
ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 37

Final Report
NSF Workshop on a Software Research Program For the 21 st Century

Greenbelt, Maryland, October 15-16, 1998
Workshop Participants:

Professor Victor R. Basili, University of Maryland (Chairman)
Mr. Laszlo Belady, Belady Enterprises

Professor Barry Boehm, University of Southern California
Professor Frederick Brooks, University of North Carolina

Professor James Browne, University of Texas
Dr. Richard DeMillo, Bellcore

Dr. Stuart I. Feldman, IBM
Dr. Cordell Green, Kestrel Institute

Dr. Butler Lampson, Microsoft Corporation
Professor Duncan Lawrie, University of Illinois

Professor Nancy Leveson, Massachusetts Institute of Technology
Professor Nancy Lynch, Massachusetts Institute of Technology

Dr. Mark Weiser, Xerox Corporation
Professor Jeannette Wing, Carnegie Mellon Institute

Executive Summary
In August 1998 the President's Information Technology Advisory
Committee (PITAC) submitted an Interim Report emphasizing the
importance of sottw~se l:o the nation and calling for a significant
new federal investment in software researck ~ An NSF workshop
subsequently brought together representatives of a broad segment
of the software conananity to discuss the software research
agenda. Workshop l~trticipants included researchers and develop-
ers from geographically diverse organizations in academia and
industry.

A major theme of the PITAC Report was the "fragility" of our
software infrastructm'e, where fragility means "unreliability, lack
of security, perforrm~cg lapses, errors, and difficulty in upgrad-
ing." The P1TAC was :~aicularly concerned by these failings,
because software now affects almost every aspect of personal and
professional life in the nation. It manages our telephone networks
and nuclear power plants; a large variety of embedded control and
sensor devices, air-Wdffic:-control systems, and the readiness of the
world's most advanced military force, to mention only a few ex-
amples. Given the exportential growth curve for software use, we
expect even greater dem~mds on software in the future.

To meet them, the workshop concluded that software
research has to expired the scientific and engineering
basis for constrticting "no-surprise" software of all
types. We need to:

• Develop the empirical science underlying software as rapidly
as possible. One iml:ortant activity will be to analyze how
some commercial and government organizations have learned
to build no-surprise ~stems in stable environments. By ex-
tracting principles fram these analyses, empirical research can
help enlarge the no-surprise envelope. By validating princi-
ples derived from thcoretical research, where many excellent

1 See: http://www.hpcc.gov/ac/

but unused ideas originate, it can enlarge the toolkit of soft-
ware developers.

• Advance our understanding of the basic elements of the com-
puter science discipline, which is the foundation for all soft-
ware construction. Progress in formal methods, algorithms,
operating systems, database management systems, program-
ruing languages, and many other areas is essential. Otherwise,
we risk running out of ideas and methods for creating the "un-
precedented" software of the future that will maintain our
global competitiveness and national security. To help in the
construction of real-world no-surprisc systems, theoretical re-
search should be sensitive to the issues raised by empirical
analyses and to the scalability problem.

• Address human needs significantly better as we engineer the
large, unprecedented systems of the next century subject to
concurrent safety, evolvability, and resource constraints.

• Form teams to build important advanced applications that will
both serve as test-beds for the new ideas and address a serious
problem identified by the PITAC: "desperately needed soft-
ware is not being developed."

A significant new research investment is required to understand
and correct the software "fragility" problem. The following work-
shop report discusses the issues in more detail. Below is a sum-
mary of the detailed findings and recommendations.

FINDINGS AND RECOMMENDATIONS
F I Current software has too many surprises. The sources of

surprise are poorly understood.

R1 Emphasize empirical research aimed at understanding the
sources of software surprises.

F2 Key sources of software surprise include immature or
poorly integrated software domain sciences, construction
(product) principles, and engineering processes. Software
research emphases have swung from process to product re-

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 38

search, with weak coverage of domain sciences and inte-
gration.

R2 Balance and incrementally expand research in the domain
sciences, construction (product) principles, engineering pro-
cesses, and their integration.

F3 Key components of software surprises include scalability,
evolvability, dependability, usability, performance, and pre-
dictability of cost and schedule.

R3 Emphasize the ability to address these issues in research
support and evaluation.

F4 Software technology is hard to transition into practice and
feedback is needed on its effectiveness. Just doing software
research is not enough.

R4 Expand initiatives to transition research and provide feed-
back to researchers via government/industry/academic col-
laboration, incentives, and support.

opment. In the sequel, we will discuss research strategies for:

• extracting useful principles of software construction through
empirical investigations of successful projects and validating
design principles developed in the research literature and
elsewhere;

• advancing our understanding of the software engineering pro-
cess by experimenting with new approaches in applications
projects;

• continuing to develop a rigorous formal basis for software
development that is sensitive to issues raised by empirical
analysis and that puts a special focus on adapting to change
and scaling to systems of realistic size;

• forming teams to build important advanced applications that
will both serve as a testbed for the new ideas and help addres,,
a problem identified by the PITAC---that "desperately needed
software is not being developed;" and

• Emphasizing human factors for both software products and
processes.

1. Introduction and Motivation.
As an industry, information technology, especially software tech-
nology, has had an immense impact on the U. S. economy. In his
MIT commencement address on June 5, 1998, President Clinton
observed that "in just the past four years, information technology
has been responsible for more than a third of our economic expan-
sion." Important new software technologies with the potential for
driving the economy to even greater heights electronic com-
merce and advanced communications networks, to mention only
two exciting examples--- are now under development or already in
the field.

