> by specifying the number of
'storage iocations reguired for the structure, and an expression
defining an access method for the structures The expressions
defining the structure size and access method can use any of the
parameters in the <parameter list> of the structure. The
structure <1dent> can then be used to declare new cbjects of that
type u51ng the the. OWN statement, or 1t can be mapped over some
other variable. The statement _

‘MAP <structure-ident> <1dent1f1er ltist> <s1ze> ;
maps -the Spec1f1ed, structure onto the identifieré in the .
identifier 1ist. The identifiers caﬁ tﬁen be referenced as if
they had beenr declared to have been structures of type -
<structure>. The MAP statement allows the programmer to access a
block of core under a number of different formats.

'. qu exampley the follcwing BLISS*11- segment defines a
lower-trigngular byte matrix structure: |

BEGIN

STRUCTURE LTRIAGLI,J] = ‘ -

[I£CI1+41)/21 CWLTRIAG + o1 * (uI~10/2 + o = 1); -
OWN LTRIAG. M[5,53;"
OWN NL153;

POCCNET Language Study o PAGE Z-10

MAP LTRIAG N;
M{1513 = NL1,13.= 16;

BLISS-11 has & predefined structure caltlied VECTOR that . can
be wused to declare one dimensional arrays, and the user can

define arrays wfth more dimensions by using the STQUCTURE
statement. Finallyy, the untyped pointers in BLISS can be used to

tcreate arbitrary linked data structures.

- De Other Features

BLISS=11 has several teatures that would make BLISS pfqgrams

easy to madify. The BIND statement o
BIND <ident> = <express1on> ;

equates <ident> with the text of ‘t he <express1on>. This text is
used to replace any occurences of the <ident> in tﬁe‘resi of the
_sgurce pregram. BLISS-11 alsoc has a powerful macroprocessof that
‘provides simple' replacement macros, paraméterized replacement
macros, and recursive and iterated macros. Sburce text from .é
pfogram Library can be included into a BLISS pkogram_usjng the
‘REQUIRE statement. BLISS-11 has no 170 facilities.

E. Runtime

BLISS-lk is 2 low-level language and will probably rum on a

bare machine.

Fo Syntax

BLISS=1% has a BNF grammar with approximatély 150

productiors.

2ele2s CHARACTERISTICS

A. Machine De gendence

- - e

BLISS~11 is & systems programming language for +the PDP-11
series amd is highly machine depéndent. The machine dependént

features include inline -assembly language instructicns, the

POCCNET Language Study PAGE 2-11

partword operator for extracting bits, and the TRAP, EMT, WALIT,

and RESET statements for controlling the PDP-11.,

Be Efficiency

BLISS-11 is quite-eff%cient, and will compare favorably with

assembly banguage programs,

C. Level of the Language

Do Si

The-BLISSoT1 language is typeless and low-level.

ize of the L nguage and the Co 1l§£
The Ekamguage is small,'éno the compiief should be the same .

- -

‘.BLISS-11 psfovides the'following system features:

(al

{b}

{c)

Assembly language statements can be inserted 1nto a BLISS 11

,program using the INLINE statement:

JINLINE ("any character_str1ng”).

The character string is passed unaltered to the assember.

The programmer can reguest that tocal vartables be allocated
in machine registers using the REGISTER statement: REGISTER
<1dent>, » The varjable is allocated in one of the machine
registers, although the programmer has no control over wh1ch'

reg1ster is used.

The EINKAGE statement gives the progremmer control over .the -
type of catling sequence generated for a function call. The

User can spec1fy that function perameters are to be placed

on the. runtime stack or in. selected registers, and the

(gl

language wused to write the subroutine. ' Six céltihg
seguences are available: BLISS (default), FORTRAN,
INTERRUPT, EMT, TRAP, and 10T.

BLISS-11 has six functfons.providihg é;cess tprthe _hardware
on PDP~11 machines: | _
TR&Pi<trap~numbgr>) - Generate prbgram interrupts.
EMT(<trep-~number>) ' | ' '

POCCNET Langusge Study o PAGE 2-12

I0T{(<trap~number>)

HALT () - = Halt all execution, _
RESET () - Reset all devices on the UNIBUS,

WAITC() - - Wait for an interrupt.

(e) The ENABLE ano SIGNAL constructs provide a t?pe cf"sbftuare

interrupt for handling user~defined exceptional conditions.

(f) BLISS~1T has pointer variables, & partword operator for
extracting bits from s word, character Strings, recorc
structures, and the MAP feature for accessing a block ‘of

core undér several different formatse.
Fe Error Checking ang Debugging

Because of the absence 6f'types, there is Llittle that BLISS
can do in the way of compile 6r,runtime erfor cheéking.' The
BLISS~11 pointers are completely unrestricted, and it is

"therefore possible to create pointers that will generate

addressing exceptions, cause branches into thé middle of data,
access data under the wrong format, and so forth.- ' _
BLISS~11 has 'a compiler option that will provide an

interface for the sIx12 debugging package.

6. Design Support

(a) mocularity

“Modubardity in BLISS-11 is good. - BLISS-11 supports
independent compilation of routines, and communication via GLOSAL
uariab(es or registers, User control over calting sequencés
makes interfacing with assembly language or FORTRAN routines

fairly easy.
(b) modifiability

"BLISS-1% has & very powerful macro proceésor “and a Large

number of centrol structures., The BIND statement makes it easy to

alter the constants wused throughout a BLISS'program. 'FinalLy,
‘the REGUIRE statement atlows the programmer to dinclude source

files int> 2 program.

POCCNET iangusge Study PAGE 2-13

(e) reliabidity

BLISS=11 requires very carefut programming because of the
lack of type checking and the unrestricted pointers. It will be
much harder to insure the reliability of a BLISS-11 progran than

an eguivaient program Wwritten in a language Like PASLAL or HAL/S.
"He Use

BLISS-11 has been implemented on the PPP~11 series, énd the
Languagé could motr ve implemented on cther machines_unless the
special systen featﬁres for the POP-11 were removed (TRAP, WAIT,
RESET, and so forth).

POCCNET Languzge Study .. PABE 2-14
2‘2‘ C
2slele LANGUAGE FEATURES

The language € [RIT74,KER74] dis a systéms “programming
language ﬁeQeloped at Bell Laboratories by Do M. Ritchie. € is é
structured, medium Llevel Llanguage with & . terse syntax and a
profusion of built-in operators. The ‘fanguage was originally
designed .for the PODP-11 series, although it has since been
implemented 6n‘0ther machines (HIS 6070 and the IBM 360 and 370
seriesl. The UNIX operating system and.a'substahtial'portion of

the software in the UNIX timesharing system are written in C,

1>
o3
10
[L2)
m
ny
- H
fad
le}
-~y
e

he Basic Data Iypes ang QOperators

C has four basic data types; iN?,‘CHAR (sfngte- Characfer),‘
FLOAT and DOUBLE (single and dopble precision floating point).,
The Language 15 'futly typeay, although ahtomatfc conversion
between the four basic types is provided inrmany instances, 1In
pérticulan, 8 CHAR expression can be used anyuheré that an INT
expression can be used. Five types of constants are permitted in_
expfessions: integers, character constants of one or two
charac;ers,_étrings of characters {treated as character érrayé),
and floating point numbers. | '

C has a large number of operators for manipulating the basic
data types. The operators and the data types on which they

operate are listed below:

logical operators (INT and CHAR operands only)

} o <expr> ' 1 if <expr> = (, and 0 otherwise.
<expr> 3itwise complement of <expr>.

<el> g <e2> Sitwise AND of <e1>, <e2>»

<el> ! <e2> 3itwise OR .
- <ef> T <e2> Bitwise exclusive OR. ,

<el> << <e2> Left logical shift of <el1> by <e?> bits.
<el>» >>» «<g2> Right arithmetic shift. -

++ <variable> Auto-~increment and auto-decrement operators

-- <yariable> corresponding to the PDP-11 series machine

POCCNET Language Study PAGE 2-15

. <variuabile> ++ instructions. In the prefix form the
<varjable> -- variable is incremented or decremented by
1 and the value of the vé;iabte becomes the value of the
express%oﬁ- In the postfix form the value of the variable
becomes the value of the expression, and the varisble s’

_then incremented or decremented by 1.

togicél operators (all basic types?
<e1> ? <e2>:<e3>75elect{bﬁ‘operator equivalent to
_ if <el1> then <e2d> else <e3>.

<el1> B& <e2> 1 if <efi> and <eld> are NON=zero,
| ~ and 0 otherwise.

<et> ! <e2> 1 it <e1> or <e2> is non-zercy 0 otherwise.

<el> + <e2> - The expressions <e1> and <e2> are evaluated
' from left to right, and <e2> becomes the

value of the entire expression,

SIZEOF <expr> Size of the expression in bytes.

arithmetic operators ‘
<el1> % <g2> Remainder function (<e1> modulo <e2>).
: The operands <el1> and <eZ> must be INT
or CHAR.
4, ~y %5/ ' Standérd 5fithmetic operators. The operands
may be INT, CHAR, FLOAT, or DOUBLE,
Automatic conversipn is performéd between

"the types.

relationals operators (ALl types)

t
> -
n

ALL the relational operators vyield an

A
L]

A4
-

<=, >= integer resuit (1 or 0). ALl combinations
of operand types are permitted, and
conversion is performed between unequat

l LYPES .

assignment: operators _
€ has. a standard assignment operateor of the form <variable>

= <expr>. Automatic type ctonversion is performed if the types do..

not match, 1In addition to this stancard operator, C combines the

PCCCNET bLanguage Study . PAGE 2~16

zssignment operator with many of the previously discussed
operators.. Ffor each ot the following operators, <variable> =op
<expr» is equivalent to <variasble> = <variable> op <gxpr>:i

T4y Sy =4, =/
=22, =<

-
28, =1, =

B. Controi Structures

=L <StMt=1>; oo <stmt=k>;)

' (Compound statement.formed by placing sfafement- in
braces.. Since C uses the characters { ang) aS‘paEt
of the Language synfax,'we will use [and 1 to dencte

any optional feétbres in the Languagee.)

-~ IF {(<expr>) <stmt=1>; { ELSE <stmt-2>; 3 _
{(Conditional statement with optional ELSE part.).

- WHELE (<exbr>) <stmt>;
DO <stmt> WHILE <expr>; -
(Standard.wﬁite locop with the loop test before and
after the loop body.) ' -

- FOR (<expr=i>; <expr-2>; <expr=~3>) <stmt>;

"(For Loope The expreséion <expr-1> defines the Lloop
variabte and the initial wvalue, <expr-2> the loop

testy, and <expr~3> the increment statement. For
example: |
SuM = O

;
CFOR (I=0; I<n; I++) SUM =+ VECTORI[IJ;

-~ SWITCH (<case-expr>)

{ CASE <constant-expr-1>: <stmt-list-1>;

. .
[. .
. . &

CASE <constant-expr~k>»: <stmt-list=~k>;
[DEFAULT: <stmt~List>; 1
Y '

POCCNET Language Study ~ PAGE 2-1%F%

(Case statement with an optional DEFAULT clause. NO
two of the; constant expréssions may have the same
value. The <case-expr> is evaluated, and the value is
compared with the constant -expressions in an
unspecified order. If a matching constant expression
is fbund then the corresponding <stmt-Lligt> is
executed; the DEFAULT <stmt-List> is executed only if%
no matching constant. expression is found. Note: the
case prefixes do not alter the flow of control within
the SELECT statements Thus, it <stmt-list-i> is
selected for execution by the <case-expr>, then
control will flow through <stmt-list-i> into
<stmt-list-i+1> unless sbme statement in <stmt-iist-9>

causes an exit from the SELECT statement .
"BREAK; _
~ (Exit the innermost WHILE, DO, FOR, or SWITCH

statement.)

CONTINUE;
(Continue next iteration of the innermost WHILE,

po, of FOR statement.)

GOTO <label-expression>;
._(Unconditional branch to a Label within the current

function.)

RETURN [(<expr>) 1 ;
" (Return from current function with an optional
resul ta)

<type> <ident> (<parametef—tist>) <body>
‘ (Standard function definition. For example:
INT FACTORIAL (N)
INT N;
| RETURN (N<2 2 1 : N*FACTORIAL(N-1)); |
As the example illustrates, functions can be called

recursively. ALl parameters are passed by value,)

POCCNET Language Study g PAGE 2-18

C. Datas Structures

¢ has three features for building more complex data

structures from the basic data types:

(1) typed p&infer variables
" The statement
* <type> <ident>; _ _
declares <ident> to be & pointer to an obiect -of type.
<type>, T he followihg operators are provided for
mahimu[ating pointers: | |
* {pointer-expr> f Yielas object'pointed to
' by the pointer expressione
& <variable> - - yields address of the variable,
<stru;turé-pointer> -? <structure-membé;>
| - Accesses the specified member
df_the structure pointed to
7 by the structure poihter.