The software story is not one of unvarnished success, however. In
their Interim Report to President Clinton, the President's Informa-
tion Technology Advisory Committee (PIT AC) calls software "the
new physical infiastructure of the information age ... fundamental
to economic success, scientific and technical research, and national
security" but observes that "the Nation currently depends on soft-
ware that is fragile, unreliable, and extremely difficult and labor-
intensive to develop, test, and evolve." The PITAC Report notes
the increasing importance of software "for commerce, for commu-
nication, for access to information, and for the physical infra-
structure of the country." But it also warns that "our ability to
construct ... needed software systems and our ability to analyze
and predict the performance of the enormously complex software
systems that lie at the core of our economy are painfully inade-
quate. We are neither training enough professionals to supply the
needed software, nor adequately improving the efficiency and
quality of our construction methods."

The NSF Workshop on a Software Research Program for the 21 "t
Century, which was held in Greenbelt, Maryland, on October 15-
16, 1998, examined and elaborated the PITAC recommendolions
for significant new research efforts towards understanding how to
consLruct, analyze, and evolve software. The discussions ranged
over all types of software from the everyday variety that dominates
the commercial activities of the nation to the most complex, lead-
ing-edge software. Workshop participants believe that the best
approach to improving software quality and software engineering
productivity begins with understanding and building on the sub-
stantial successes of the last twenty-five years of software devel-

2. Defining the Basis For a Software Discipline.
The P]TAC Report spotlights the fact that "the software our sys
tents depend on is fragile" and notes that the "fragility is manJ
fested as unreliability, lack of security, performance lapses, error.
and difficulty in upgrading." In other words, too much soflwar
has too many surprises. Our goal should be to develop technique
for expanding the envelope of "no-surprise software" and for ur
derstanding more precisely when we are in danger of crossing th
surprise threshold. Then, if we need an application outside
threshold, it will not be a surprise if it experiences ovemms c
shortfalls.

The no-surprise software envelope. We should keep in mind, ho~
ever, that a large amount of no-surprise software is created eac
year by organizations that have developed a standard engineerin
approach from long experience in stable domains. The develop
ment of such business systems as payroll and order-entry is hat
died well by many experienced companies as long as the rules (
legalities governing the systems have not changed radically an
the computational environment is well understood. One importm
characteristic of such systems is often the existence of some dom
nating technology---a centraliTed database, for examplv---or reg~
lations that impose constraints on the construction of system
Numerous companies use development methodologies that, wl~
not the mathematically rigorous formal methods of the resear¢
community, are nevertheless systematic engineering approache
As in classical engineering, they produce appropriately function~
reliable, and maintainable systems, usually on time and w i ~
budget. Other examples of this success include various kinds,
manufacturing precess-control systems, many NASA satelli
ground-support systems, and even some kinds of air-traffic contr,
systems.

Software development is similar to other engineering activities: v
reach our engineering limits whenever the environment for a n,
surprise system changes significantly. Sometimes technology q
governing regulations change, or it may be that the system mu
tolerate dramatically increased stress. Lacking processes to flit
commitments to unachievable success levels, we can easily exc~
our engineering capabilities. One common example is the bnsine

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 39

system that must handle an order-of-magnitude more transactions
with many interdependencies than similar previous systems. The
same thing happens if we greatly increase the size and complexity
of a database support system for example, the ground data Earth
Observing System of NASA, which has been under development
for more than a decade.

Classical engineering disciplines understand the surprise/no-
surprise threshold better than we do. They know how to limit
change, calculate its impact, and, over time, make a systematic
transition to increased capability. We need careful empirical stud-
ies of the methods used by the developers of successful no-surprise
systems, with a view to identifying and generalizing their methods.
We also have to imvestigate projects that failed when they ex-
ceeded the threshold of current engineering knowledge and learn
how to recognize the ~:eshold and systematically push it higher.
One goal should be m clevelop ways to bound the development
problem and constrain its solution and to understand and exploit
the relationship between the two.

We believe that the soJ.~ware research community would profit
greatly by having a deeper understanding and appreciation of the
large number of successtul no-surprise systems built every year by
the software industry. In our view, this is the proper starting point
for addressing the problems of the many important software sys-
tems that are built beyond the threshold of current engineering
practice.

These latter "outside-fl~e-envelope" systems are of great interest to
us as well. They see wide use and may often work satisfactorily,
but their development and maintenance costs can be very high,
and, in many eases, fl~ey have unacceptable failure levels. Outside-
the-envelope systems include telephone switching systems and
local area networks. Fimlly, there are the unsuccessful and some-
times highly visible systems that go well past the threshold of suc-
cessful engineering practice--e.g., the FAA Advanced
Automation System. A primary question facing the software disci-
pline is: How do we learn from building no-surprise systems and
apply that success to outside-the-envelope and unsuccessful sys-
tems, as complexity and risks grow?