<pointer> + <integer-expr> | o

<pointer> - <integer=-expr> _ _

'% when an integer. is added to or
subtracted from a po%nter of
type X, the integer is first:
miltiplied by the length of an
6bject of type X Thus it P
points into an array of record
structures, then P+1 is &
pointer tc the next recorg
structufe_in the arrayes

y <y >, <=, >= | _
- Pointers can be compared with
other pointers or integers
using the relational operators.
Integers are multiplied by the
object tength (as discussed

under_the + operatorl.

~.(2) arrays .

POCCNET ianguage Study PAGE 2-1%

The statement _

<type> <ident> [<#~of-elements>] { [<#-of-elements>] 3} ;
declares <ident> to be an array of <#i-of-elements> cbjects
of type <type>. Arrays can have &an arbitrary number of
dimensions. Array indexing begins at Oy and elements of an

_ érray_are-éxcessed using standard subscript notation:
<ident> [<subscript>] { [<subscript>] 3}

Arrays need not -pe fully dereferenced by the subscript
operator. For “example, if X was declared by the statement
INT XCS3IL2030(83 then X[31 yields a 20x8 integer arraye
Nofe: the assignment operator can not be used to copy an

entire array from one variable to znother.

(3) record structures
The statement ‘
' STRUCT <ident> { <type-declaration-list> };

declares <ident> to bé'a record structure composed of the
 objacts Listed in the <tyﬂe-dectar&tion-t¥st>. The dot
operator "." is used to access a member of a structure:
<struc¢uré-name>.<member-name). Note: The address operator
& ié the ontiy qther cperator that can be applied to an
entire structure, The'assignment opersztor can not be used
" to 1cepy an entire record structure, and entire structures
can not be passed into functions as parameters or compared
with other structures. A pointer to a structure can be

passed into & functiony howevera

De Other Features

A e D e - e -

L has an optiocnal préprocessor pass which allows the user to
include source files into the program text, and to use simple
replacémena Macrose Files are included into the source program
by the statement #INCLUDE "file-name™. The statement

HDEFINE <ident> <character4string> is used to define simpie
replacement macros. All occurrences of the identifier in the
source text are replaced by the character string.

| ¢ has no statements for performing IfO, but the (€ functiod

library centains routines for formatted and unformatted I/0.

POCCNET Language Study . PAGE 2-20

"Ee Runtime Enviropment

e e - A A A Y

C requires & runtime stack because &all functions are

potentialdy recursives

Fe Synts

The BNF grammar for € has spproximatetly 120 productions.

2decsde CHARACTERISTICS

As Maching Dependence

- e

{ has no machine dependent features and could be implemented

on almost any machine
Be Efficiency

€ reguires a runtime stacks C atso converts all FLOAT
expressions to DOUBLE expressions durihg the evaluation of aﬁy
expression or function call. Various other autométic éphversions
‘are performed if the'programmer ﬁixes types in éxpressions. In
all other respects (should compare favorably with assemply

language progfams.
C. Level of the Langusae

' C is a2 medium tevel tanguage. The language has records,
arrays, typed pointers, structured control strdctures, and many

operators.

D. $ize of the Language and Compiler

g R

€ is a relatively small language with no complticated control

structuress The compiler should also be'fairly smalte

C has. typed pointers, record structures, -recursive (ang
therefore reentrant) functions. Thé SIZEOF operator would be

‘helpful when pEssing arrays or Structures_ to assembly language

POCCNET iLanguage Study PAGE 2-21%

routines . € &also allows the programmer to reguest (via the
REGISTER statement) that certain varisbles be allocatec in

machine registers instead of main storage. There is no way tc

~select specific registers, however.

“n
L]
m
™
L}
0
=
Il
o
)
o
-
4
3
K.
i)
23
e
e
im
o
w
w0
w0
fde

- -

bg

Although the lLanguage is fully typed, € prouides automatic
type conversion between most of the data types. This will hide a
number of errors (such as misshelling) unless the compiler prints
warning masﬁages when conversions are pérfermed.

The marual does not indicate thast any special debugging

features are avaitable.

6. Design Suppert.

“{a) modutarity

(aliows independent compilation of programs, ~and provides
communication through external variabless The language also has a

number of control structures.
(b) modifiability

C has a primitive maeroc processcr, ‘the H#INCLUDE statement
for 1including source files 1inte a program., and the basic

structured programming control structurese.
(c) reliability

. C pragrams are very dif?icult'to read because of the terse
SYyntaxae Many operators are used _bbth as binary and unary
operatorsy with neo relation -between the cperations . being
performed (eagey & is used to téke the address of a.variable and
58 the logical AND function.) Spaces around operands are critical
in some situations. The statements I=-d4 and I = -J perform
completely different operations§ for example.

The automatic - type conversion pefformed by € canrhidé 2
ﬁumber of errors caused by improper use of variables, Finatlty,
the pointer wvarisoles in € require careful use. It is possieté

to generate pointers that will cause addressing errors when used,

POCCNET Language Study o PAGE 2=-22

orf to tranch intc the middle of the program”s data area by using

the GOTO statement with a pointer expression.
He Use

€ has beeﬁ implemented on the PDP-11 series,ithe ‘HIS - 6070,
and the IBM 360 and 370 series. The compilef is written in_t
jtself, so the language could be implemented on other machines
using standard‘ Dothtrapping technigues. C bhas béen used
extensively in the UNIX operaiing system and the software for the

UNIX timesharing system.

POCCNET iLanguage Study o PAGE 2-23

2.3. CONCURRENT PASCAL

2¢32.%1s LANGUAGE FEATURES

CONCURRENT PASCAL [HAN7Sa,HANTSb,HAN75¢] is a high Llevel
language developed by Per Brinch Hansen =&t the@-Californié
institute of Technology for use in writing operating systems.
The Llanguage. extends the PASCAL language with three facilities
for concurrent programeing: concurrent pProcessesy monitors‘ for
providing' controlied access to data structures shared by & group .
of processfs, and data abstractions called classes.‘ CONCURRENT
PASCAL has ali the Dbasic déta types and control structures of
" PASCAL, although some ~of the data structures have not been
includeds In particular, CONCURRENT _PASCAL does not have the
pointer or file type of sequential PASCAL. ' .

As. Basic Data T ggg and Operators

AL A X Y o ———

CONCURRENT PASCAL hes four basic data types: INTEGER, -REAL,
BOOLEAN, and CHAR (single <character). Full type checking is
‘performed at compile timey, and no =automatic conversions ‘are
performed between the basic typess. The following 'types‘éf
constants are permitted ¥n expressions: integer, 'reél, bod[eah,
charactery ahd string (treated as an array of characters).

The operators and the data types on uhich they.pperate are

listed below:

arithmetic operators and functions (INTEGER and REALVOperands)
Sy =g k. - Standard.arithmetic'operatofs for -
- INTEGER or REAL oberands. _
7 - Division operator for REAL operands.
DIV, MOD

Pivision and modutqs operators fpr
INTEGER operands{ ‘
Absoltute value of REAL or INTEGER

expressions

ABS{<expr>)

SuUCC(<expr>) Functions yielding successor and

- PRER(Lexpr>} predecessor of the INTEGER expression,

POCCNET Langusge Study | PAGE 2-24

CONV(<expr>} =~ [onverts INTEGER expression to REAL.,
TRUNC(<expr>) - Truncates a REAL expression to INTEGER.

logical operators (BOOLEAN operands)
' AND,: OR, NOT - The BOCLEAN operators yield a BOOLEAN

result.

- relationak aperators (all basic types)
=y €>y €4 >, €=, D=
' -~ The two Operands must have the same
type. The relatidnal operators yield

"a BOOLEAN result,

character operators
Succ, PRED - Successor and predecessor functions,
LHR{<expr>) - Yields i-th character in the character
sety, where i is.the value of <expr5.

ORD(<char>) drdinal position of the character in the

tharacter set.

.Be Control Structures

- A - ————

 BEG.IN <stmt-List> END

{Compound statement.).

- IF'<booleathxpr> THEN <stmt> { ELSE <stmt>)}

LStandard conditional with optionél ELSE clauses)

- WHILE <Doolean-expr> DO <stmt>
 (While Lloop.)

~ REREAT <stmt-list> UNTIL <boolean-expr>
(Until toop, The body of the loop will be executed

at least onces)

= CYCLE <stmt-(ist> END;
(Unbounded repetitiaon of the <stmt-List>.)

- FOR <var> := <expr-1> 70 <expr-2> DO <stmt>
| , DOWNTO

(For Loops with implied increments of +1 and -1.)

POCCNET Langusce Study - PAGE 2-25

-~ [ASE <scalar=-gxor> OF

.€constant=List=1> : <sgtmt-=1>

° ®
L] L]
. . ’ s

<constant-lList-k> : <stmt-k>

END.

{(Case statement. The <scalar-expr> can be INTEGER,

CHARy BOOLEAN, or any user—-defined scalar or éubrange'

type (scalar and subrange types will Dbe descriped

tater in Section C). The constént Lists must contain
constants of the same type as the <s¢alér-expr>. ~ The
(scalér?expr> is evaluatedg, and the constanf Lists are
sﬁahned to find & COnstaht_equal_to t he expression;
If & match is found then the corresponding statement .
is executed; if no match is found then the effect of
the CASE statement is undefined.)‘

- WITH <variable-List> DO <stmt>

(Executes <stmt> using the record variables in the
<varjable~tist.> Any_expression in <stmt> may refer to
subcompaonents of.the records without fully qﬁa[ifying
the subcomponents. For example, if X is a Eecord with
subcomponents A, B, and C, then .

WITH X DO BEGIN

A = oA+ 1.0;

B = A < 10.0;

C := “6” |
END

is equivélent to
Xeh 15 XoA + 10;
‘X eB 2= XeA < 10.0;
Xel 1= "67;

"= PROCEDURE {ENTRY} <proc-name>

{ (<parameter—List>} }; <proc-body>

FUNCTION { ENTRY } <func-name>

POCCNET Language Study PAGE £2=26

{ (<parameterQList>) >t <type> ; <func-body>
{Procedure and function definitions. Neither may be
recursive. If ‘the ENTRY attribute is specified then
the procedufe or - function may be called by an external
PROCESS, MONITOR, or CLASS (see Section D for a
dﬁécﬁssion cf these éystem types), The user can

_59q&est that procedure paramefers be passed by vatlue -
or by. reference, but all function parameters are

passed by value.)

- <func-name> { (<argument-List>))
- <proc-name> { (Rargument-List>) 3

(Invoke a function or procedure.)
- C. Data Structures

CONCURRENT PASCAL has seven ‘cOnSfruCts for éréating " more
tomplex data structures from the basic data types: -

(1) scalar type
The scalar type statement

TYPE <type-ident> (Cobject=~1>, auvay <objecf-k>) H

defines an ordered set consisting of <object=1>, .44,
‘<object-k>. For example:

| ' - TYPE NQNTH = (JAN,FEB,MAR,APR, MAY ,JUN,JUL,AUG,

- | SEP,0CT, NOV ,DEC) ; |

.The set is ordered, Ssc¢ the relat1onal operatorsri, <>, <,
>y <=4 >=, the ass1gnment operator t=y and the functions
SUCE, PRED, and ORD can be applied to any scalar type.
Note: the basic types INTEGER, CHAR, and BOOLEAN are
predef1ned scatar types. ' |

(2} subramge types
Subrange types are subranges of scalar types, and they
alss.form ordered sets of objects. The statement
TYPE <type-ident> =‘<Object—1>‘-.r<object-m> 3.
defines'a subrénge tYpe. There must be a scalar -type
containing Gboth objects, anc the first cbject must be less
thanm the second. ﬁfor exampler '

POCCNET Language Study B PAGE 2-27

TYPE SPRING = MAR .. MAY;
TYPE DIGIT = “0° .. “9°;

ALl the Cperators for scalar types «can. be apblied to

it

subrange types,

(3) arfays

The statement ‘

TYPE <type-id> = ARRAY [<dimension-list>] OF <type> ;
‘defines an array tyhe. _Arrayé tan have an arbithary'numbér
of éimensions, and the <type> can be any ,tybé‘ except a
system type. The dimensions are specffiéﬁ by subradge
types. for éxampte: o | '

TYPE MATRIX = ARRAYL1..3, 1..31 OF REAL;

VAR VECTOR : ARRAYL1..101 OF REAL; :

VAR JOBSRUN : ARRAY[1968..1973, JAN..DEC] OF INTEGER;
Array elements are referénted-by tisting the'sdbscripts in
brackets: = | | |
| <ident>‘[<subscript—list>3 . _

The relational operators = and <> can be use to compare
two arrays of the same-tybe, and the assignment operétpr t=
can be used to copy an entire array. '

(4) séts _
The statement , _
‘ TYPE <fype:ident> = SET OF <base-type> ;
defﬁnes-a type cnnsisfing of alt-possib{enfsubsgts cf the

<base-type>, which must be a scalar or subrangé type. Ffor

example: . _ _
TYPE DAY = (MyT,W, THyFy5A,5); {befine scalar fype}.

VAR DAYSOFF : SET OF DAY; | {Now use ¥t for a set}
VAR DIGITS : SET OF Qe.9; . _ ' _
The following operators are available for manipulating set
types: | ' . _
[<etement-List> 1 - set constructor yielding set.
, | The list may be empty,
ORy =, AND = Set union, gifference, and

POCENET Language Study . PAGE 2-28

intersections

<=y >= ~ Tests on set inclusion,

In . ’ ' -~ Membership operator yielding
true if element is in setos

(5) record structures
'A recofd'type'is declared with a statement of the form
TYPE <type-~ident> = RECORD
<member-1> : <type-1>
. .
<member=-k> : <type-k>
o END ;

:_Recgrds-can.cpntain an arbitrary number of members, and
‘each member can be of any type except a system type. The
follnﬁing operators are provided for manipu(atﬁné recor@
“types: _ -

frécordfvar$ ¢« <member-name>
' - bot operator for accessing mehber of 3 record.
 :; <> =~ Tests for eqguality (récdfds must have same
type)- '
i = = Assignment operator for copying an entire
record.
The WITH statement discussed in Section B can be wused to
avoid qualifying each - member of a record with the record

name.

(&) qdeues_
Queues, which are wused within ‘MONITORs to suspend and
resume processes, are déc[aréd with a statement of the form
TYPE <type-ident> = QUEUE ; | '
A gueue can only hotd a sing(e PROCESS, but arrays of

]

queues can be defined. The fol lowing gueue functions are

available: _
EMPTY (q) - Returns true if the gqueue is empty.,
DELAY(q}_.‘ ~ Pelay the currently executing proéess in.

the queue (execution of the process is

POCCNET Language Study : PAGE 2~29

suspended and the MONITOR s freed for
_ use by other processes). ‘

CONTINUE(Q) - Reactivate a stalled process, The
currently executing process retﬁrns‘from
the MONITOR. If the queué contains a
process then that process resumes
execution in the MONITOR_roufine that
DELAYed 1t,.

(7) system types
| System types are defined'with &
PROCESS
TYPE <type-ident> = MONITOR
CLASS

<private-sector> <routine-entries> <initial-stmt>

statement of the form

{ (<parameter-List>) }

The parameter {ist of a system type defines the constants
and other system types which'the system fype'can‘access.'
Dets declaread in the <private-section> is acceﬁsible only
within the system type, and the <Toutine—ehtries> define a
set of routines that may be called by other. system_ fypes.
The <initial-stmt> specifies any initialization to be
performed when the sysfem type is first activated. |

A program in CONCURRENT -PASCAL consists of an
arbitrary number of independent, concurrentiy executihé
PROCESSes. Each PROCESS defines a data structure. and a
sequential _program for operating on the data structure. A
PROCESS can only comﬁunicate with. another PROCESS by
catlding a MONITOR: MONITORS are used for synchronization
and data sharings A MONITOR also defines a data . structuré
@and an arbitrary number of operations that can be performed
on the data structure by concurrent‘PROCESSes._A CLASS s
simizlar to 2 MONITOR, except that a CLASS ‘may only be
accessed by a single PROCESS . _ _

System types are initially activated with the INIT
statement: '

INIT <sytem-type> {‘(<paramet§r-l15t>) -
The INIT statement defines the access rights- (;he other

system types which can be accessed) by the system type, and

POCCNET tLanguage Study ' PAGE 2-30

executes the inftisl statement of the system type.

'D. Other Features

- -

CONCURRENT PASCAL requires the dectaration of all variables,
functions, and procedures ﬁrior to their uUse. The language has a
declaratioen of the form CONST <fdént> = <g£pr>;
for'dectanihg'program constants. The identifier can be wused in
any expression, .but‘ the value of the identifier can not be
altereds CONCURRENT PASCAL does notISupport the pointer type,
the “variant field"™ in records, or the dynamic storage allocation
provided by sequential PASCAL. CONCURRENT PASCAL does not
provide dynamic arrays or even arr ay d1mens:ons 2as parameters, as
in the fobt&w1ng FORTRAN segment:

SUBROUTINE XYZ(ARRAY, N,M)

INTEGER N,MyARRAY (N,M) | |
Thus, it is hof possible to write a CONCURRENT PASCAL program
that maninulates arrays of arbitrary sizes, 'Finally, ihe
“language does not permit external 'fun¢tioh$ or prqceduresi a
CONCURRENT PASCAL program consists of a main program and an
arbitrary number of nested functions and procedures, and the

entire pregram must be compiled as a unite

- -

E. Runtime Environment

CONCHRRENT'PASCAL does not require @ runtime stacky, since
recursive procedures and functions are not: permétted. The -
{énguage does not fequire a Gynamic storage atltocator e1ther,
since the po1nter type and the NEW sfatement of sequential PASCAL .
have been et1m1nated. However, CONCURRENT PASCAL does needs a

runt1me execut‘lve ‘fDl"‘ time=- s{1c1ng COHCUI"FE!‘It DPOCESSQS«
Fo 529155

CONCURRENT PASCAL has a BNF grammar w1th approximately 150

_productwons-

POCCNET Language Study o PAGE 2-31
24302¢ CHARACTERISTICS

Ae. Machine Degenaence

o — - E RS R A

The UNIV attribute on procedure and function'parameters tan
be used t0 write machine dependen: programs, In all other
respects CONCURRENT PASCAL. is not machine dependent, and coutd be

implemented on almost any machine.
Be Efficiency

EONCURRENT PASCAL is an efficient programming language. The
.[ahguage requires no runtime stack or dynamic storage allocation,
and the language features have been carefully selected to permit
efficient 1mplementat1cn of the tanguage. Sets can be represented
by bits strings; the set wunion, intersection, ahd-difference
operators can then be implemented in just = féw .ihstrUCtions.'
‘Scatar and subrange types are equivalently simple. The
structured controt structures also . perﬁit- better . code
optimization. : ’

The manual for the PbP-11I¢5 implementation of CONCURRENT
PASCAL contains tables indicéting the execution times forﬂhany-of-
the dperatprs and control structurésx These tables can be used by
the programmer to minimize the number of expensive constructs in
@& program (for exémple, the DELAY anmng CONTINUE statements ctausing
_process su1tch1ng take approximately 100 times as long to execute

g5 ahn 1nteger ass1gnment ope(at1on).

Co Level of the Language

| CONCUR%ENT:PASCAL is a high lLevel Languages.
Do Size of the Language and Compiler

The CONCURRENT PASCAL language s moderate in sizee. The
compiler (which -is written in sequential PASCAL) is on{y &500

statements.,.
Eo Specizl System Features

CONCURRENT PASCAL has record types, the set type (which can

POCCNET iLanguage Study PAGE 2-32

be used as bit strings); and the system types PROCESS, MONITOR,
and‘CLASS for concurrent programming.

Another useful feature is UNIV parameters in procedures and
functionss« Declarfng a parameter te be UNIV suspends the normal
type checking that would bé performed for the parameter, and thus
allows the programmer to accessra bltock of core under a number of

-different formats.‘ For example, an array of characters tould be

passed into a procedure in which. the .correspondingm~tormak-m-

parameter was declared to be an array of integers. Within the
procedure body the formal parameter woutd be treated as an array
of integers.,

Fo Error Checking ang ‘Debugging

CONLURRENT PﬁStAL performs full type checking at compile
~time for any program not wusing UNIV parameterse. The CONST
feature ﬂermifs the declaration cf "read only" variables.
CONCURRENT PASCAL also has a h1erarch1cat structure that forces
“the programmer to specify the access r1ghts of all system types,
and -the «compiler enforces these access rightss The subrange
types alsoi allow the implementation te perform runtime checks on
variables to ~insure that the wvalues are within the subrange.
Such a feature uoy{d be very helpful in a diagnostic compilera
The manual for CONCURRENT PASCAL does not indicate that any .

special debuggingftools are available.
G. Design Suppoert
-(al mdoutarity

~Modubarity in CONCURRENT PASCAL is fair. The language has 3
full set of ~ structured <control structures,. and internal
protedures'and,functions are provided. However, CONCURRENT PASCAL
- does not permit external procedures or funétioné; This makes it
costly te wuse existing programs (in a system tibrary._for
examplel, since the programé-must_be recompited _eaéh tjme- they-

are usede.

(b) modifiability

POCCNET Language Study PAGE 2-33

As discussec previously, CONCURRENT PASCAL has no provisions
for‘external prccedurei or functions. This would ©be & serious
- weakness inztarge systems (10,000 Lines}, where the most trivial
modification 1in one of the programs - would require the
recompilatian of _the'ent{re systéms However, CONCURRENT FASCAL
does have the CONST feature for declaring program constants, high
level data éfructures and operatorss the subrange type, and the
control structures for structured programming. The CLASS and
MONITOR types also provide a data abstraction facititye. ALt

these features make programs easier to read and modifys
(c) reliability
CONCURRENT PASCAL performs complete type checking at compile.

time (including procedure and function parameters). §0NCURRENT

PASCAL is élsofa high iLevel and well structured Langbage4 50 that

programs should be smailer and more self-documenting than
programs written in ‘tanguages with fewer data or control
structures. It should be considerably easier to write reliaole

programs in CONCURRENT PASCAL than in a language Like FORTRAN.

He Use

CONCURRENT PASCAL has been implemented on the PDP=11/45.
The compiler is uritten_ in sequential PASCAL, so the language
could eéséty be tfansported-to other machines. CONCURRENT PASCAL
has been wused fo implement'part of the SOLO'operating “sysfem (a
sfnglg4user operat{ng,system for the PDPE11/45). '

POCCNET Language Study : PAGE 2-34

Zebe (S-4 Base Language

Zobels LANGUAGE FEATURES

£S-4 [INT75a8] is a8 large, general purpose {ahguage currently
being developed by Intermetrics for the Navy. The Llanguage s
fully typed, Dblock structured, ang offers many of the features
found in PL4I and HAL/S. (CS=é& is. an extensible lénéuage, and
many -of the high Levet features in the language are constructed
from Llower Levet features using the (S-4 data ~abstraction
facility. -

" gecause C(S~4 is currently under development, only the (S-4
base lLanguage will be exémined in this report (in the remainder
6f this séction the CS-4 base language will be referrec to as
C5-4).

"A. Basic batz Types and QOperators

. CS-4 has ten pasic data types: INTEGER, REALy FRACTION,
COMPLEX, VECTOR (vector of REALS), MATRIX (NxM matrix of REALs),
BOOLEAN, STATUS, SET, and STRING (fixed and varying Length ASCII
character strings)e The STATUS type is equivalent to the PASCAL
scalar type. Mixed mode arithmetic express%ons aré permitted,
but in geaeral no automatic fype convers1ons are performed. Five
types of £1terats can appear in CS~4 expressions: ipteger, real,
poolean, status, and string. | _

The operators for maniputating these data types .are Llisted

below:

arithmetic operators (INTEGER, REAL, FRACTION, and COMPLEX

operands)
ty =y Ky [y k%
IDilvV - Integer &ivision for integer operands.
ABS - Apsolute value. o
SGN - Signum functione

SGRT - Sguare root function for real and

fract1on cperands.

 POCCNET Language Study PAGE 2-35

L

FLOOR, CEIL Floor anc ceiling functions for real

operandse

LD DA

Eatﬁﬁg - variable precision comparison functions
EAL-LT for real operands. The relational
EAL-GT : _]
EAL-LE operators can be used for fixed
EAL-GE _ -)
_ precisicn comparisonse
FRACTION-EGQ - S5imitar functions for fractionse
..
FRACTION-GE
COMPLEX-EGQ - Simitar functions for complex operands.

COMPLEX~NE
REALPART, IMAGPART

- Real anc imaginary part of a complex

. . operand. i
CONJUGATE ~ Complex conjugate. A
ANGLE _ - Angle in polar coofdinates of a complex
opérande) _
MAG . - Magnitude of 2 complex operand.

Logy exponential, ‘and normatl, inverse, hyperbolic, and
inverse hypérpelic trigonometric functions are available for

real operands.

boolean operators

NOT, ANDs OR, XOR, NAND, NOR, EQV
- ALl the boolean operators‘yield-a booclean

Cresult,

retational operators

Ty g Ky Py €T,y »= _

- Afl the 'relationél operators yield a
boolean resutt.s The operands being
c0mpaéed must ‘have the same type. The
‘pperators = and ~= can be applied to any of
the basic data types, but <, >, €=, >=.can .
only be used with INTEGER, REAL, FRACTION,
or STATUS operandss

status Qperators

POCCNET Language Study - PAGE 2-36

PREDELESSOR, SUCCESSOR

~-. Successor and predecessor functions.

string operators

FLAVOR - Detefmines string type (fixed or varying)._
LENGTH . " « Returns lLength of a fixed léngth string.
CURRENT~LENGTH - Returns length of a varying str%ng.
MAX-EENGTH - Returns meximum Length for a varying

| stringe. B

<string-var> (<subscript?>) _ _
-~ « Pseudo operator for accessing single

characters in a string.