Software-related research areas. For explanatory purposes, let's
classify software-related research into three areas: domain science,
the principles of construction, and the engineering process. This
taxonomy can shed light on the key issues in any engineering dis-
cipline. For example, in civil engineering: l) the domain science
is that part of physics, materials science, engineering economics,
engineering ergonomics, etc., that is useful for building bridges,
roads, and other relevant artifacts; 2) the principles of construction
are those scalable general principles for creating civil engineering
objects; they would penmt the construction of useful prototypes;
and 3) the engineering process is the standard practice that enables
a well-trained civil engineer to build a real bridge with available
materials and construction crews of normal skill, and operating
under realistic time constraints and budgets.

In software engineering, domain sciences for applications include
computer science plus physics, accounting, and so on; for operat-
ing systems, it's computer science. Except at the (us~mlly non-
scalable) level of algorithms, large development teams generally
use only non-formal, non-validated principles of construction--for
example, the commercial methodologies for building routine sys-

tems. Research into the science of software construction often does
not address scalability, except to acknowledge that it is an issue.
We have very rigorous underpinnings for certain foundational ar-
eas of software---formal verification, formal specification of de-
signs or requirements, for example---but much less for the
principles of construction. (Program synthesis from high-level
specifications is an important exception.) Research results in foun-
dations are seldom accompanied by equally rigorous and usable
techniques for constructing real-world software based on the for-
mal representations and underlying theory. Lacking a sufficient
construction science, it has been difficult to create a realistic, rig-
orous software engineering process.

Why is this important? Because the software problem is an engi-
neering problem. As with all engineering disciplines, software
requires rigor in the underlying sciences:

• Domain science. We need advances in the science of com-
puting, because it is an essential domain science for software
engineering. The study of algorithms and their characteristics
will continue to be an important foundation for software. We
should pay special attention to scalable properties that can
usefully be isolated at the algorithmic level--for example,
properties of models of system interconnections.

• Construction principles. As Mead and Conway wrote twenty
years ago in establishing foundational principles for VLSI de-
sign: "The task of designing very complex systems involves
managing, in some highly structured way, the space and time
relationships between the various levels of system building
blocks so that the entire system will function as intended
when it is finished." Commercial practice advocates many
principles for "managing ... relationships between the various
levels of system building blocks," and the software research
literature is replete with design principles, from the highest to
the lowest levels. In virtually all cases, the principles have
neither been carefully classified for applicability nor validated
for practical effectiveness. We believe those scientific activi-
ties should have high priority in future research projects.

• Engineering process. Much research has been conducted on
the software engineering process in recent years, and our un-
derstanding of the importance of process has increased. The
stage is now set for developing a customiTable standard engi-
neering practice founded on a sophisticated set of validated
tools and techniques from a relevant science of construction
principles. This practice should also draw heavily on empiri-
cal investigations of successful no-surprise systems from vari-
ous important domains.

This breakdown gives us a more careful way of talking about the
"science" of software. In particular, it is now easier to address a
question that occasionally arises: Is it possible that there is no sci-
ence of software? That is, could building high-quality software be
more a matter of artistic skill and good taste than a scientifically
well grounded activity? Within our framework, an appropriate
reply might be: Which science do you mean?

Domain science clearly exists for constructing the software that
compiles a program written in a conventional programming lan-
guage for a conventional computing platform. But that science is
far from enough to cover the computing and human aspects of a
large, unprecedented air-traffic control system subject to simulta-
neous safety, evolvability, and resource constraints. To provide a

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 40

scientific basis for developing and evolving such systems will re-
quire the extension of the domain science---computer science, in
this case--to provide capabilities for large-scale, distributed, ultra-
reliable, real-time information capture, processing, management,
and display. It will also require the integration of computer science
with other domain sciences, such as the aero-sciences, economics,
and social sciences to address such issues as collision avoidance,
human-computer interaction, computer-supported collaborative
work, and risk management. Thus, to more rapidly bring ambi-
tions, outside-the-envelope software systems within the scope of
no-surprise development techniques wiU require improvements not
only in computer-domain science, but also in the collaboration of
computer science with other domain sciences. Doing all this may
sound unachievable, but as a benchmark, there exist medium-size,
air-traffic control systems that have passed the no-surprise test.
One example is the system developed by Raytheon for Norway.
Such benchmarks indicate that for some complex but well-
understood applications, there is a sufficient combination of spe-
cialized subsets of various domain sciences (in addition to appro-
priate construction principles and engineering processes, of
course) for experienced organizations to produce no-surprise soft-
ware systems. The major challenge is to extend this engineering
capability so that we can address more ambitious, unprecedented
systems, which are exactly those needed for future industrial com-
petitiveness and future public services to enhance our quality of
life.

As we examine the sciences underlying software, the existence of
domain science is indisputable. But what about construction? Con-
struction principles are implicit in the development of successful
no-surprise systems and explicit in methods long discussed and
advocated by the research community (not to mention the commu-
nity of commercial design consultants). Therefore, the appropriate
questions are: Do the principles rest on a coherent scienlifie foun-
dation? Are they actually useful for building software systems?

The first question is easy to address. Researchers have frequently
recommended this or that design principle after developing (or
outlining) sound mathematical foundations. Design by abstract
data types is an obvious example, to which we might add stepwise
refinement, structured programming, and decomposition of multi-
party interactions, to mention only a few popular examples.
Sometimes, the principles are at a much higher level--- Dijkstra's
statement that distributed systems should be designed as self-
stabilizing systems, for example----but equally well founded in
appropriate mathematical theory. There are a very large number of
instances of mathematically well-founded construction principles.