SUBSTHR ' = Pseudo- var1able for access1ng substr1ngs._
LS - COncatenat1on.

CASCIIL - Converts ! str1ng of characters to an array
of integers. ' |
PAD _ - Pads blanks onto the end of a strvng.

vector operators
<vector-var> (<supscript>)

- Accesses element of a vectora.

ty - ~ Element-wise addition and subtract1on-'

* . - Veﬁtor3dot product. " '
 DUTER = vector outer producte

CROSS .- Vector cross product.

VECTOR=-SIZE =~ - Returns length of a vector.

MAG ' - MagnitUde of a:vectof. '

UNIT - Unit vector.

ggg;gg:&g - Variab{e.precision'comparison functions.

matrix operators
<matrix-var> (<subscript>y<subscript>)
ty = - Element~wise addition and subtraction.
* -~ Mattix dor prdduct. The * operator can.
also be used to form the dot product pf
compatible matrices and vectors, |

TRACEy; TRANSPOSE, DETERMINANT,-INVERSE

FPOCCNET Languazge Study PAGE 2-37

_ - Stendard matrix operatorse.
MATRIX=SIZE - Returns length of first or second
' dimension, '
MATRIX~EG; MATRIX~NE
7 - Variébte prehision comparison functions.

set oberator$ o
NOT, AND;_OR,'NAND, NOR¢ XOR
- Set complement, iﬁtersection, union,
'comptemented intersection and union, and
Vexclusive union,:
SUBSET ' o = betermines §f & set is a subset of another.
EMPTY B - Determines if a set is empfy. '
.<set=var>'(<set—member?) ' o
-~ Returns TRUE if the member is contained

in the set,

Be Contrél Structures

- BESIN <stmt*li5t>-END
fCompound statements. Any daté declared within the

BEGIN statement is local to the BEGIN statement.)

- If <boolean-expr> THEN <stmt=tist> { ELSE <stmt-Llist> } FI
(Conditional statement with optional ELSE parte.)

- CﬂSE‘<case-expr>
'Y <constant-list> :: <stmt-list>
OF <constant~tist> o <stmt-list>
{ OTHERWISE <stmt-List>)
END | |
(Caée statement, The <case-expr> can be an INTEGER,
STRING, or STATUS expression, and the constant Lists
must contain constants of the 'same . type as the
<ca$e-expr>. The <ca$é—expr>‘ is evaluatedy, and the
constant lists are scanned to find a constant equal to

the expression, If & match is found then " the

POCCNET Language Stucy ~~ PAGE 2-38

corresponding statement List is executed; if no match

is found then the OTHERWISE clause is executed.)

- WHILE <poolean-expr> REPEAT <stmt-list> END
(Standard while Loopa.)
~ FOR { <var> IS ¥ INTEGER (RANGE: <expr> THRU <expr>)
: ' STATUS (<status-literal=Llist>)
{ WHILE <boolean-expr> } REPEAT <stmt-List> END
(For lLoop specifying a number of " iterations of a
_stétement' Liste Noe Loop variable is reguired if the
loop body does not need one. If a locp variable is
specified then 1its walue may not be a(tered by the
ldop body.?J ' - S

~ UPDATE {<shared4var{aﬁLe-list>) <stmt-list> END o
(Update block for cohtrclLing acéess -to. shared
variables by concurrent tasks. A variable décLared
‘'with the SHARED(PROTECTED) attribute may only be
referenéed in an update block,'and-a task . executing an
update block will be stalled until the Locked
variables in the update block are'rnb {dngef‘ being
accessed in an_UPDATE block of any other taska) .

-~ 6070 <label> | _
tUnconditional transfer. The <iabe(> can'not be the
label of @ statehent,lbcated Outsidé of the procedure:
that contains the GOTO statement.)

- EXiT <label> |
{Exits the BEGIN block, UPDATE blocky WHILE or FOR
toop having the specified Labels? '

-~ RETURN (<result—expr> ¥

(Return from a procegdure or functione.)

- <handler-nsme> : PROCEDURE ({ <parameter=list> }) |
' ATTR (HANDLES (<signal-name-list>)):
<stmt-List> I

END <handler~-name>

POCCNET Lenguage Study PAGE 2-39

(Dectaration of a signal handler., Signals and signal
handlers are similar to PL/I ON-conditions and
ON-units, respectively. A signal can be generated by
a hardware interrupty runtime error-checking codey or
a SIGNAL statemént. _Siénats generated with the SIGNAL
statémeﬁt can pass parameters to a signai handler.
S{gnat handlers can handle an_ arbitrary number of

signals.)

- SIGNAL <signat¥name> { (<paraméter—tist>} 3
(Raises thé specified signal. - If there is an active
signél handler for the signal then it witlt be invoked.
The parameter List can be wused to pass additional

information to the handler.?

-~ RESIGNAL | | |
(Can only appear in 2 signal handler. The RESIGNAL
statement raises the signat. that 6au$ed the signal'
handler to pe invoked.) ' '

- ABORT to <label> |
- (Can oniy appear in a signakt handler, The <label> must
be the label of a statement ip the block containing
the signéi handier. The ABORT statement transfers
controt to the lLebeled statement,y, thereby terminating
'execution of . the handler and =all dynamicatly
intervening procedures between -the -~ handlier and the

origin of the signals)

- <proc~name> : PROCEDURE ({ <parameter-List>)
- | OPEN ,
{ <type> } . ATTR (CLOSED) ;
| o MOPEN
<stmt-list>
END <proc-name>
(pefinition of - a procedure or 2 functione. The -
<parameter-List> defines the procedure parameters and
indicates for each parameter the method used to pass

the parameter (catl by value, reference;, or name) and

POCCNET Language Study - PAGE 2-40

whether the parameter is to be wused as an input,
output, or inputloptpuf parameter. Parameters can be
‘declared to be optional by specifying a keyword to
jdentify the optionail parameter and a defautt.vatue to
be used when the parameter is not supplieds’
1f the proceaure s declared'.uiih the OPEN
attribute then the procedure body will be ‘substituted
in[ine_ whenever it 1is invbked: no éalling sequence
will be generated. A normal procedure call is
" generated whenever a CLOSEGD 'pfo;edure Cis invpked..
Finallyy procedures declared as MOPEN are both ~ OPEN
- and “mode~unresolved", that is, the type information
used in the declaration of procedure parameters and in
the body of the pfocedure rieeg not be cbmplete- When
the procedure is subétituted inline af.the'POiht of
invocation, the type of the actual arguments' ié_ used
to specify the type dinformation for'the-procedure
body. The MOPEN attribute provides a macro-like
capability. o |

Procedures and functions can not be recursives)

Ce Data Structures

£s~4 has four ctonstructs for creating more complex data

structures from the basic data types:

(a) data abstractions

The MODE statement for defining (S-4 data abstractions
requires the user to specify the data represgntatfon for the

new mode .and a set of procedures (operators) for
- manipalating the dats representations

<mode°name>: MODE (<L <paraméter-{ist>)
' ATTR(CAPASILITY(<proc-name~list> J);
<data-representation> ' e
<proc-definition>

POCCNET Langusge Study BAGE 2-41

<proc-definition>

END <mode-name>

The <mode-name> c¢an then'be useg in type dectiarations to
define objects Wwith -the new type. The <parameter—List> is
used to "iailor" the new type to the needs of the program
referencing the type. The parameters c<an be constants to be
used in array declarations or eilsewhere, or types te be used
in type declarations. For example, we could define & new
mode catled STACK with two parameters == QOnN€ indicating the
size of the stacks and one indicating the type of objects to
be stored in the cstacks .The mode STACK could then be
invoked to define & stack of 1ntegers, or reals, or boolean
datas ' . '

The data répresention section defines the actual
representat1on used for the"object, and the CAPABILITY
-sect%on lists att of the procedures (operators) that can be
used to manipulate the object.. .The data dgefined in the
représentation section can onty be accessed by these
procedﬁres; - '

' The assignment operator := and the relational operators
=, ~= c¢an be wused to copy OF compare' entire data

abstraations; as Ltong as the two operands are compatibles
{b) arrays

Arrays are declared with a statement of the form

- VARIABLE <1dent> 1S ARRAY(<dimension-list>, <type>)
Arrays can ‘have .an arbitrary number of dimensions, and each
rdtmeas1on jg specified Dby a subrange of the integers or a
STATYS set. For example;

VARIABLE XYZ 1S ARRAYC [0 TO - 7, STATUS("A","BY, "C")i,
BOOLEAN)

Array elements are referen:ed using the subscript operator
:<1dent> (<subscr1pt -list>). The type of the subscripts must
match the type of the corresponging dimensione. For exampley
CXYZ(B,"B") is a legat array reference for the array in the

previous examples As in PL/I add HAL/S; a * can be used @s

POCCNET Language Study - PAGE 2-4¢

& subscript to reference all of the corresponding dimensions

The assignment operator anc the retational operators =,

-

= can be used to copy Or compare compatible arrays. .
(c) structures

CS-4 structures are delared with the statement

‘VARIABLE ¥<ident» IS STRUCTURE (<memberét§st>)'l
The Fdentifiers used to definz the memhers need not be
distinct from identifiers used elsewhere in the program. -
The dot operator is used to actess members in a,‘structureﬁr
<strgcturé—var$ s <member> . The assignment operator and
the relationat operators =, = can be used to copy or

compare compatible structures.
(d) unions

.The dectaration of union' variables"is simitar io the
declaration of structured variab(es: |
VARIABLE <ident> IS UNION(<member-(ist>)

The <member—-List> defines'thé set of possible types that the
unionm variabile can.represent. A union variable has a."field
~tag" indicéting which member of the <member-list> is
purrantly' being,stored; and the valuerfor thatfmembér. The
field tag of & union variable can be read usiﬁg‘the bujlt-in
fupction TAG, which returns a'STATUS literal indicating the
‘name of the member. The value of a union variable can be
accessed using the $ oberator and thé current figld- tag:-

<unien-var> $ <field-tag> . For example;

{ﬁefine U ags a union of intégér, st:ing,_and boolean.)
VARIABLE U IS UNION (I IS INTEGER(RANGE: 1 THRU 10,
STR IS STRINGC20,"VARYING"),
"B IS ARRAY(D THRU 3, BOOLEAN))
LSTR: “A 8 €1 {Initial value for U.)
{At this point we have TAG(U) = “STR" ¥ '
{and USSTR = "A B C” .

POCCNET Language Sthdy PAGE 2-43

CASE TAG(U)
OF "1™ :: USI := USI+1
OF "STR™ :: USSTR := 71°
OF "B" :: U$B{3) := FALSE
END | |

The retational operators =, "= can be.used to compare. two

union variables, and thé assignment operator can be uséd g &)
change the value of & union variable. However, the only way
te change the field tag of a2 union variable is to assign {t
another union wvariable that already has desired field tag.

- This seriohsly restricts the usefulness of the UNION type.

D. Other Features

CS-4 is a block structured. and fully typed LlLanguages.
' Cohple;e type checking (including procedure parameters) is
performed at compile times The language also has a CONSTANT
attribute.fdr deciaring_program constants, ' _

{3-4 has an operating system ‘inter face thaf provides 1/0 and
process management capabilitiese The 1/0 system. includes a
hierarchical file system, filé-protection, and sequential, direct
accessy and indexed sequential filese The process management
system provides features for schedul ing processes, terminating
brocesses, and communicating between processes. No additﬁonal'
language §tatements are reguired to support the_operating systém
interface: the CS~4 MODE declaration is wused to define data

abstractions for files and processes.

€S5-4 needs routines for process management; 1Jinterprocess
communication, 1/0, and interrupt handling. A runtime stack or
dynémic storage area will also be reguired to support the string

cornicatenatién operator F1I,

The BNF grammar for the (S-4 pase lLanguage has apprdximatety”

500 producitions.

POCCNET Lenguage Study - PAGE 2-44
2ebe2e CHARACTERISTICS

Ae Machineg Dependence

- - - A -

The Language has several machine aependent. features,
incltuding Muser ISpecified altocetion - of data ixems; 'intihe
assemb(y Language code, and user control over calling sequences.
However, atl of the machine dependent features have been
carefully isolated. Inline assembly language, for example, is

restricted to a special class ef procedures called MPROCEDURES.

Be Efficiency

- — e -

C(S-4 should be moderately efficients. - It has many high-level
cperators and a structured control structure, so a gneat.deal of .
'6ptimization can be nérformed. ‘The user can also‘request that
procedures be expanded inline, so that there u1ll be very Little

overhead 4n the use of data abstract1ons.

C$S-4 is a high tevel language .
Do Size of the Languaae and Compiler

" The €S-4 base language is targe and will require a large
compilere. The . full C€S-4 language will require a'very;targe__

- compiler.

E. Specisl §2_1gh_Features

The tenguage has 3 large number of special system featqreé;
Thé MPROCEDURE statement permits the user to declare structures
that include information about the allocation of ther structure
members &bit or byte position w«ithin a word,: and storage
alignment). The.MSTRUCfURE can also spec%fy'the absolute storage
location at which the structure is to be allocated. |

The MPROCEDURE statement provices the capab1L1ty of-writing
procedures which contain assembly language code. User control
over calding sequences is'prouided by the EPROCEEURE.(external

procedure) declaration, which permits the user to specify - which

POCCNET Languasge Study PAGE Z-45

registers will be mogified by the <called procedure and how
parémeters,shoutd be passed. ' |

| (5-4 also has the data abstraction facility. When combined
with the MSTRUCTURE statement, data abstractions can be createcd
for bit strings and pointers, The language also has records,
arraysy character‘ strings, signal handters for. processing
exceptional 6ondi¢ions, the UPDATE block for controlling access
to shared déta,. and the operating system 1interface (which

includes 1/0 facilities and real~time process scheduling).

C(S-4 performs complete type checking at compile time
~{including procedure parameters), and provides no default
. dectarations or automatic type conversion. This will allow many
,program errors to be detected during coﬁpilationn _

Runtime checks are ,performe& for many condi:ions {such as
array. subscript'errors, CASE statemeﬁts, and division by ‘zero)
unless the programmer uses compiler directives to disable the
checking. The signal handlers also provide the user a means of
intercepting runtime errors. ' _

The Llanguage manual does not indicate that any special

debugging‘tpo{s are available.
G stiéal§unngcxr_
(al moqulgrity'
Cs=-4 is.a modulary, block structured language. The laﬁgbage
has a s&fuctﬁred controtl structﬁre, the MODE declaration for

defining abstract data types, procedures can be separately

"compiled, and BEGIN biocks can be used to declare tocal data.
(6) mocgifiability

CS-4 programs should be easy to modify. The Llanguage ds -
well structured, with a_large nunber of data types, and & data
abstraction facility. Status variables can be wused to improve

.the readability of brograms.

POCCNET Language Study o PAGE 2~46

(¢) relianility |

' The Language has & number of features that would 2id in the
writing of reliable programs. It is well structured, many data
types are provided, full type checking is perforhed, deélarétion
of wvariables 1is mandatory, no automatic typé conversion is
performed (other than mixed=-mode arithmetic), anﬁ there are oni}

five compiierwsupplied defaults for the entire.base Lénguage.

He Use

Cs=-4 is‘currentty under development ancd has not_'been used

for any major programming projects.

POCCNET Language Study PAGE 2-4&47
2e5+ FLELS

2¢5.7, LANGUAGE FEATURES

FLECS —EBEY?Sa,BEY?Sbj is a Preprocessor for Fortran
deve loped bg T. Beyer at the University of Oregon. FLECS supports
all features of ANSI standard Fortran IV, and provides a {arge
number of structured programming constructse. No ~ speciatl
characters (e,3. $, %) are used to delimit the. structured
programming constructs. In the remainder of this sectiony the
FLECS language: is considered to be Fortran IV augmented by the
FLECS preprocessor. ' ' .

Ae Basic Datz Types and Operators

- FLECS supports the five basic"daté types of Fortran_ (1V:
INTEGER, REAL, DOUBLE- PRECISION, COMPLEX, and LOGICAL. The
language permits mixed-mode exbreséjons and will automatically
convert between integer, real, and .double precision numbers.
Constants used in expressions can have the following types:
integery .real, double precision, complex, logical, and character
stringse. | ._ |

T he cperators and the dats types on which they operate are
listed betow: '

arithmetic operators (INTEGER, REAL, and DOUBLE
' PRECISION operands)

Sty =y kg [y okk

logical operators (LOGICAL operands)
+NOT .oy «AND 4y, «OR.

retationat operators
 WEQey oNEe ALL typeseo
elLTeiy eLEes oGTsy «GEs INTEGER, REAL, or DOUBLE
PRECISION-cperands onlye

Be Controb Structures

Note: In all the following controt structures the symbol

POCCNET Lanoguage Study g PAGE 2-48

<body> may be replaced by <stmt> or <stmt-1> eese <stmt-k>

FIN. For example:

WHEN (I oLTVe MAXVAL) CALL PROCESS1(I,J)
ELSE CALL BADVAL(I)

I = MAXVAL

RETURN =

FIN

IF (<logical-expr>) <booy>

(Simple 1 statemente.)

WHEN (<logical-expr>)
<body>

" ELSE

<body>

(Compound if statement.)

UNLESS (<Logical-expr>)'<body>- . _
(Equivalent to IF (,NOT. <logical-expr>) <body>; the

<body> is executed if the <logical‘expr>-is false.

- WHILE (<logical=expr>) <body>
UNTIL .
(While and until loops with test performed before

execution of the <body>.).

REPEAT WHILE (<togical=-expr>) <body>
UNTIL _ _

(While and until Lloops with tests performed after

execution of the <body>. The <body> will therefore be

executed at Lleast dnce.)

CONDITIONAL
{<logical=-expr>) <body>

{<logical-expr>) <body>
{ (OTHERWISE? <body> 1}
FIN)] .
(LISP-1like conditional statement; o The

FOCCNET Language Stugy PAGE 2=4¢

<logical-expr>”s are evaluated sequentiatly until some
expression evaluates to -.TRUE.s, and the corfeSQOnding
<body> is then exécuted., The <body> of ~the . optional
OTHERWISE clause is executed onty if all preceding
<logical~expr> évaiuated 10 <FALSE.

- SELECT (<select-expr>§
{(<expr>) <body>

L]
»

L(<expr>) <Sody>
 { (OTHERWISE) <body> 3
FIN | -
(Case statement. The <select-expr> is cempared
"seguentiatly with the A<¢Xpr>’s in the body of the
SELECT statement. The first <body> Qhose‘ <expr>
matches the <select-expr> s executed, and alti
remaining'bodies are skipped overs The <body> of .the
OTHERWISE 'clause is executed only if no preceding

<expr> matched the <select-expr>.)

~ D0 (<variable> = <exbr-1>, <expr-2> {, <expr-3>}) <body>

(For loop with optional incrementa.’

—_TOL<internat-suoroutine-name> <body>
 (A rarameterless, internal subroutinef The . subroutine
name can contain any number of letters, digits,.of:
hyphens, as long as it bpegins with a Lletter, and
:confains at least | oné hyphens For example:
INITIATE-VEHICLE-TRACKING.)

- €internzgl-subroutine -name > (Call of an internal
subroutines. Note that no parameters can be passed to

the subroutine,)

FLECS also supports the control sfructures of standard
Fortran:. the Logical and arithmetic IF, the DO statement,
the simple;, ASSIGNed, énd computed GOTO, and FUNCTIONS ancg
SUBROUTINES . T he . section ih this chapter concerning

POCCNET Language Study .~ PAGE 2-50

Interdata Fortran Vv gives a detailed description of these

constructse
C. Data Structures

FLECS has only ons feature for building more complex data
types: arrayé of up to 7 dimensions. The declarafion
DIMENSION <dident> (<dimension-List>) _
declares €ident> to be an array. Elements of‘_an array are
accessed using standard subs cript ~nhotation <ident>

(<subscripf-iist>).
De QOther Features

FLECS is essentially a Fortran language with some additional
constructs for structured programming. The landuage has no btock
structure or recursions FLECS provides stafemehx; functions,‘
EQUIVALENCE, COMMON, and DATA statéments, and the Fortran 1/0
statements. Comments are denoted by & "C" in the first column
ot the input card. FLECS also produces a'“préttyprinted“ output
tiéting =~ statements are automatically indentedrto show program

structure.

- - - —

Ee Runtime Environment

FLECS has no dynamic storage allocation or recursion, so no
stack or heap is needed. Except for 1/0 and type conversion

routinesy FLECS should run on a bare macthine,

Fo Syntax

Fortran IV (and therefore FLECS) has a BNF graﬁmér, but a
compiler would pfobably not use it. Fortran compiters tend to use

ad hot tompiling techniquess

Z2eSeZe CHARACTERISTICS

Ao Machine Dependence

ANSI standard Fortran IV (and ‘therefore FLECSY is fairly

POCCNET Lenguage Study _ PAGE 2-51%

machine independent. Fortran programs can usually be‘transportec
to different machines with only minor modifications (e.g.,

different 170 unit numbers).
B. Efficiency

Fortran IV formatted I/0 must be performed interpretively
and i3 therefore guite sltowe In atl other respects Fortran. 1V
and FLECS are efficent programming languages. We note, however,
that the additionat structurihg of FLECS programs that would be
Qery hetpful to a code optimizer is not available to the Fortran
compiler; all the structured statements are converted to IF and

GOTO statements before reaching the compiler.
C;.nggi

FLECS is a medium level language.
. Size of Lansuage and Compiler

Becsuse of the EGUIVALENCE staiéﬁent, the wunstructured
‘nature of Fortran programs (optimization is djfficult), and the

preprobessor;pass, FLECS will require a fairty large compilera.
- E. special System features

P

FLECS has no special systems features.

=

£ kheckin ng

Fe Error Checking and Debugg

Fortran compilers have traditionally had'very poor compile
and runtime diagnostics, so FLECS diagnostics will probably be
poor. The preprocessor phase of FLECS does print error messages

when illegal FLECS statements are detected.
6. Design Support
(a} modularity

"FLECS supports independent compilation of subroutines. and

funetionsy,. and communicatidn through COMMON blocks.

(b) mogifiability

POLCCNET Language Study - PAGE 2-52

‘ FLECS has & Large number ¢f structured ‘programming
constructs. However, the -~ language has no macroprocesscr, ne
feature like the PASCAL constant statement for declaring 'program
constants, na significant features for constructing complex data

structures, and no "includge" statement for copying soufce filess

(c) reliability

The struc{ureq programming constructs make FLECS a great
"improvement over Fortran IV; Howevers FLECS has no character or

string opefatbrs and date types, and does not have sufficient
data structuring capabilitiess The lack of these features
requires FLECS programs to simulate any character processing,
list ﬁrocessing, or record processing with Fortran codes FLECS
programs wild therefore tend to be longer than hecessary and more

“difficult to understande
He Use

The FLECS preprocessor 14is written in Forfran' and could be
imblemented on almost any machine., FLECS is avai(able on the {bC
6600, 7000, and Cyber seriesy, the IBM 360 and S?D-series,_the PDP
E. 10, eand 11, and the UNIVAC 1100 series., The source tode for

FLECS is available from its author (T. Beyer) at a_nominél cost.

POCCNET Language Study 7 PRGE 2-53

2e6s HALZS

Ze6ele LANGUAGE FEATURES

HAL/S [INT?Sb,MAR?ﬁ]. is @ high-level aerospace Llanguage
developed by Intermetrics for the Space Shuttle oprograme.
Although the language is & diatect of PL/I, several of the more
serious.weaknesses.in;the'PLII‘language have been eliminated (for
example, HAL/S pointers are fully typed, procedure parameters aré
checked for wvalid ‘typey, and fhe programmer must specify whi;h
parametefs uitlr be assigned_ values by the procedure bodyl},
Extensive'subscripting capabilﬁties, matrix and Qector operatofs,
-and control structures for reai~time <control and concurrent

. brocesses are also provided.
A. Basigc Data Types and Operators

HAL/S has eight basic data types:

INTEGER
"~ SCALAR - flqating point numbers _
VECTOR - 1xN vector of SCALAR objects
MATRIX ~ NxN matrix of SCALAR objects
BIT i o - bif string
.CHAR&CTER - variable lengtﬁ chéracter string
S00LEAN _
EVENT - - binéry semaphores for pfocess control. An

event may be latched or unlatcheé; -3 {atéhed
‘event holds its value of TRUE of FALSE until
set or resety an unlatched event remains FALSE
until signaled, whereupon it momentarily
foggles to true, and then reverts back to
FALSE . Process schedutihg is invoked ény time

that an event is sety, reset, or signaled.