The second question--usefulness---is clearly addressable in prin-
ciple, but the fact that it is rarely attempted continues to separate
software from other engineering fields. The usefulness of our de-
sign principles and, therefore, of the underlying science is a matter
for empirical investigation, and that has not been a primary focus
of software research.

Finally, consider the software engineering process, It also has a
validation problem, as well as a foundational issue---our process is
rarely based on carefully stated construction principle~ but the
"science" underlying it is akin to the same management science
that supports all other engineering disciplines,

Findings:
• Software research must address the wide range of software

needs: from systems we can build reasonably well (no-
surprise systems), to systems that test our ingenuity, to un-
precedented systems that are beyond our current abilities.

• Research is needed in the underlying domain sciences, con-
struction principles, and engineering processes.

Recommendations:
• We need to understand the state of the art and the state of the

practice of software development when we try to define soft-
ware research needs. For example, we have to answer such
questions as, "What are the major difficulties in moving from
no-surprise systems to unprecedented systems?" To do so wil:
require a greater focus on the empirical study of existing sys-
tems.

• Software research requires advances in the underlying domail
sciences (including computer science), the principles of soft-
ware construction, and the engineering process. We need to
create rigorous principles for software development, apply
these principles to various classes of unprecedented systems,
develop support methods and tools for using them, and un-
dertake controlled studies of their application for continued
learning about software development and evolving the princi-
pies.

3. One Example of an Important New Application.
Past successes demonstrate that some software development o]
gamzations can build no-surprise software until conditions chang
too much, and a discontinuity occurs between capability and e~
pectatio~ The problem can arise because of a deficiency in any c
the three areas discussed above--domain science, constructio
principles, or engineering process---but it usually comes from
latter two. As we try to understand development failures, we nee
to identify where, within this or some other systematic frameworl
the breakdown occurred and what new knowledge will be require
to push beyond it in the future. This systematic study of develot
ment problems characterizes classical engineering fields and helt
explain their steady progress. As Levy and Salvadori put it in
Buildings Fall Down, engineers "learn a lot from failures," typ
c, ally through systematic investigation by experts.

The software field requires special help to make the transition 1
engineering, because we are driven much more than most fields t
the rapid pace of our market. The industry is motivated primar~
by the need to meet market demands and cannot slow down
study principles and process. But when the demands on systen
are growing exponentially, we cannot afford to let engineem
knowledge grow linearly.

To ilhistmte likely demands on 21st-century software and tl
evolution of the demands that move a system out of the "n,
surprise" envelope, we provide a description of the evolution of
sample application: electronic commerce.

Electronic Commerce. A few years ago, electronic commerce w,
virtually non-existent. Now it has grown to at least
$6,000,000,000 business, and predictions for growth are extreme
optimistic. Estimates of total worldwide E-Commerce from rep
table information technology analysts include:

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 41

Year 2001 2002 2005
$Amount $200B $400B $1000B

Over time, these estimates have continually increased.

The most visible pan of this activity, involving individual con-
sumers, is only about 20% of the dollar volume, though a much
higher percentage of the ~:otal number of transactions. As many as
forty-million people have bought or sold something on the Web.
This number will easdy rise past one-hundred million in a few
years, and we can expect one billion customers worldwide by
2010.

Electronic technologies decrease the cost of many important eco-
nomic activities by (l,terally) orders of magnitude. Historically,
any large change in file factors or production and distribution
eventually leads to huge dislocations and opportunities. Luckily,
the United States is in the forefront of this technology and is in a
position to take earl) adyeantage. The current successes in elec-
tronic commerce are dire,~y attributable to the work of computer
scientists over the pas!L couple of decades. We would not be able to
shop on the Web--to l(K:ate goods there and pay securely for
them--without impov~mt work in the underlying domain sciences
such as cryptography, pa)ment protocols, the Web itself, the Inter-
net, large-scale distributed systems, distributed database manage-
ment systems, and human-interface interaction models.

Investments in these rese~Lreh areas have been repaid many-fold by
the growth in the Ameri,:an economy. (Just consider the market
capitalization of Yahoo!, Amazon, eBay and similar companies.)
And there are many bright expectations for the future, moving
from occasional catalogue sales to a standard mode of doing busi-
ness-perhaps the onl) mode in certain new areas. This move will
be a genuine change in ~onomic organization around the world
and will change beha,Ao:.-s of the average citizen. There will be
major dislocations and discomforts, but the net result will be a
much more efficient aJ~ (we hope) more equitable economy.

Many problems will need to be solved to reach this desirable state.
As e-commerce moves from novelty to business necessity, our
tolerance for discomfort and failure will disappear, and the need to
support transactions from anywhere at anytime without losing or-
ders or payments will be essential. The e-commerce world will
have to work with telephone-system reliability. The market will
tolerate essentially no regional or global outages and very few
local problems. Yet ~e ,~ll continue to have fallible networks,
computers, peripherals, :rod software. Commerce will be con-
ducted with finns arotmd the globe, products will be ordered at all
times, and new services will be created at an accelerating rate.
Somehow we must be able to provide improving service in many
styles and languages over the world's largest, most complex dis-
tributed computer system Furthermore, there will be very strong
security requirements, to ensure that the parties to any transaction
are identifiable and have appropriate authority (financial, organ-
izational, political). The Web makes possible an entirely new level
of privacy invasion e~td intrusion. It is possible to track every
move on the Web, including lime and even physical location. On
the other hand, it is also possible to hide one's identity in ways that
are impossible in the traditional physical world. The tension be-
tween these, and the r~sks of social problems on the one hand and
economic ones on the other, creates a need for much research, ap-
plied research, and advanced development.