Some implicit conversion is performed betweeh these basic
data typesy aﬁd_a set of conversion functions is provided:
the functions INTEGER, SCALAR, VECTOR, MATRIX, BIT,

POCCNET Language Stugy PAGE 2-54

CHARACTER, SINGLE; and DOUBLE_provide conversion between the
data types and possible precisions. _ '
‘The operstors and the date types'on which they ‘operate

are Listed bDelow:

arithmetic operators (INTEGER, SCALAR,
o and MATRIX operands)

ty =y f .
blank - multiptication
* .= Cross product
e " = dot product

Note: some combinations of the operand types

are not permitted,

bit operators (BIT and EVENT cperands)

AND, OR, NOT

CAT - concatenation) _

SUBBIT | A{bit-expr) = pseudo-variable for inserting
vTed or extracting bits.
character operators (CHARACTER cperands)

CAT - concatenation

chaf—expr ‘ - substring insertion or extraction

' i TO j - ‘ ,
boolean operators (BOOLEAN operands)

ANDy ORs NOT ' '

relational operators (ali{ types)

<y>4<=,%= <~ only for INTEGER, SCALAR, or CHARACTER

operands

Be Controb Structures

- PP N

- IF <expr> THEN <basic-stmt> ELSE <stmt>;
{Standarc conditionaly but basic-stmt may not be an

IF statement.)

- DO; <stmt-Llist> END ;

POCCNET Language Study PAGE 2-55

(Compound statement .}

DO <expr>; <stmt-List> END ;

WHILE
UNTIL
(Standard uhfle\andrrepeat Loopss)
DO CASE <arith-expr>; { ELSE <stmt>; }
<stmt=1>; ... <stmt-k>; END ;
(Simple case statement.)
DO FOR <var> = <expr-list> { WHILE <expr> };
UNT IL
<stmt-lList> END ;
(For-lLoop with tist of values to be assioned to
<var>.?)

DO FOR <var> = <expr> TO <expr>

{ BY <expr> 3 { WHILE <expr> } ;
CUNTIL .

o <stmt-tist5'END ;
' (Standard for-loop with optional WHILE or UNTIL

clauses,)

EXIT <label>;
(Exit the 0O group specified by the lLabel,)

REPEAT <label>;
(Continues next iteration of the specified DO group.)

. 60T0 <label>;

{Branch to lLabel in current namescope - can not

‘be used to oranch out of a procedure body.)

RETURN { <expr> };

(Return from a procedure or function,)

CALL <identifier> { (<expr-list>) }
{ ASSIGN (<variable-list>) };
(Lat! statement for a procedure - only those variables

in the ASSIGN Llist may be altered by the procédures)

<procrname>: PROCEDURE { (<ident-list>) %
' ' { ASSIGN (<ident-list>))

POCCNET Language Study - PAGE 2Z-56

{ EXCLUSIVE }
REENTRANT

<brocedufe¥body> CLOSE <proc-name> .
(Procedure definition specifying input arguments,
output arguments (the ASSIGN List). If the EXCLUSIVE
attripute . is specified then .any concurrent task
attempting to execute the procedure witl be blocked as

{ong as any other taskriS'exe;uting'it,)

<function-name>: FUNCTION { (<ident-list>) }

<type> { EXCLUSIVE } ;
REENTRANT

<function body> €LOSE <function name> ;
(Standafd function definition, but function body may
not cause side effects by altering the input
parameters (tﬁere.fs no ASSIGN list).')

<expr>

AT
SCHEDULE <1dent> {f IN <expr> }

ON <event expr>
PRIORITY (<expr>) { DEPENDENT }

{ , REPEAT AFTER <expr> 3}
: EVERY

WHILE <event expr>
{ UNTIL <event expr> } ;
UNTIL <expr>

(Scheduling statement for concurrent tasks, A task

may be sctheduled immediately, AT a specific time, IN a -

certain number of clock ticks, or ON the value of an

event. The PRIORITY is used in scheduling ready tasks.

1+ the DEPENDENT attribute is used then the scheduled
task will be terminated if the scheduling task does.
The scheduling task can be REPEATed AFTER a specified
timey, or EVERY <expr> clock ticks. FinaLty; a WHILE
or UNTIL <clause may be attached to .control this

rescheduliné.)

CANCEL <ident-list> ;

{Stop rescheduting of atl the tasks in the Llist,

but ailow any currently executing tasks to finish.)

TERMINATE <ident-list> ;

POCENET Language Stuay PAGE 2~57

(Stop rescheculing of atl tasks in the list, and

terminate any tasks that are currently executinga.)

{Stalls the ecurrent process for. s certain number of

clock ticks, UNTIL 2 specific timey; wuntil all
DEPENDENTS - have terminated, or until some event
CCCUFS o) ‘ '

- UPDATE PR;ORITY <ident> TO <«<arith expr> ;

{Changes priority of & previously scheduled taskel

—.SI&NAL <event var> ;
RESET <event var> ;

SET <“event var> ;

(Used to alter event variables ana thereby schedule or

control tasks. SIGNAL is used for unlatched

‘when an event s SIGNALéd-é{L tasks WAITing on that

event are btaced in the reagy state.

SET

and RESET

are used for latched events. SET forces an event to

the TRUE state and frees any tasks waiting for .the

TRUE vatue of the event, RESET forces the value back

" to FALSE and frees any tasks waiting for the

value,)

- UPBATE; <stmt-list> CLOSE;

(Update block for controt{ing acCess

to

FALSE

shéred

Variabtes by <concurrent tasks. A variasble declared

with the LOCK attribute (LOCK (<lock

number>)) may

only be referenced in an. update block, and a task

'executing an update block will be stalled

until the

locked variables. in the update block are no Longer

being accessed in an UPDATE block of any other tasks)

r

~ ON ERROR { <error group> : <error number> y
<error group> o
. SIGNAL
{ SYSTEM 3} {AND SET <event var> }
IGNORE RESET .

events,; .

POCCNET tanguege Study PAGE 2-~58

ON ERROR { <error groun> : <error number> 3 <stmt> ;
<error.group> ‘

OFE ERROR { <error group> : <error number> 1} ;
<error group>

(Similer to PL/1 on-conditions., Eech implementation
will :assign error groups ang error numbeéers to the
standard.system errors (such as division by zero,
illegal- instruction); the user may use unassigned

. error groups and numbers for user defined conditions,
The ON and OFF statements obey the HAL/S namesc0ping
rules, so any modifications to the condition handling
environment by an ON or OFF statement is removed on.
gxif from the enclosing block,

- SEND ERROR <error group> : <error number> ;
(Simulates an occurrence o0f the specified error

number o)

MAL/S has three constructs for <€reating more complex

data structures from the basic cata types:

(1) structures
~ The statement

STRUCTURE <template-name> { DENSE ¥ { RIGIpD) :
: . " ALIGNED

<tevgl-numbér> <ident> <attribute>,

<level number> <ident> <attribute> ;

declares <tempiate—néme} to be a stfucture template
This template can be used.in declaring a structured
variable: DECLARE <ident> <template name>

' { (Karith expr>) 2.
A structured variable can be dimensioned, and the
components of a'strutture'are referenced by the dot
operator: . <ident> . <component>

The_assignmenf operator and the relational operators

POCCNET Languagce Study - . PAGE Z-5%9

=, "= can be used to copy or compisre compatible

Structitures.

(¢) arrays _
A declaration of the form
DECLARE7<ident> ARRAY (<dimension liSt>§
_ <type specification> ;
declares <ident> to be an array of the specified type.
Array elements, rowsy Or subarrays are accessed using

‘the subscript cperator <ident?> : . N
: <subscript Llist>,

“Where a singte subscript can be any of the:fbllouing:
'<#-df-elements>—AT <start=-pos>
(Selects a range of elements starting
af the specified_position;)
<arith-expr> Tb <ar§thmexpr>
7 (Selects a range of elements.)
<afiih-expr> '

(Selects a single element.)

{Selects ati elements in the
corresponding dimension.)

The assignment operator and the relational operators

by “= ¢an be used to copy or ;ompare compatible

arragys.

{32 pointér variaoles .
HAL/S has fully typed'pointer variables declared by
statements of the form: | |
DECLARE <ident> NAME <type specification> ;
When a pointer of type X is used in an expression “or
on. the left hand side of an assignment statement an
automatic dereferencing takes place. For example, if P
points to a variable of type INTEGER then the
statement P = P+1; will increment the integer variable-
{the value of the pointer P is not altered). | '
A pseudoe variable NAME s used. to take the

gddress of an object or to assign & velue to a pointer .

POCCNET Language Study PAGE 2-60

variable:

_NAME((poihter var>) NAME(<non-pcinter var®);

NAME(<pointer vard>)

NAME(<pointer var>)

In the first case the pointer variable is assigned the
address of the non-pointer wvariable, 1in the second
qase.the pointer variable 1is simpiy assigned the value

of the pointer variable on the right hand side, Note

that this implies that =

another pointer.

pointer may not point to

FPointer variables may

retaticonal operators = and

points to a structure then the

=+ fFinatlly, 1f a

dot operator

be compared with the

pointer

may bé

used to access the components of the structure, and if

a pointer points to a

dimensioned object

(ARRAY;

MATRIX{-or VECTOR) then Subséripting may be applied.

HAL/S 4s block structured tanguage:uith reserved words, and

comments %n /* */ pairs. A simple replacement and a2 parameterized

.macro facility is provided by the REPLACE statement, The {anguage

also provfdes “"intine functions®; function bodies as part of
exbreésioms.err example, | |
STRBCTURE Xz . /* pefine a record */
1. A SCALAR, /* structure X. * /
1 8 INTEGER, | - ”
1 € NAME X-STRUCTURE; /* Now use it to %/
DECLARE XSTRUC X~STRUCTURE; /% dectare XSTRUC. */
XSTRUC = FUNCTION X-STRUCTURE; /* Initialize XSTRUC */
DECLARE Y X-STRUCTURE; /# using an inline */
YA = 0; /+ function that * /
Y.B = 0.0; _ /* returns an object */
NAMECY LY = NULL; /* of type * /
RETURN Y; /% X-STRUCTURE. %/
CLOSE;

The inline function is most powerful

facitity (for example, the inline

when combined with the macro.

- fupctiaon in the

previous

POCCNET Langusge Study : PAGE 2-61

‘example coutd be declared to be & macro called INIT. A statement
ef the form XSTRUC = INIT; would then dnitialize ther‘variable
XSTRUC.Y , _ :
The .Language has a data declaration facility catledACOMPOOL
that is samewhaf similar to the Fortran COMMON statement:
<labelx: COMPOOL { RIGID }; |
<data declarations>
CLOSE <label>; |
COMPODL blwocks tan be compfted independentty from other programs,
and the deétérations in the COMPOOL block can then be included
into & prégram by invoking the name of the COMPOOL blocks The
RIGID attribute forces allocation of thé data in the order
specified within the COMPOOL_blotk. ' _
HAL/S also provides for initialization of ‘varfébles in
PECLARE statements, and a CONSTANT attribute for de;téring,
program constants. The language-does not'éltos dynamic. arrays,
matrices, of_vectors, out “*7 bounds (as in PL/I) are allowed for
formal parameters. Finally, HAL/S -produces -a standard outpuf
Liéting for alt programs (programs are “prettybrinted" to show
statement nesting, énd subscripts or superscripts are'priﬁted on

separate kines),

E.'Runtime Environment

e e - - e wr =

HALZS requires a run-time stack, 1/0 routinesy, and
scheduling routines for activating, suspending, and synchronizing
tasks. ' '

Fe Synt

- -

The BNF grammar for HAL/S has approximately 450
proguctions.

2e6e2s CHARACTERISTICS

A. Machine Dependence

Except for the SUSBIT operater for extracting bits from an

POCCNET Lenguage Study PAGE -2-62

objecty HAL/S is not machine dependent.

B. Efficiency

- e e e o

HAL/S is an efficient language. The Language does not
provi&e dymamic. altleocation of sfructures {as the PL/I ALLOCATE
statement) or dynamic arrays, forbids branching ocut of procedure
bodies, and.rhas no BEGIN blockse The high level operators and
statements (métrix multiply, the (UPDATE blbck, the SCHEDULE
statement) should provide room for a great deal of optimization.

: In =& test performed by Intermetrics as part of the'HALJS
aﬁceptance tests [MAR75], the HAL/S compfter for the IBM 3480
series generated code that was faster and required less core than
1BM Fdrfran H (OPT=2). The benchmark included numerical analys1s

programs and b1t_and character process1ng programs.

€. tevel of the Langyage
HAL/S is a high level tanguage.
C. Size of Language and Compiler

RALIS is a Large lLanguage (comparabte in sjze to PL/I}, and

the compiler is written in XPL. The compiler is probably iarge.
E. Speciak System Features

HAL/S has mahy features that would be wuseful 1in systems
programming. T he rlanguége_ aliows DO-{oop'_variabies ‘te be.
declared as TEMPORARY variables uithin the loop bodye. Vériabtes
declared to be TEMPORARY Qi{l be allocated in the fastest storage -
locations availablea f
~example. DO FOR TEMPORARY INTEGER I = 1,100;

‘END; ‘ .
- A variable declared to be a'TEMPORARY Loop variable can not - be
accessed ocutside the loop body. ' -

To etlow for special extensions (possibly machine dependent).

to HAL/S,y a 4type of procedure or functicon called the Z—macro_ Wwas

POCCNET tLanguage Study PAGE 2-63

added to the Language, “-macros may be implementeg by inline
subst1tut30n of the procedure body or by standard procedure cal!
As. an example, the X-macro “NAMECOPY (AyB) will assign the pointer
variable B to the pointer -variable A without reqguiring type
checking (Ihereby allowing any structure to be overlayed on any
other.structure). | ‘ .