Most business today is transacted on the basis of fixed prices,
standard goods, and an agreement between a single buyer and
seller. In the future, much more complex intemctious may become
the norm, involving more parties (for comparison shopping, com-
petitive bids, alternatives, bundling, etc.). Traditional styles of
database transactions may be woefully inadequate to support the
new opportunities, about which we can only guess. There will be a
rising level of experimentation in this world, so applications wil l
be designed, tried, redesigned, in huge numbers and on a very
short time scale. The set of applications and services that a user
sees will, therefore, change from instant to instant, and many will
be faulty, yet the overall economic and computing system must not
falter.

As e-commerce becomes more common, we will move from a
world with 107 occasional participants to one with 10 9 frequent
users and with enterprises doing very large fractious of their buy-
ing and selling by the new means. Consumers will have many
ways to communicate and at least 10 '1 software agents and 1011
network-euabled gadgets. The new modes of interaction and new
ways to control problems and the need to provide continuous
availability pose truly grand challenges. In such a world, it is not
obvious how to allocate resources appropriately or how to charge
for them--economic approaches with competing agents and bid-
cling offer one of the few plausible solutions. Finally, the software
will not all be written by specialist professionals but in many cases
will be provided in hosted environments with standard tools, or
using software kits. How do we make it easy yet foolproof to
specify and implement complex business models?

Within the framework of this report, other questions naturally
arise: Where are the principles of construction that apply to build-
ing such systems? What is the engineering practice available?
How do we determine which of the ever-expanding set of require-
ments will force us out of the envelope to systems that we cannot
build reliably?

Findings:
• Software systems are evolving at an enormous rate of com-

plexity, driven by the needs of a very active marketplace.
• The example application demonstrates the limits of our exist-

ing domain models, principles of construction, and engineer-
ing processes.

• At the boundaries of no-surprise systems are the significant
issues of scalability, system evolution, and engineering proc-
ess.

Recommendations:
• We need progress in both the underlying software domain

science (e.g., databases, security, human-computer interaction,
distributed systems) and the new views of the application do-
main science (e.g., e-commerce).

• Research is required on the principles of construction and the
engineering process for the development of unprecedented
software systems, including problems in scalability (e.g., in-
creases in the user set, the amount of functionality), evolution
of systems (e.g., need for almost instant change of capabili-
ties), process/product relationships (e.g., the need to predict
and achieve ever-higher levels of reliability, availability, and
performance; the need for tool support).

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 42

4. Recommended Directions.
The PITAC Interim Report recommends substantial new invest-
ment in basic information technology research, noting that "the
NSF defines basic research as the study of the 'fundamental as-
pects of phenomena and of observable facts without specific appli-
cation toward processes or products.'" Applied research, on the
other hand, "is aimed at determining the means to meet specific
needs," while development is "the systematic use of knowledge to
produce useful materials, devices, or methods." The Report ob-
serves that R&D is much more than these definitions. It is "a com-
plex non-linear interaction between concepts and theories, data
and experiments, and new products and processes." The concepts,
theories, data, and experimentation produced by "basic research is
a critically important part of this interwoven system."

We agree and would emphasize that both applied research directed
at particular application domains and the development of particular
products or services inevitably require a foundation of basic re-
search, which solves problems that form the barriers to real prog-
ress and often can be applied across domain boundaries. Thus, a
solution to the problem of scalability, one of the most important
basic research questions for software, would have a wide impact
over many important application domains. To take another exam-
ple: research that improved the software engineering process
would positively benefit the development of almost all software.

In well-established engineering disciplines, basic research can
focus primarily, but, perhaps, not exclusively, on fundamental
technical issues. In a field as young and dynamic as software,
however, the research community must also put substantial effort
into establishing the principles and basic components of the disci-
pline. The software research community has been doing that by
asking such questions as: How do we obtain observable facts?
What are the fundamental variables of the software discipline? But
the answers have been slow in coming, because the same forces
that have made information technology "responsible for more than
a third of our economic expansion" over the last four years--as
President Clinton told the MIT commencement audience last
June---have also put a focus on applied research to support new
applications, rather than a fundamental understanding that could
eventually lead to extraordinary increases in our ability to produce
no-surprise sottware. In this section we argue for supporting both
high-risk fundamental research and the exciting new technologies
that come out of applied research.

4.a. Problem areas.
To illustrate the need for greater research investment in the soft-
ware discipline, let's look at three significant basic research tech-
nical problem areas.

1. Scale-up. One of the most important expansions of the no-
surprise envelope will come when we have a coherent and general
approach to scalability. In various domains, we know how to build
no-surprise systems of a certain size and complexity, but the seal-
ability question asks, "How do we systematically expand our abil-
ity to create more complex systems for a given domain?"

One reasonably successful approach to scaling up construction has
been to build large reusable components: operating systems, Web
browsers, databases, accounting systems, and office productivity
systems are all examples. These are very large components, often
containing millions of lines of code, and they make most applica-

tions much easier to build than in the past.

We should investigate why the approach has worked with very
large components, while smaller-scale reusable software has not
been nearly as successful. In particular, we need to understand
why certain attempts to capitalize on these ideas have not been
successful-e.g., uses of COTS where the assumption was that wc
would get over 70% reuse and ended up with at most 30%. Are the
failures traceable to missing principles of construction using com-
ponents, do they arise from an inadequate or inadequately fol.
lowed software engineering process, or do they arise from a lacg
of understanding of the real system requirements? How do w~
systematically create a component-based development methodol.
ogy that builds on the large-scale successes?

2. Evolving systems. Understanding how to expand the no-surpris(
envelope for systems subject to continual evolution is extremel,~
important, because evolvability is a widespread requirement
Software systems enable us to improve the way we do business
They also accelerate changes in the way we do things, whicl
causes our requirements for software solutions, and thus the soft.
ware itself, to change along with them.

This increased rate of change comes from a variety of factors. Fo:
example, as a particular business domain changes, the softwar(
must continue to adapt to be relevant. But there are also change~
that are driven by the nature of the software itself. As users be
come more knowledgeable about a system, they understand thei
needs better and, hence, have new requirements. In addition, thei
expectations change.

As the previously described example of e-systems demonstrates
requirements for certain kinds of important systems will continu
ously evolve. The more we use such systems, the larger ark
broader the user community will become, and the more rapidly th.
requirements will grow.

A significant number of large systems in the future will, by thei
nature, continually evolve. Changes will expand from componen
changes to architectural changes, from manual changes to auto
mated changes, and from off-line changes to on-line change
(where the change occurs while the system is running).

How do we systematically develop principles of construction and
software process appropriate to the needs of evolving systems?

3. Process~product relationships. Finally, we need to expand th
no-surprise envelope by developing principles and processes fc
producing software that has specified characteristics. That is, give
a particular set of system characteristics, how do we systematicali
determine the principles of construction and the software eng
neering process to build a system with those characteristics? As i
most disciplines, we need to understand the cause-effect relatio[
ship between various processes and how they affect or make po,,
sible various product characteristics. Even though human facto1
play a large role in the software discipline, it is still important 1
understand how issues like risk and predictability are effected b
how we choose to build the system.

We currently have trouble answering such questions as: What a]
the most appropriate processes, techniques, and tools for effe~
tively constructing or analyzing particular classes of suftwm
products? What are the levels of specificity for defining such pro~
esses so they support, but do not constrain, the development c

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 43

evolution of a system? How do we predict such aspects as the cost,
delivery time, and reliability of large systems given certain vari-
ables known or estimable in advance? How do we balance people
factors: individual vs. group incentives; autonomy and
empewerment vs. disciplined, uniform processes?

We need to build models of cost, reliability, and effectiveness
based on observations of real projects. Creating these models will
require empirical investigation as well as model building tech-
niques that are sensitive to the needs of the software discipline.

4.b. Building a software discipline.
Why do we need a so#ware discipline? Classical engineering dis-
ciplines produce reli~)le artifacts under schedule, budget,
workforce, legal, and other real-world constraints because they
have a consistent framework--their scientific foundations---for
developing and conmaanicating standard practice and for analyz-
ing and correcting faui~ practice. Within this framework, aca-
demic departments educate the next generation of practitioners,
who can then provide important information on real-world prob-
lems using the same framework. Properly educated engineers are
also capable of profiting from new engineering research. By con-
trast, few among the hundreds of thousands of working software
engineers have an acadernic background in the design of complex
systems. Thus, few engage in a dialogue with the research com-
manity.

Without question, a coherent scientific framework has proven to
have great value for classical engineering. Bringing to maturity the
scientific foundations of software would, therefore, appear to be
highly desirable, although some worry that trying to impose engi-
neering discipline on the field would risk losing the flexibility that
has made software one of the driving forces of our economy. They
are concerned about dampening the creativity that has produced
some of the most impressive technology of the Twentieth Century.

We should keep in mind, however, that adherence to a rigorous
development process has not prevented classical engineering from
undertaking high-risk, high-payoff projects. Further, the validity of
Moore's Law for electrical engineering over three decades demon-
strates that a field can be both rapidly developing and economi-
cally significant while operating under engineering constraints.
Even if some software will always be built without a rigorous en-
gineering approach---because of market forces, for example---it
will be important to nmximize the no-surprise core of such systems
and to quantify the risks of going outside the no-surprise envelope.
This knowledge of where you are in the no-surprise-to-high-risk
continuum is characteristic of classical engineering but not of
software engineering as currently practiced.

Without a scientific basis for the software discipline, we cannot
build no-surprise system~; of the next magnitude. We will remain
prisoners of fads, rather lhan participants in the engineering enter-
prise, if we lack a sufficient basis for carefully choosing the right
construction principles mad engineering processes. Good solutions
for systems that should fall within the no-surprise envelope will
continue to be derivable only by an ever-decreasing number of
gifted designers, who should, instead, reserve their efforts for the
most difficult and advanc~l systems. Each success will itself be a
non-repeatable surprise, and there will many more failures than
Successes .

We agree strongly with the P1TAC recommendation for significant

new investment in basic software research. Given the large number
of no-surprise systems from which researchers can now draw im-
portant general principles and the demand for extraordinarily com-
plex and dynamically evolving new systems, the time is right for
creating better scientific foundations for the field.