HAL/S also has the RIGID attribute for COMPOOL or"
STRUCTURE&, the STRUCTURE and NAME types, the SUBBIT operator,
the exception handling statements (ON, OFF, SEND ERRORYy the
UPDATE bkock for .shared variables, and the extensive real-time
Processing statements (SCHEDULE, WAIT, CANCEL, TERMINATE). ALL

of these features would be very helpful in systems programming,

- e ——

Fe Ercor Checking and Debugging

HALZS is futly typed, so many compile time checks. can be
performeds The ON and OFF EéROR statements would be useful in
monitoring runtime errors,

The tanguage manual does not indicate that any special

debugging aids are available.
5-_0 esigpn Support
(a) modularity

HAL/S is quite modular. The COMPOOL btock would be very
useful in 1nsur1ng that separately compiled programs use the same
data_ strectures, The LOCK = and ACCESS attributes for program
variables permit controlled sharing of program variables.
Finaily, HAL/S programs, procedures, funct1ons, or COMPOOL blocks
can be camplled 1ndependently (the first three generating object
mcduLES; the fourth generating an entry in the tibrary of COMPOOL
blocks -for the installation),

(b) modifiability

The Language has a number of features that would make. HALIS
programs easy to modwfy. The REPLACE statement prov1des simpte
and parameterized macrp - replacement, the CONSTANT oattribute can

be wused to declare pregram constant s, and the COMPOOL feature

POCCNET Language Study o PAGE 2-64

allows 2 programmer to make minor changes to a data structure
used by all programs in & project simply by changing a single
COMPOOL'biock. Finallyy the high level operators and structured

programming constructs would also make program modification
easier. ‘

(c) relisbpility

Acéonding to its implementors, HAL/S was designed fo improve
software reliability. The tahguage allows full type checking to
be performed at compile time, and provides many‘structured
programming constructs. The LOCK attr1nute in conJunct1cn With
the UPDATE block: permlts reliable data sharing, and the SEHEDULE,
WAIT, CANCLEL and TERMINATE statements provide high level features
for real-tinme process1ng. " The formatted output L1st1ngs_uouldr

-apso enhance reliability.
He Use

HAL/S has been implemented on the IBM 360 seriesy .the Data
Generat NOVA, and the Shuttle flight computer (IBM AP 101). The
compiler is ur1tten in XPL, so it shoutdn”t be terribly difficult
to transport HAL/S to other machines, The language was designed
and 1mplemented by Intermetrics, and has been used extensvvely by

NASA in the Space Shuttle program., - ' '

POCCNET Languace Study PAGE 2<65

2e7+ INTERDATA FORTRAN V

Ze7ete LANGUAGE FEATURES

INTERDATA FORTRAN v fINTE?&a,INTE?4b,INTE?4c] is- an
extension of ANSI Standarg Fortran, the major extensions being
the ADDRESS (po1nter) type .and the ENCODE and DECODE statements
for memory to memo ry data transfers under format control. The
Fortran 1anguage, which was originally designed im the late
1950“s, was the first algorithmic Language to achieve widéspread
acceptance. The Llanguage has been 'used extensively tor
scientific programming, but the Limited number of data types and
controt structures has hindered'-the use of Fortran for
- system-oriented problems. . Two Fortran preprocessors {FLECS and
PRESTG) uhicﬁ allow the pProgrammer to use structures programming
control structures have also been included in this report.

Ao Basic Pata Iypes and Operaztors

FORTRAN V'5upporfs the five basic data types of ANSI Fortran
(INTEGER, REAL, DOUBLE PRECISION, COMPLEK} and LOGICAL) as well
as the fpginter' type ADDRESS, The {aﬁguage has no character or
string data type, so albhanumeric- data must be packed ijnto
INTEGER ﬁar{ables. " Fortran V aliows mixed mode expressions and
wilt automat1calLy convert between INTEGER, REAL, and DOUBLE
'PRECISION valuess Character and address constants can be used in
INTEGER expressions.

FORTRAN V allows the’fdllowing_types'of caonstants to be used
in expressionsi idteger, floating point, . double precision
floating point, :complex, ngi:al, data or statement addresses,
charactery and hexadedimal. The operators and the data types on

uhiqh'thex operate are listed below:

arithmetic operators (INTEGER, REAL, DOUBLE PRECISION,
' o COMPLEX, and ADDRESS operands)
ty =g %y [, %2 - Standard ar1thmet1c operators, ADDRESS
. type can only be used in INTEGER
.expressions, FORTRAN V also has a

POCCNET Language Study I PAGE 2z-6¢

extensive library of mathematical

functions,

retational; operators

aEQ‘-, oNEo, .LT.’ ,GT-, oLE-, e GE »

logical operators (LOGICAL operands only)

nNDTo, «AND ag «OR &

pointer operatofrs and functions

A <mame>” - Yields the address of the object
o <name>, where <name> can be a simple
variable name, array, array element,
or a statement labet.
IVAL {(<address expr>).
FVAL(<address-expr>)
DVAL (<address-expr>) B ,
- Functions-tor obtaining thé INTEGER,
REAL, or DOUBLE PRECISION vaiue
pointed. to by the address expre551on.
It is the user s respons:b1l1ty to
1nsure.that the address express1on fs
"peinting to meaningful data. Note: -
there is'no'uay to alter the value
of the object pointed to by the address
expression. ' |

——— o ——— —-u--——--.--—q-

- IF (<logicat-expr>) <stmt>
(Simpie conditional statement with no prov1s1on for
an ELSE part.) ' o

= 1F (<arith-expr>) <label-1> , <label-2> , <label=3>
{(Three-way arithmetic if statement. A& . tfansfef is
made to Label-1, label=2, or tabel-3 depend1ng on
whether the arithmetic express1on is negatvve, - ZE€rogy

or positivee.)

- DD <stmt-nc> <vard> = <var-1>, <var-2>, <yar-3>

POCCNET Language Study PAGE 2-67

<stmt-list>
<stmt-no> CONTINUE
(For loops. The variables var-1, var-2, var-3 must be
INTEGER vaf1ables, and their vatues must be greater
than 0.) |

- GOTO <stmt-no>
G0T0 <assign-var>
GQTO (<stmt ~no=-1>, sues <stmt-no -k>),y <var>
(Uncond1t1anal, ASSIGNED, and computed goto

statements.)

o= <type> FUNCTION <func-name> {<parameter-List>)
<stmt-list> '
" END

SUBROUTINE €subr—name> { (<parameter-l§st>5 }
<stmt-£ist> |

END | .
(Standard function and subroutine definition,
Neither can. be Nrecursiéé. Both functions and

subroutines. can have multiple entry points.)

~ RETURN

(Return from a function or subroutine.)

= CALL <subr-name> { (<argument-List>) }
<func-name> (<argument-List>)

(Invoke a subroutine or function.)
Co Data Struc L es

‘#ORTRAN V has only one feat@re for building more complex
data types.: arrays of up to three .dimensions. The declarat1on
Stype> <ident> (<dimension-List>)
-declares <ident> to be an array of the specified type. The “type
can rbe any of the basic typesy and array‘eLements are extracted
using the subscript notation <ident> (<subscript-List>) .

Do Other Features

————— e Ed -

POCCNET Language Study " PAGE 2-68

INTERDATA FORTRAN V has an extensive library of built-in

functions and subroutines including

BLLR - Bit clear.
BCHMPL - Bit complement.
BSET ~ Bit set.

-BTEST =« Bit teste

ICBYTE = Byte tleare.
ILBYTE - Byte lLoad.
INBYTE - Byte complement.
I1SBYTE - Byte store.,

IAND - Bitwise AND, OR, exclusive‘OR, comp{ement,_

10R and shift. ' :

IEOR

NOT

ISHFT

FORTRAN V does not reduire ~that scalar vafiab(es be
detlared. ‘A variable that is not explicitly declared fs aséumed

to be INTEGER or REAL, the choice depending _qh the first
character in the variaole name, o o N

FORTRAN V has formatted and unformatted sequential and
direct access I1/0 facilitiese In addiiion, the ENCODE and DECOPE
statements .provide a means of transferring data fbr one memory
buffer to another, the data being translated according to format
control. The ‘ENCDDE .and DECODE statements can be used for
converting between character_data and the six basit types.,

Finally, FORTRAN Vv has a conditional compilation featufe.'
Any statements with an X in card column 1 will be treated as
comments unless the compiler debug option is on, in which case
they are compiled as ordinary statements. The conditional
compilation feature 4Js very helpful for inserting debugging

statements_into a programe.
E. Ruptime Epvironment

FORTRAN V reguires no runtime stack or dynamic storage
allocator. However, the lenguage does have fairly complex 1/0

_facilitiea,rso FORTRAN will require a number of I/0- routines.

POCCNET Langusge Study PAGE 2-69¢

Still, the runtime envirenment for FORTRAN will be consideranty
s1mpter than the runtime environment for HAL/S: SPLs or JOVIAL.

Fe Syntax

FORTRAN V probably has a BNF Syntax, but compiters would not
use it. FORTRAN statements are easy to parsey; and most FORTRAN

‘compilers use ad hoc parsing technigues,

2.7.2. CHARACTERISTICS

A Mach1ne Degendence

- W — -

FORT&AM is as machine dependent as any of the other widely
uséd 'progfamming‘ Languages. Almost all commercial computer
"systems provide a FORTRAN compiter, and FORTRAN ‘programs can
usualtly be transported to other facitities with out a great deal
of effort. Note: .one of the SOurces of difficutty in
franSportJng. FORTRAN programs s the difference in word sizes
between the two machinés. Since FORTRAN. has no . character or
String data type, programs - us1ng character data must pack
character& into INTEGER variables, Unless the packing density is
set at one character per word (very expensive if there 1is much
character. data), the resulting programs will not be transportanle‘

to other machines w:thout mod1f1cat10n.'
Be ﬁfiz‘ign ¢y

Optipized FORTRAN programs compare favorably with assembly
language programs. The onlty operation in FORTRAN that s
inefticient 4s formatted 1/0, “which must be dinterpreted at

funtime.

Ce Level of the Lapguage

——— i

fortran is a medium level tanguage.

De Size of the

Language and Comp

-

[

Ler

‘The EORTRAN language is moderate in sizé,,and the compiler

FPOCCNET tanguage Study PAGE 2~70

shoutd be too.

Ee Sgec1at'§x§tem freatyres

- - Lo -

FORTRAN V has a vefy timited form of pointer variables, and
many Llogical (bit and byte) functions. The EQUIVALENCE and
COMMON statements can be used to access a block of core unger

various fermats.

-———.—g—-

FORTRAN compilers have traditionally had poor compile andg
run time d1agnostzcs. The Llack of a character data type requires
the compiler to. accept. character strings as part of INTEGER
expressions - no. type checking can be performed for charactgrs.
The pointer type ADDRESS can be used to point at any data item or
. statement 1in a FOR TR AN program, and no type checking can be
"performed. It is therefore the user’s respons1b:ltty te insure
that po1nters are used in a proper manner.'

The INTERDATA 1mptementat1on of FORTRAN V provides the
following debugging features: :

SCOMP - Turns on conditional compilation of source

. statements with an X in column 1.

STRCE - Turns on trace of all or selected program
' 7 variaoles.
STEST. - Turns on Checking of array subscripts and

bO-Loop indices for O ofinegatiVE-vaLUes.
6. Degigp Support
(a) moaularity

FORTRAN V supports independent compilation of sdbroutines
and functions. bats sharing 4s 'provided by the COMMON and
 EXTERNAL stétements. FORTRAN is seriously lack1ng in structured

control structures, houever.
{b) modifiabdility

FORTRAN V has no macro processor, no CONSTANT statement for

defining program constants, no INCLUDE feature for including

POCCNET Language Study ' PAGE 2-71

source files into & program, and no catas structures other than
Errays. FORTRAN oprograms are often hard to read because of the
tack of control structures, FORTR AN programs would be

considerably harder to mocdity than programs written in PASCAL,

-for examphke.

(c) reliability

FORTRAN V tag net perform any compile~time type checking of
subroutine or function parameters, or check that 'variabkes
declared in one COMMON block are consistent with variables
dectared inm the same COMMON block by another -function or
subroutines The ADDRESS type 1in FORTRAN V requires . careful
programming. It fs the: user”s résponsibi{ity to insure that
po1nters gre pointing to objects of the correct type. ALso, the

lack of centrol structures me ans that IF and GOTO statements must.

be use to simulate if-then-else _statements, while and until

‘loopsy, and case statements. This can greatly obscure the

structure of a2 program. Finally, FORTRAN has no bit or character
data types, requiring any program that uses these data typés to

pack characters or bits into - words.

He Use

FORTRAN V s implemented on the INTERDATA series of
mihicomputers. The #ORTRAN language hés been imblemented on
almost atl commerciél computer systems (a{though the
implementations are atl slightly different), and'in the past few-
years a number of preprocessors have been written that pefmit the
use of structured programming controt structufes in FORTRAN
programs. The (languages FLECS and PREST4 discussed in this
chapter are two examples of this type of pPreprocessors

POCCNET Language Study PAGE 2-72
2.8« JOSSLE
2e8ele LANGUAGE FEATURES

JOSSEEHEJOH?S,PRE?SJ is a high lLevel language developed by
Jehn . White -and Leon Presser at the University of California. -
Although it was designéd to-bé used in implementing compilers,
the language is general purpose (JOSSLE is loosely based on PL/I)
and could be applied to most system-oriented problems. JOSSLE
provides some special features for managing shared data in
brograms, and a hierarchical control structure that tends to

force top-down dexvelopment of programs.

JOSSLE ‘has four basic dats types: INTEGER, REAL, CHAR
(characten string), and BIT (bit string). Complete type checking
is perfqrmed at compile .time, and mo automatic type'conversion is

‘peformed between the basic types. However, the language does
provide a function CONVERT for reguesting explicit data
conﬁersioas. -

.The’uperators_ahd the data types on which they operate on
are listed below: -

logicatl eéerators,(BIT operands)
: <éxpr>_ ~ Bitwise complementy, AND, and OR.
<expr> & <expr> | ‘
<expr> ' <expr>

relational operators (all basic types)

=y = - Operands_tan be INTEGER, REAL, CHAR,
~ BIT. Both operands must have same
tyne.- | _
<y 2y <=, >= ~ Operands can be INTEGER, REAL, or BIT,

Both operands must have the same type.
Note that there is no implicit ordering

of the character set,

arithmetic operators (INTEGER and REAL operands)

FOCCNET Language Stucy : PAGE 2-73

‘+,—‘y,/ - Operands can be INTEGER or REAL, but

‘ both must have same type. _
MOD _ - Modulo operztor. Operand must be .

INTEGER.

character operators and functions (CHAR operands.dn{yf
L. | : - Concaténation.
SUBSTR : - Substring function. SUBSTR %s not a
pseudo~vériablerih the PL/I sense -
it can not be used on the left—hand

side of an assignment statement.

Ee Controi Structures

o e e . -

BEGIN <stmt-List> END;

(Compound stafement.)

= IF <bit-expr> THEN <stmt> { ELSE Kstmt> } ;

(Standard conditional statemente)

~ LOOP <stmt-list> END LOOP;
(Unbounded repetition of the <stmt-iist>. FEach LOOP
statement must contain an EXIT statement to prov1de

termination of the loop.)

~ CASE <integer-expr> OF
Tstmt-1>;
.
<stmt=k>;
END- CASE; _ | ‘

(Simple case statement. 1% the - valtue ‘of the
expression is i then the i-th statement is executed.
A runtime error message is produced if i ds léss 'than
1 or greater than Ke) '

< EXIT { IF <bit-expr> 2 ; _
tUnconditional and cenditional exit of 1nnermost

LOOP statement,)

POCCNET tanguage Study PAGE 274
= RETURN;
{Return from a procedures)

= RETURN WITH <expr>;
(Return from a function with a resultae)

= CALL <proc-name> { (<parameter—(ist>) };
<function=- ~name> { (<parameter—l15t>) ¥

(Invoke g procedure or funct1on.)

- PR&CEDURE Kprotﬁname> { (<argument-tist>) 2

-

" <procedure-body>
END PROCEDURE <proc-name>;

PROCEDURE <func-name>

Ny

{ (<argument-list>) » 'RETURNS-<type>
<function-body> ' - '
END PROCEDURE <func-name> ;
| (Standard . procedures and funct1ons. Neither can be

recurs1ve, and all parameters are passed by value.,)
Note: JOSSLE has no GOTO statement.
- C. Datg Structures

JOSSLE has a number of constructs for creating more complex:

data struétures trom the basic types:

(13 one—dfmensionat arrays
The statement
'<1dent> LINLIST {<number-of-elements>) OF <type>;
deciares <ident> to be a one-dimensional arrazay. The fype
‘can be any one of the basic types or a record structure
gefined by ihé user. Array elements are accessed using the
subscript operator <ident> (<subscript> , and the

assignment operator <- can be used to copy ah entire array.

(2) record structures
The user can define record Structures wusing the NEWTYPE
statement: _ B B

<type-ident> = NEWTYPE

POCCNET Language Study . _PAEGE 2-7%

<member-1> <type-1>;
[]
. ‘
L]

<member-k> <type~-k>;
END NEWTYPE;
The <type-ident> can then be used anywhere that a basic

type can be useds For example:

ERRORMSG = NEWTYPE = /% Define record structure s/
TEXT CHAR(2D); /? for an error message. * /
ERROR=NO INTEGER; | o '
PRINT-FLAG BIT(1);
NEXT-MSG PTRZA ERRORMSG‘

END NEWTYPE; . , :

DECLARE ' - /% Now use the structure . x/
SIIE.ERRDR ERRMSG /* to declare some things. */
OTHER~-ERRORS LINLIST(10) OF ERRMSGE; '

END DE&LARE' _

The syntax for referencing structure Componehts is
_<structure-var> : <member-name> { , <member~name>) . The
éss:gnment cperator <- can be used to copy an ent1re record

frop one variable to another.

(3) typéd pbinters
' The declaration
<ident> PTR2A <type>; |
decdares <ident> to bé @ pointer to an -6bject' of type
<type>. The type can be a user defined record structure.
ALL pointer variables are initialized to the constant NULL.
The foltowlng cperators and JOSSLE statements are prov{ded
for mapipulsting pointer variables: _ '
=y "=y -~ Equality and inequality.
<ptr-var> :> - Object pointed to by the pointer
. variablee Can appear on either side .
of an assignment statement. '
<ptr-var> :> <structure-member> { . <member>)}

= Component in & structure pointed to by

POCCNET Language Study PAGE 2-76

the pointer variaple,
ADDRESS (Kvariable>) '
' - Yields address of the variables
CONTENTS(<ptr-var>)

-‘Yietds value of ocject pointed to by
the pointer variable. C(an.not appear
on the left-hand side of an assignment

| statement ,
 ALLOCATE <type> SETTING <ptr~var>;

- Allocaste statement that causes dynamic
"allocation of an object of type
<type>, and the setting of <ptr-var>
to the address of the new object.

FREE <type> FTD2BY <ptr-vaf>;
' - Statement that deallocates the core
block, pointedlat by thq pointer
"variabley, and sets the pointer to
NULL. '

(4) stacks and gueues

The JOSSLE declarations _
<ident> STACK OF <type>
<ident> QUEUE OF <type>

L1

e

are used to define stacks and queues. The type can be any

basic type or a user defined record structure. - Stacks and

gueues are initijally empty, ano objects can be pushed on or

~popped off a stack or queue with the following two

operators:
- <ptr=var> <== {stackfor—queue~var>
' - Sets <ptr-var> to the address of
the object in the stack or gueue
and then pops the object off the
list. If the stack or gueue is
inftiatly ehpty the pointer is.
set to NULL.
<stack-or-queue-var> <== <ptr-var>

= Pushes the object pointed to by the

POCCNET Language Study - PAGE 2-77

pointer variable onto the stack or

QUEUE.

Be Other Eeatures

o —— - - o a

JOSSLE provéﬁes severat features for managing shared data

‘and for structuring systems of programs., JOSSLE‘permits intgrnﬁl'
procedures {that is, nested procedures), but unlike dther block
structured téhguages en internal procedure does not autpmatica(ty
inherit all variables declared in outer blocks. Aﬁ'intgrnal.
procedure can regquest the use of such Variéb(es using_‘the KNOWN
statement: - -

KNOWN

<identifier~list>

END KNOWN, S
This featuure prevents dnternal orocedures from modifyihg a .
variable declared at an outef 'level uithoqt gaining eiplicit
‘permission to use. it | _ _ .

A sysfem_ of -JOSSLE programs s formed by creatihg a
COMMUNICATION REGION specifying the member programs'in the system
and. the data to be shared'amahg the programse. The syntax for a
COMMUNICATION REGION is as follows: | '
COMMUNICATION REGION <ident>
‘ <record-structure-defihitions)
.(shared-variable-declarations>
MEMBERS -
<main-program>
<sub-program-tist>
END MEMBERS; o
END COMMUNICATION REGION <ident>; _

The statement defines <ident> to be a “task™ cemposed of a main
program and a {ist of subprograms which communicate only through
. the variables in the <shared=-variable-List>. A - MEMBER program
‘can only be catled by éther pfograms in the same COMMUNICATION
REGION, Each MEMBER prograﬁ_ can be an idindependently compiled
JOSSLE program or another COMMUNICAT-ION' REGION, .A ,COMMUN.ICATION
REGION is activatea by a caltl to the. identifier <idént?,' which

POCCNET Languzge Study PALGE 2-78

causes control to pass to the main program in the MEMBERS (ists
' JOSSLE has a CONSTANT declaration for declaring program

constantsy and primitive 170 facilities.

E« Runtime Environment

. e e e e e e v -

JOSSLE proh1b1ts recursive proceaures, sa no runtime stack
is requ1red. H0wever, JOSSLE <does reguire a dynamic storage
allocator and some form of garbage colLector for compacting the

dynamic storage area,

o —

JOSSLE has 2 BNF grammar with approximatety 150 productions.

'2.8.2.' CHARACTERISTICS

Ae Machipe D

- e amim o e e e

JOSSLE has no machine dependent features and could be

implemented on almost any machine.
B. Efficiency

JOSSLE has no recursion {(and therefore no runtime stack),
and the ltanguage does not permit dynamic arrays or varying length
character_or bit strings., Procedure parameters are all passed by
value.. These restrictions would tend to make JOSSLE‘efficient.,
Howevery, JOSSLE programs that use pointer variables to
 dynamicaLiy allocate storége, or that perform a great deal étring
concafenagimn will require a dynamic storage allocator and
garbage collector. Garbage collection can be very expensive.

C- Level of the Language

JOSSLE is a high Level tanguage.

Ler

P Size of the Language and Comp

Tt

JOSSLE 1s a fairly Large languzge, and the compiler ‘wilt.

also be Large;

POCCNET Language Study : PAGE 2~79

m
L)
[174]
m
m
[}
mdte
b
Pl
twn
[
1)
[I
o
2]
™
[L1}
HoA

tures

JOSSLE has record structures, bit and character ‘strings,
fully typed pointer variables, gynamic storage allocation, and
the STACLK and QUEUE data structures. ALl of theseifeatures would

be helpfuli in systems programminge.

Fo Error Checking and Debugaing

- -

JOSSLE performs complete type checking'at'compi{é time and

performs ne autoﬁatic conversions between the data types.

Default runtime checks include array subscript .checking, CASE

expression out boundss data conversion errors froﬁ t he CONVERT
function, and substring length errorse -

- The JOSSLE manual does not indicate that any special
Beougging features are availables = ‘

G. Design sSupport

{a) modularity

Modulardity in JOSSLE s excellents The lahgdagé_ provides
the COMMUNICATION RESION concept, independent compilation of
programs &nd-COMMUNICATION_REGIONS,_and restricted inherifance of
global variables. JOSSLE also has a small number of structured

programmimg controt structures.,
(b) modifiability

JOSSLE programs should be very ue(l étructdred because of
the COMMUNICATION REGION concept and the dectaraiionﬁ tor
éontrolling'shared,data. However, the language hés'.nb: macro
pProcessors ang the set of controt stfuctures is fairly limited
(no WHILEs' FOR, or REPEAT UNTIL todps; and only a simple form of
the CASE statement)., Because of this, JOSSLE programs will be

harder to modify than programs written ip HAL/S or PASCAL «

{ec) retiability

JOSSLE performs complete type <checking at compile time.

This permits 2z large number of errors to be detected at cbmpiLe

POCCNET Lanquage Study PAGE 2*80

time that would go undetected .in a language Like Fortran. Like
mosf tanguages with pointer varisbles, however, JOSSLE requires
careful programming. There is nothing to prevent & user from
using the ADDRESS function to point at a static variable, and
then subsequently attemptiﬁg to frée that variable using the FREE

statement.
He Use

JOSSLE is implemented ~oh the IBM 360 and 370 series.
However, the Llanguage s machine independent and could ‘be

implemented on other machines.