Recommendations for software research. Understanding a disci-
pline involves observation, reflection, encapsulation of knowledge,
the creation of evolving models (of both application domains and
problem-solving processes), and experimentation. This paradigm
has been used in many fields--e.g., physics, medicine, and manu-
facturing. The differences among the fields are reflected in how
models are built and analyzed and how experimentation is per-
formed.

Currently, there is an insufficient set of models to support reason-
ing about the software discipline, a lack of understanding of their
limitations, and insufficient analysis and experimentation within a
model-driven framework. Thus, the software discipline needs to
bring appropriate research methods to maturity and evolve them as
we learn and grow as a discipline. In particular, we need to study
and classify past development successes and failures relative to the
parameters that limit our progress. We also need to build bodies of
knowledge by classifying and integrating research results.

Too often, promising software research goes unevaluated. Lacking
a proper understanding of the usability of an idea, overloaded,
risk-averse applications organizations rarely pay attention to re-
search results. This lack of engagement means that the research
community does not receive feedback on the viability of new ap-
proaches.

If we focus on research to produce no-surprise software, one thing
we would want is no-surprise research papers. These are papers in
which the research results are accompanied by the author's best
effort to determine the region of successful applicability of the
results. For example, a research paper on a static code analysis
technique would not just furnish the technique and an example of
how well the technique worked on a toy program. In addition, it
would include an analysis of how well the technique worked on
various classes of code (e.g., very efficient for single modules;
very inefficient for multiple modules with multiple threads of
control). The effort required for such analyses should be enabled
by, and expected from, the award of larger research grants.

This information makes it much more likely that applications or-
ganizatious will experiment with them. It also provides a context
for the experimental results to refine the assessment (e.g.: strong
for 2G-statement modules; weak for 2000-satement modules).

Not only do these assessment results help other applications or-
ganizations benefit from the capabilities, but they also help
sharpen the future research agenda, as researchers discover which
capabilities are weakly covered and in high demand.

This feedback-and-improvement loop can be both strengthened
and accelerated ff the applications organizations arc motivated to
collaborate with the researchers in performing the evaluations. For
example, ff a P1TAC software initiative provided matching funds
for university-industry collaborations to evaluate and strengthen
the research results, the assessments would provide timely benefits
to the adopter, stronger results for the researcher, and better re-
search and technology status information for the remainder of both
the research and the application communities.

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 44

As we have pointed out, the software community has achieved
greater and greater success in support of other disciplines at the
cost of not investing in and evolving the scientific and engineering
basis for the software discipline. Putting so much effort into appli-
cations for others explains, in part, why we have rarely studied
even those systems that represent our successes. We have not de-
veloped a significant understanding of how we have bound a
problem space (for example, by concentrating on a particular ap-
plicalion domain or by minimizing the degrees of freedom of the
requirements) or constrained a solution space (for example, by
using standard development methods or running on a well-
understood computer system). We do not have a careful approach
to analyzing the effect of changing a few parameters in system
requirements. For example, we will not be able to systematically
extend the no-surprise envelope until we can precisely describe
why an organization that has been building order-entry systems for
10,000 orders encounters high risk when trying to construct the
same kind of system for 2-million orders.

A national investment in developing, evolving, and maturing the
software discipline will, therefore, benefit all information technol-
ogy areas and most other application areas, as well as the related
systems and products.

Findings:
* Basic and applied research in the software discipline should

derive its motivation from real software problems, whether
those problems are domain-specific or eross-domain.

• A field as young and dynamic as software still needs to put
effort into establishing the principles and components of the
discipline. For example, we have to ask such questions as:
How do we obtain observable facts? What are the fundamen-
tal variables?

• Basic research problems involve issues of scalability, system
evolution, and engineering process as well as developing tools
and formalisms.

Recommendations:
• A significant research investment is required if we are to

study real software problems. To increase our general under-
standing of software development, discover new principles
that will help us build "no-surprise software," and validate
theories of software construction, both new and long pro-
posed, will require much time, effort, and funding support.

5. Mechanisms and Follow-Through.
Clearly, various government agencies will articulate high-level
goals for research programs. However, it is important for the evo-
lution of the discipline that these serve only as guidelines and mo-
tivations for research problems. Such guidelines should not be the
final arbiter of what is good research. It is important that the re-
searchers in the discipline should propose the research. Basic re-
search proposals need to have the freedom to follow the best ideas
and not focus on the short term. Quality control by the research
community is important, and research proposals should be as-
sessed for the quality of the ideas, how well they contribute to the
evolution of the software discipline, how well they address im-
portant basic research problems, and how well they address the
need for evaluating the work according to sound scientific princi-
ples.

Research review systems relying on peer review--the system used
by the NSF, for example--generally manage well. They avoid
wasting money on low-quality research. However, they may still
miss some high-quality research because peer review can discour-
age risk, controversy, and preliminary ideas in favor of predictable
progress. Thus, although peer review should be the basis for qual-
ity control, there should be some support for investing in risky,
new ideas from researchers with excellent track records.

In administering investment in riskier programs, we may need to
consider new mechanisms. An approach that bears investigation is
the NIH "study section" model. In this system, a small group of
senior researchers helps in making decisions for a large number of
proposals, spanning a broad spectrum of areas. The system has the
advantages of continuity (the same people do this work for several
years) and the perspective and good judgment of the very best re-
searchers. Study sections could be more likely than the one-shot
small NSF panels to recognize high-quality, new, and risky ideas
as worth investment..

We also believe that a wide variety of software research should be
funded. By "variety" we mean over research areas (mathematical
foundations, tool development, empirical studies, languages, oper-
ating systems, and human-computer interfaces, for example), as
well as project styles (large and small, single and multiple-PI, and
single and multiple-institutions). Research proposals should foster
collaboration with other disciplines and with industry.

Since it is clear that software is pervasive, that it should adapt and
adopt time-proven engineering techniques, that some of its major
problems are project and business management, many research
projects should be interdisciplinary, including not only computer
scientists but also, as appropriate, engineers, and researchers from
business schools. At the same time choices of research subjects
should be discussed with reputable industry representatives who,
contrary to often-heard prejudice, do care about the longer term
prospects and health of their industry.

Of particular importance is the ability to facilitate and accelerate
the transition of research across the chasm between software re-
search and large-scale development in industry and government.
There are many reasons for the problem, only some of which are
technical. A major problem is the lack of incentives for academic
software researchers and industry practitioners to collaborate and
understand each other's objectives, constraints, and capabilities.
There are many incentives for these groups to avoid each other.
For example, academic research based on scaled-down compute1
science problems and simplifying assumptions--what Fred Brooks
has called "tractable abstractions ' ' w is much easier to generate
and publish than research that tries to understand and address criti.
cal success factors for practitioners. On the industry side, applying
yesterday's familiar solutions to today's problems is easier to de
and defend than trying out risky new technology. Given this situa.
tion, creating incentives for understanding and collaboration be.
tween academic researchers and industry researchers an(
practitioners should be a high priority. However, care must b~
taken to avoid over-bureaucratic or artificial collaboration pro.
grams. Some examples of viable programs that could be scaled uI
or applied to software research are:

• Stimulating industrial collaboration in an expanded NSF Ex-
perimental Software Systems Program.

ACM SIGSOFT Software Engineering Notes vol 24 no 3 May 1999 Page 45

• The NSF Software Engineering Research Centers Program,
which could have Centers oriented more towards software~
with appropriate industry participation as a success criterion.

• The State of Califorrda's Micro program, which provides
matching funds for industry-supported university research.

• Establishing and coordinating counterpart initiatives for ex-
perimentation with advanced research concepts and capabili-
ties in Federal missicm-oriented agencies (DoD, DoT, NASA,
DoE, NIH, DoC, etc.) via HPCC-like mechanisms.

The major benefits derived from such initiatives would be:

• input from large projects to help guide the directions of the
scientific research (keeping the science on the fight track);

• avenues for technology transfer from the scientific research
community to the development projects.

The software research projects discussed in this report require
large grants sustained over many years. In parfiodar, many ex-
perimental projects i:a software research involve several faculty
members and numerous graduate students, in addition to post-
docs, visitors, and staff programmers. We emphasize, however,
that long-term grants require regular checkpoints for accountabil-
ity. In fact, mechanisms tbr accountability can also serve as media
for feedback and improvement.

Recommendations:
Funding agencies should sponsor software research programs that
include:

• validation of concepts;
• indications o:f rel.evance;
• feedback mechanisms;

And meaningfully encourage
• academic/ind,us~ial collaboration;
• empirical investigation.

These research programs require large grants and should be sus-
tained over several years.

E d i t o r ' s F i l l e r

R e a d y for some no-,,mrprise sof tware?

I'll t ake some - e>~ia cr ispy please!

O b v i o u s l y t he original rec ipe isn ' t

enough[

g o o d

Empirical Research in
Software Engineering: A Workshop

Marriott Hotel, Greenbelt, MD
June 29-30, 1998
Sponsored by:

The National Science Foundation
Organized by:

The University of Virginia
The University of Maryland

Final Report Prepared by:
Susan S. Brilliant
John C. Knight

Executive Summary
This is a report of a workshop held in June 1998 to discuss the
issue of empirical research in software engineering. The Universi-
ties of Virginia and Maryland organized the workshop, and it was
funded by the National Science Foundation (NSF). The workshop
was attended by representatives from academia, funding agencies,
and industrial software development organizations.

Empirical research in software engineering is the observation of
some aspect of software development in an experimental sense.
The observation might be of an existing activity employing ac-
cepted techniques or of the application of new techniques. Clearly,
this type of research is best performed on real development proj-
ects with professional developers although much of value has been
learned by doing experiments with student developers. To ensure
adequate input from professional developors, several representa-
fives from industly attended the workshop who both understand
research and have experience with development.

Empirical research is important to the soi~are engineering field
because the results of such research both help to characterize the
technical problems with which the field is concerned and evaluate
new techniques in a relevant context. In the view of the workshop
organizers, insufficient empirical research in soft, care engineering
is being conducted despite the need and commendable efforts by
funding agencies such as the NSF. The reason for holding this
workshop was to review the situation and seek ways of enabling
more empirical research.

The conclusions of the workshop are quite detailed. Many of the
conclusions are suggestions to researchers of ways to make em-
pirical research more successful. There are also ideas for industrial
organizations and funding agencies. Beyond the detailed conclu-
sions, several general and important observations came from the
workshop discussions. Specifically:

1) There is a significant need for empirical research in software
engineering. Many important issues faced by the community
can only be addressed by experimentation.

2) Experimental work is complex and expensive to perform,
3) Although there are exceptions, in many cases industry does

not perceive a significant benefit from working with academic
researchers in joint activities of an experimental nature.

